CONTENTS

I Tools and Techniques

1 Geometric Series for Elementary Economics
 1.1 Overview .. 7
 1.2 Key Formulas ... 8
 1.3 Example: The Money Multiplier in Fractional Reserve Banking 8
 1.4 Example: The Keynesian Multiplier .. 10
 1.5 Example: Interest Rates and Present Values ... 12
 1.6 Back to the Keynesian Multiplier .. 20

2 Modeling COVID 19
 2.1 Overview .. 25
 2.2 The SIR Model ... 26
 2.3 Implementation ... 27
 2.4 Experiments ... 28
 2.5 Ending Lockdown .. 32

3 Linear Algebra
 3.1 Overview .. 35
 3.2 Vectors .. 36
 3.3 Matrices .. 44
 3.4 Solving Systems of Equations .. 46
 3.5 Eigenvalues and Eigenvectors .. 51
 3.6 Further Topics ... 54
 3.7 Exercises ... 56

4 QR Decomposition
 4.1 Overview .. 59
 4.2 Matrix Factorization ... 59
 4.3 Gram-Schmidt process ... 59
 4.4 Some Code ... 61
 4.5 Example .. 62
 4.6 Using QR Decomposition to Compute Eigenvalues ... 64
 4.7 QR and PCA ... 65

5 Complex Numbers and Trigonometry
 5.1 Overview .. 67
 5.2 De Moivre's Theorem ... 70
 5.3 Applications of de Moivre's Theorem .. 71

6 Circulant Matrices
 6.1 Overview .. 77
Table of Contents

10 Univariate Time Series with Matrix Algebra
- 10.1 Overview 183
- 10.2 Samuelson’s model 184
- 10.3 Adding a Random Term 187
- 10.4 Computing Population Moments 190
- 10.5 Moving Average Representation 193
- 10.6 A Forward Looking Model 194

11 LLN and CLT
- 11.1 Overview 197
- 11.2 Relationships 198
- 11.3 LLN 198
- 11.4 CLT 202
- 11.5 Exercises 209

12 Two Meanings of Probability
- 12.1 Overview 215
- 12.2 Frequentist Interpretation 216
- 12.3 Bayesian Interpretation 223

13 Multivariate Hypergeometric Distribution
- 13.1 Overview 233
- 13.2 The Administrator's Problem 233
- 13.3 Usage 237

14 Multivariate Normal Distribution
- 14.1 Overview 243
- 14.2 The Multivariate Normal Distribution 244
- 14.3 Bivariate Example 247
- 14.4 Trivariate Example 251
- 14.5 One Dimensional Intelligence (IQ) 253
- 14.6 Information as Surprise 256
- 14.7 Cholesky Factor Magic 258
- 14.8 Math and Verbal Intelligence 258
- 14.9 Univariate Time Series Analysis 261
- 14.10 Stochastic Difference Equation 266
- 14.11 Application to Stock Price Model 268
- 14.12 Filtering Foundations 270
- 14.13 Classic Factor Analysis Model 274
- 14.14 PCA and Factor Analysis 276

15 Heavy-Tailed Distributions
- 15.1 Overview 281
- 15.2 Visual Comparisons 282
- 15.3 Classifying Tail Properties 287
- 15.4 Failure of the LLN 287
- 15.5 Why Do Heavy Tails Matter? 289
- 15.6 Exercises 292

16 Fault Tree Uncertainties
- 16.1 Overview 303
- 16.2 Log normal distribution 304
- 16.3 The Convolution Property 305
- 16.4 Approximating Distributions 306
- 16.5 Convolving Probability Mass Functions 310
29 Kesten Processes and Firm Dynamics

29.1 Overview .. 537
29.2 Kesten Processes .. 538
29.3 Heavy Tails .. 541
29.4 Application: Firm Dynamics 543
29.5 Exercises .. 544

30 Wealth Distribution Dynamics

30.1 Overview .. 549
30.2 Lorenz Curves and the Gini Coefficient 550
30.3 A Model of Wealth Dynamics 553
30.4 Implementation .. 554
30.5 Applications .. 557
30.6 Exercises .. 560

31 A First Look at the Kalman Filter

31.1 Overview .. 565
31.2 The Basic Idea ... 566
31.3 Convergence ... 574
31.4 Implementation .. 574
31.5 Exercises .. 575

32 Shortest Paths

32.1 Overview .. 583
32.2 Outline of the Problem ... 584
32.3 Finding Least-Cost Paths .. 586
32.4 Solving for Minimum Cost-to-Go 587
32.5 Exercises .. 588

V Search

33 Job Search I: The McCall Search Model

33.1 Overview .. 595
33.2 The McCall Model .. 596
33.3 Computing an Optimal Policy: Take 1 598
33.4 Computing an Optimal Policy: Take 2 604
33.5 Exercises .. 605

34 Job Search II: Search and Separation

34.1 Overview .. 611
34.2 The Model .. 612
34.3 Solving the Model .. 613
34.4 Implementation .. 615
34.5 Impact of Parameters .. 618
34.6 Exercises .. 619

35 Job Search III: Fitted Value Function Iteration

35.1 Overview .. 623
35.2 The Algorithm ... 623
35.3 Implementation .. 624
35.4 Exercises .. 626

36 Job Search IV: Correlated Wage Offers

36.1 Overview .. 631
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>36.2 The Model</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>36.3 Implementation</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>36.4 Unemployment Duration</td>
<td>637</td>
</tr>
<tr>
<td></td>
<td>36.5 Exercises</td>
<td>639</td>
</tr>
<tr>
<td>37</td>
<td>37.1 Overview</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>37.2 Model</td>
<td>641</td>
</tr>
<tr>
<td></td>
<td>37.3 Implementation</td>
<td>642</td>
</tr>
<tr>
<td></td>
<td>37.4 Exercises</td>
<td>644</td>
</tr>
<tr>
<td>38</td>
<td>38.1 Overview</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>38.2 Model</td>
<td>655</td>
</tr>
<tr>
<td></td>
<td>38.3 Implementation</td>
<td>656</td>
</tr>
<tr>
<td></td>
<td>38.4 Solving for Policies</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>38.5 Exercises</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>38.6 Yield Curves and Hicks-Arrow Prices</td>
<td>661</td>
</tr>
<tr>
<td></td>
<td>38.7 Computing a Competitive Equilibrium</td>
<td>662</td>
</tr>
<tr>
<td></td>
<td>38.8 Concluding Remarks</td>
<td>663</td>
</tr>
<tr>
<td>39</td>
<td>39.1 Overview</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.2 The Model</td>
<td>669</td>
</tr>
<tr>
<td></td>
<td>39.3 Planning Problem</td>
<td>670</td>
</tr>
<tr>
<td></td>
<td>39.4 Shooting Algorithm</td>
<td>672</td>
</tr>
<tr>
<td></td>
<td>39.5 Setting Initial Capital to Steady State Capital</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>39.6 A Turnpike Property</td>
<td>678</td>
</tr>
<tr>
<td></td>
<td>39.7 A Limiting Infinite Horizon Economy</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>39.8 Concluding Remarks</td>
<td>682</td>
</tr>
<tr>
<td></td>
<td>39.9 Cass-Koopmans Model</td>
<td>684</td>
</tr>
<tr>
<td>40</td>
<td>40.1 Overview</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.2 The Model</td>
<td>686</td>
</tr>
<tr>
<td></td>
<td>40.3 Competitive Equilibrium</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>40.4 Market Structure</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>40.5 Household Problem</td>
<td>688</td>
</tr>
<tr>
<td></td>
<td>40.6 Firm Problem</td>
<td>689</td>
</tr>
<tr>
<td></td>
<td>40.7 Computing a Competitive Equilibrium</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>40.8 Concluding Remarks</td>
<td>691</td>
</tr>
<tr>
<td></td>
<td>40.9 Cass-Koopmans Competitive Equilibrium</td>
<td>692</td>
</tr>
<tr>
<td>41</td>
<td>41.1 Overview</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.2 The Model</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.3 The Value Function</td>
<td>702</td>
</tr>
<tr>
<td></td>
<td>41.4 The Optimal Policy</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>41.5 The Euler Equation</td>
<td>704</td>
</tr>
<tr>
<td></td>
<td>41.6 Exercises</td>
<td>706</td>
</tr>
<tr>
<td>42</td>
<td>42.1 Overview</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.2 Reviewing the Model</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.3 Time Iteration</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>42.4 Value Function Iteration</td>
<td>712</td>
</tr>
<tr>
<td></td>
<td>42.5 Exercises</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>42.6 Exercises</td>
<td>720</td>
</tr>
<tr>
<td></td>
<td>42.7 Exercises</td>
<td>720</td>
</tr>
</tbody>
</table>

VI Consumption, Savings and Capital

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>39.1 Overview</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.2 The Model</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.3 Planning Problem</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.4 Shooting Algorithm</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.5 Setting Initial Capital to Steady State Capital</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.6 A Turnpike Property</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.7 A Limiting Infinite Horizon Economy</td>
<td>667</td>
</tr>
<tr>
<td></td>
<td>39.8 Concluding Remarks</td>
<td>667</td>
</tr>
<tr>
<td>40</td>
<td>40.1 Overview</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.2 The Model</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.3 Competitive Equilibrium</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.4 Market Structure</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.5 Household Problem</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.6 Firm Problem</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.7 Computing a Competitive Equilibrium</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.8 Concluding Remarks</td>
<td>685</td>
</tr>
<tr>
<td></td>
<td>40.9 Cass-Koopmans Competitive Equilibrium</td>
<td>685</td>
</tr>
<tr>
<td>41</td>
<td>41.1 Overview</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.2 The Model</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.3 The Value Function</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.4 The Optimal Policy</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.5 The Euler Equation</td>
<td>701</td>
</tr>
<tr>
<td></td>
<td>41.6 Exercises</td>
<td>701</td>
</tr>
<tr>
<td>42</td>
<td>42.1 Overview</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.2 Reviewing the Model</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.3 Time Iteration</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.4 Value Function Iteration</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.5 Exercises</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.6 Exercises</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>42.7 Exercises</td>
<td>711</td>
</tr>
</tbody>
</table>

vii
51.3 Predictive Distributions of Path Properties .. 858
51.4 A Wecker-Like Algorithm .. 859
51.5 Using Simulations to Approximate a Posterior Distribution 860
51.6 Calculating Sample Path Statistics ... 861
51.7 Original Wecker Method .. 862
51.8 Extended Wecker Method .. 864
51.9 Comparison ... 866

VIII Information ... 869

52 Job Search VII: Search with Learning .. 871
 52.1 Overview .. 871
 52.2 Model ... 872
 52.3 Take 1: Solution by VFI .. 875
 52.4 Take 2: A More Efficient Method ... 880
 52.5 Another Functional Equation .. 881
 52.6 Solving the RWFE ... 881
 52.7 Implementation ... 882
 52.8 Exercises .. 883
 52.9 Solutions .. 883
 52.10 Appendix A ... 885
 52.11 Appendix B ... 887
 52.12 Examples ... 891

53 Likelihood Ratio Processes ... 903
 53.1 Overview .. 903
 53.2 Likelihood Ratio Process ... 904
 53.3 Nature Permanently Draws from Density g ... 905
 53.4 Peculiar Property .. 907
 53.5 Nature Permanently Draws from Density f ... 908
 53.6 Likelihood Ratio Test ... 909
 53.7 Kullback–Leibler Divergence .. 914
 53.8 Sequels .. 917

54 Computing Mean of a Likelihood Ratio Process ... 919
 54.1 Overview .. 919
 54.2 Mathematical Expectation of Likelihood Ratio ... 920
 54.3 Importance sampling ... 922
 54.4 Selecting a Sampling Distribution ... 923
 54.5 Approximating a cumulative likelihood ratio .. 924
 54.6 Distribution of Sample Mean ... 925
 54.7 More Thoughts about Choice of Sampling Distribution 927

55 A Problem that Stumped Milton Friedman ... 933
 55.1 Overview .. 933
 55.2 Origin of the Problem ... 934
 55.3 A Dynamic Programming Approach ... 935
 55.4 Implementation ... 940
 55.5 Analysis ... 942
 55.6 Comparison with Neyman-Pearson Formulation 948
 55.7 Sequels ... 950

56 Exchangeability and Bayesian Updating ... 951
 56.1 Overview .. 951
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>56.2</td>
<td>Independently and Identically Distributed</td>
<td>952</td>
</tr>
<tr>
<td>56.3</td>
<td>A Setting in Which Past Observations Are Informative</td>
<td>953</td>
</tr>
<tr>
<td>56.4</td>
<td>Relationship Between IID and Exchangeable</td>
<td>954</td>
</tr>
<tr>
<td>56.5</td>
<td>Exchangeability</td>
<td>955</td>
</tr>
<tr>
<td>56.6</td>
<td>Bayes’ Law</td>
<td>955</td>
</tr>
<tr>
<td>56.7</td>
<td>More Details about Bayesian Updating</td>
<td>956</td>
</tr>
<tr>
<td>56.8</td>
<td>Appendix</td>
<td>959</td>
</tr>
<tr>
<td>56.9</td>
<td>Sequels</td>
<td>965</td>
</tr>
<tr>
<td>57</td>
<td>Likelihood Ratio Processes and Bayesian Learning</td>
<td>967</td>
</tr>
<tr>
<td>57.1</td>
<td>Overview</td>
<td>967</td>
</tr>
<tr>
<td>57.2</td>
<td>The Setting</td>
<td>968</td>
</tr>
<tr>
<td>57.3</td>
<td>Likelihood Ratio Process and Bayes’ Law</td>
<td>969</td>
</tr>
<tr>
<td>57.4</td>
<td>Behavior of posterior probability {\pi_t} under the subjective probability distribution</td>
<td>973</td>
</tr>
<tr>
<td>57.5</td>
<td>Initial Prior is Verified by Paths Drawn from Subjective Conditional Densities</td>
<td>979</td>
</tr>
<tr>
<td>57.6</td>
<td>Drilling Down a Little Bit</td>
<td>980</td>
</tr>
<tr>
<td>57.7</td>
<td>Sequels</td>
<td>981</td>
</tr>
<tr>
<td>58</td>
<td>Incorrect Models</td>
<td>983</td>
</tr>
<tr>
<td>58.1</td>
<td>Overview</td>
<td>983</td>
</tr>
<tr>
<td>58.2</td>
<td>Sampling from Compound Lottery (H)</td>
<td>986</td>
</tr>
<tr>
<td>58.3</td>
<td>Type 1 Agent</td>
<td>988</td>
</tr>
<tr>
<td>58.4</td>
<td>What a type 1 Agent Learns when Mixture (H) Generates Data</td>
<td>989</td>
</tr>
<tr>
<td>58.5</td>
<td>Kullback-Leibler Divergence Governs Limit of (\pi_t)</td>
<td>991</td>
</tr>
<tr>
<td>58.6</td>
<td>Type 2 Agent</td>
<td>995</td>
</tr>
<tr>
<td>58.7</td>
<td>Concluding Remarks</td>
<td>996</td>
</tr>
<tr>
<td>59</td>
<td>Bayesian versus Frequentist Decision Rules</td>
<td>999</td>
</tr>
<tr>
<td>59.1</td>
<td>Overview</td>
<td>1000</td>
</tr>
<tr>
<td>59.2</td>
<td>Setup</td>
<td>1000</td>
</tr>
<tr>
<td>59.3</td>
<td>Frequentist Decision Rule</td>
<td>1003</td>
</tr>
<tr>
<td>59.4</td>
<td>Bayesian Decision Rule</td>
<td>1008</td>
</tr>
<tr>
<td>59.5</td>
<td>Was the Navy Captain’s Hunch Correct?</td>
<td>1015</td>
</tr>
<tr>
<td>59.6</td>
<td>More Details</td>
<td>1017</td>
</tr>
<tr>
<td>59.7</td>
<td>Distribution of Bayesian Decision Rule’s Time to Decide</td>
<td>1017</td>
</tr>
<tr>
<td>59.8</td>
<td>Probability of Making Correct Decision</td>
<td>1020</td>
</tr>
<tr>
<td>59.9</td>
<td>Distribution of Likelihood Ratios at Frequentist’s (t)</td>
<td>1022</td>
</tr>
<tr>
<td>IX</td>
<td>LQ Control</td>
<td>1025</td>
</tr>
<tr>
<td>60</td>
<td>LQ Control: Foundations</td>
<td>1027</td>
</tr>
<tr>
<td>60.1</td>
<td>Overview</td>
<td>1027</td>
</tr>
<tr>
<td>60.2</td>
<td>Introduction</td>
<td>1028</td>
</tr>
<tr>
<td>60.3</td>
<td>Optimality – Finite Horizon</td>
<td>1030</td>
</tr>
<tr>
<td>60.4</td>
<td>Implementation</td>
<td>1033</td>
</tr>
<tr>
<td>60.5</td>
<td>Extensions and Comments</td>
<td>1038</td>
</tr>
<tr>
<td>60.6</td>
<td>Further Applications</td>
<td>1040</td>
</tr>
<tr>
<td>60.7</td>
<td>Exercises</td>
<td>1048</td>
</tr>
<tr>
<td>61</td>
<td>Lagrangian for LQ Control</td>
<td>1057</td>
</tr>
<tr>
<td>61.1</td>
<td>Overview</td>
<td>1057</td>
</tr>
<tr>
<td>61.2</td>
<td>Undiscounted LQ DP Problem</td>
<td>1058</td>
</tr>
<tr>
<td>61.3</td>
<td>Lagrangian</td>
<td>1059</td>
</tr>
<tr>
<td>61.4</td>
<td>State-Costate Dynamics</td>
<td>1060</td>
</tr>
</tbody>
</table>
61.5 Reciprocal Pairs Property ... 1060
61.6 Schur decomposition ... 1061
61.7 Application .. 1062
61.8 Other Applications ... 1067
61.9 Discounted Problems .. 1068

62 Eliminating Cross Products .. 1071
62.1 Overview ... 1071
62.2 Undiscounted Dynamic Programming Problem 1071
62.3 Kalman Filter ... 1072
62.4 Duality table ... 1073

63 The Permanent Income Model .. 1075
63.1 Overview ... 1075
63.2 The Savings Problem .. 1076
63.3 Alternative Representations .. 1083
63.4 Two Classic Examples .. 1086
63.5 Further Reading .. 1089
63.6 Appendix: The Euler Equation ... 1089

64 Permanent Income II: LQ Techniques ... 1091
64.1 Overview ... 1091
64.2 Setup ... 1092
64.3 The LQ Approach .. 1094
64.4 Implementation .. 1095
64.5 Two Example Economies .. 1098

65 Production Smoothing via Inventories ... 1109
65.1 Overview ... 1109
65.2 Example 1 .. 1114
65.3 Inventories Not Useful ... 1116
65.4 Inventories Useful but are Hardwired to be Zero Always 1116
65.5 Example 2 .. 1117
65.6 Example 3 .. 1118
65.7 Example 4 .. 1119
65.8 Example 5 .. 1121
65.9 Example 6 .. 1122
65.10 Exercises ... 1125

X Multiple Agent Models .. 1131

66 Schelling’s Segregation Model ... 1133
66.1 Outline ... 1133
66.2 The Model .. 1134
66.3 Results .. 1135
66.4 Exercises .. 1139

67 A Lake Model of Employment and Unemployment 1147
67.1 Overview .. 1147
67.2 The Model .. 1148
67.3 Implementation .. 1150
67.4 Dynamics of an Individual Worker ... 1155
67.5 Endogenous Job Finding Rate ... 1157
67.6 Exercises ... 1164
This website presents a set of lectures on quantitative economic modeling, designed and written by Thomas J. Sargent and John Stachurski.

For an overview of the series, see this page

• Tools and Techniques
 – Geometric Series for Elementary Economics
 – Modeling COVID 19
 – Linear Algebra
 – QR Decomposition
 – Complex Numbers and Trigonometry
 – Circulant Matrices
 – Singular Value Decomposition (SVD)
 – Using Newton’s Method to Solve Economic Models

• Elementary Statistics
 – Elementary Probability with Matrices
 – Univariate Time Series with Matrix Algebra
 – LLN and CLT
 – Two Meanings of Probability
 – Multivariate Hypergeometric Distribution
 – Multivariate Normal Distribution
 – Heavy-Tailed Distributions
 – Fault Tree Uncertainties
 – Introduction to Artificial Neural Networks
 – Randomized Response Surveys
 – Expected Utilities of Random Responses

• Linear Programming
 – Linear Programming
 – Optimal Transport
 – Von Neumann Growth Model (and a Generalization)

• Introduction to Dynamics
 – Dynamics in One Dimension
 – AR1 Processes
 – Finite Markov Chains
 – Inventory Dynamics
 – Linear State Space Models
 – Samuelson Multiplier-Accelerator
 – Kesten Processes and Firm Dynamics
Quantitative Economics with Python

- Wealth Distribution Dynamics
- A First Look at the Kalman Filter
- Shortest Paths

• Search
 - Job Search I: The McCall Search Model
 - Job Search II: Search and Separation
 - Job Search III: Fitted Value Function Iteration
 - Job Search IV: Correlated Wage Offers
 - Job Search V: Modeling Career Choice
 - Job Search VI: On-the-Job Search

• Consumption, Savings and Capital
 - Cass-Koopmans Model
 - Cass-Koopmans Competitive Equilibrium
 - Cake Eating I: Introduction to Optimal Saving
 - Cake Eating II: Numerical Methods
 - Optimal Growth I: The Stochastic Optimal Growth Model
 - Optimal Growth II: Accelerating the Code with Numba
 - Optimal Growth III: Time Iteration
 - Optimal Growth IV: The Endogenous Grid Method
 - The Income Fluctuation Problem I: Basic Model
 - The Income Fluctuation Problem II: Stochastic Returns on Assets

• Bayes Law
 - Non-Conjugate Priors
 - Posterior Distributions for AR(1) Parameters
 - Forecasting an AR(1) process

• Information
 - Job Search VII: Search with Learning
 - Likelihood Ratio Processes
 - Computing Mean of a Likelihood Ratio Process
 - A Problem that Stumped Milton Friedman
 - Exchangeability and Bayesian Updating
 - Likelihood Ratio Processes and Bayesian Learning
 - Incorrect Models
 - Bayesian versus Frequentist Decision Rules

• LQ Control
 - LQ Control: Foundations

- Lagrangian for LQ Control
- Eliminating Cross Products
- The Permanent Income Model
- Permanent Income II: LQ Techniques
- Production Smoothing via Inventories

• Multiple Agent Models
 - Schelling's Segregation Model
 - A Lake Model of Employment and Unemployment
 - Rational Expectations Equilibrium
 - Stability in Linear Rational Expectations Models
 - Markov Perfect Equilibrium
 - Uncertainty Traps
 - The Aiyagari Model

• Asset Pricing and Finance
 - Asset Pricing: Finite State Models
 - Competitive Equilibria with Arrow Securities
 - Heterogeneous Beliefs and Bubbles

• Data and Empirics
 - Pandas for Panel Data
 - Linear Regression in Python
 - Maximum Likelihood Estimation

• Auctions
 - First-Price and Second-Price Auctions
 - Multiple Good Allocation Mechanisms

• Other
 - Troubleshooting
 - References
 - Execution Statistics

Previous website

While this new site will receive all future updates, you may still view the old site here for the next month.
Part I

Tools and Techniques
CHAPTER ONE

GEOMETRIC SERIES FOR ELEMENTARY ECONOMICS

Contents

• Geometric Series for Elementary Economics
 – Overview
 – Key Formulas
 – Example: The Money Multiplier in Fractional Reserve Banking
 – Example: The Keynesian Multiplier
 – Example: Interest Rates and Present Values
 – Back to the Keynesian Multiplier

1.1 Overview

The lecture describes important ideas in economics that use the mathematics of geometric series. Among these are

• the Keynesian multiplier
• the money multiplier that prevails in fractional reserve banking systems
• interest rates and present values of streams of payouts from assets

(As we shall see below, the term multiplier comes down to meaning sum of a convergent geometric series)

These and other applications prove the truth of the wise crack that

“in economics, a little knowledge of geometric series goes a long way”

Below we’ll use the following imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  #set default figure size
import numpy as np
import sympy as sym
from sympy import init_printing, latex
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
```
1.2 Key Formulas

To start, let \(c \) be a real number that lies strictly between \(-1\) and \(1\).
- We often write this as \(c \in (-1, 1) \).
- Here \((-1, 1)\) denotes the collection of all real numbers that are strictly less than \(1\) and strictly greater than \(-1\).
- The symbol \(\in \) means \textit{in or belongs to the set after the symbol.}

We want to evaluate geometric series of two types – infinite and finite.

1.2.1 Infinite Geometric Series

The first type of geometric that interests us is the infinite series

\[
1 + c + c^2 + c^3 + \cdots
\]

Where \(\cdots\) means that the series continues without end.

The key formula is

\[
1 + c + c^2 + c^3 + \cdots = \frac{1}{1 - c} \quad (1.1)
\]

To prove key formula (1.1), multiply both sides by \((1 - c)\) and verify that if \(c \in (-1, 1)\), then the outcome is the equation

\[1 = 1.\]

1.2.2 Finite Geometric Series

The second series that interests us is the finite geometric series

\[
1 + c + c^2 + c^3 + \cdots + c^T
\]

where \(T\) is a positive integer.

The key formula here is

\[
1 + c + c^2 + c^3 + \cdots + c^T = \frac{1 - c^{T+1}}{1 - c}
\]

\textbf{Remark:} The above formula works for any value of the scalar \(c\). We don’t have to restrict \(c\) to be in the set \((-1, 1)\).

We now move on to describe some famous economic applications of geometric series.

1.3 Example: The Money Multiplier in Fractional Reserve Banking

In a fractional reserve banking system, banks hold only a fraction \(r \in (0, 1)\) of cash behind each \textit{deposit receipt} that they issue
- In recent times
 - cash consists of pieces of paper issued by the government and called dollars or pounds or ...
 - a deposit is a balance in a checking or savings account that entitles the owner to ask the bank for immediate payment in cash
When the UK and France and the US were on either a gold or silver standard (before 1914, for example)

- cash was a gold or silver coin
- a deposit receipt was a bank note that the bank promised to convert into gold or silver on demand; (sometimes it was also a checking or savings account balance)

Economists and financiers often define the supply of money as an economy-wide sum of cash plus deposits.

In a fractional reserve banking system (one in which the reserve ratio \(r \) satisfies \(0 < r < 1 \)), banks create money by issuing deposits backed by fractional reserves plus loans that they make to their customers.

A geometric series is a key tool for understanding how banks create money (i.e., deposits) in a fractional reserve system.

The geometric series formula (1.1) is at the heart of the classic model of the money creation process – one that leads us to the celebrated money multiplier.

1.3.1 A Simple Model

There is a set of banks named \(i = 0, 1, 2, \ldots \).

Bank \(i \)'s loans \(L_i \), deposits \(D_i \), and reserves \(R_i \) must satisfy the balance sheet equation (because balance sheets balance):

\[
L_i + R_i = D_i \tag{1.2}
\]

The left side of the above equation is the sum of the bank's assets, namely, the loans \(L_i \) it has outstanding plus its reserves of cash \(R_i \).

The right side records bank \(i \)'s liabilities, namely, the deposits \(D_i \) held by its depositors; these are IOU's from the bank to its depositors in the form of either checking accounts or savings accounts (or before 1914, bank notes issued by a bank stating promises to redeem note for gold or silver on demand).

Each bank \(i \) sets its reserves to satisfy the equation

\[
R_i = rD_i \tag{1.3}
\]

where \(r \in (0, 1) \) is its reserve-deposit ratio or reserve ratio for short

- the reserve ratio is either set by a government or chosen by banks for precautionary reasons

Next we add a theory stating that bank \(i + 1 \)'s deposits depend entirely on loans made by bank \(i \), namely

\[
D_{i+1} = L_i \tag{1.4}
\]

Thus, we can think of the banks as being arranged along a line with loans from bank \(i \) being immediately deposited in \(i + 1 \)

- in this way, the debtors to bank \(i \) become creditors of bank \(i + 1 \)

Finally, we add an initial condition about an exogenous level of bank \(0 \)'s deposits

\[
D_0 \text{ is given exogenously}
\]

We can think of \(D_0 \) as being the amount of cash that a first depositor put into the first bank in the system, bank number \(i = 0 \).

Now we do a little algebra.

Combining equations (1.2) and (1.3) tells us that

\[
L_i = (1 - r)D_i \tag{1.5}
\]
This states that bank \(i \) loans a fraction \((1 - r)\) of its deposits and keeps a fraction \(r \) as cash reserves.

Combining equation (1.5) with equation (1.4) tells us that

\[
D_{i+1} = (1 - r)D_i \text{ for } i \geq 0
\]

which implies that

\[
D_i = (1 - r)^i D_0 \text{ for } i \geq 0
\]

Equation (1.6) expresses \(D_i \) as the \(i \)th term in the product of \(D_0 \) and the geometric series

\[
1, (1 - r), (1 - r)^2, \ldots
\]

Therefore, the sum of all deposits in our banking system \(i = 0, 1, 2, \ldots \) is

\[
\sum_{i=0}^{\infty} (1 - r)^i D_0 = \frac{D_0}{1 - (1 - r)} = \frac{D_0}{r}
\]

(1.7)

1.3.2 Money Multiplier

The **money multiplier** is a number that tells the multiplicative factor by which an exogenous injection of cash into bank 0 leads to an increase in the total deposits in the banking system.

Equation (1.7) asserts that the **money multiplier** is \(\frac{1}{r} \)

- An initial deposit of cash of \(D_0 \) in bank 0 leads the banking system to create total deposits of \(\frac{D_0}{r} \).
- The initial deposit \(D_0 \) is held as reserves, distributed throughout the banking system according to \(D_0 = \sum_{i=0}^{\infty} R_i \).

1.4 Example: The Keynesian Multiplier

The famous economist John Maynard Keynes and his followers created a simple model intended to determine national income \(y \) in circumstances in which

- there are substantial unemployed resources, in particular **excess supply** of labor and capital
- prices and interest rates fail to adjust to make aggregate **supply equal demand** (e.g., prices and interest rates are frozen)
- national income is entirely determined by aggregate demand

1.4.1 Static Version

An elementary Keynesian model of national income determination consists of three equations that describe aggregate demand for \(y \) and its components.

The first equation is a national income identity asserting that consumption \(c \) plus investment \(i \) equals national income \(y \):

\[
c + i = y
\]

The second equation is a Keynesian consumption function asserting that people consume a fraction \(b \in (0, 1) \) of their income:

\[
c = by
\]
The fraction \(b \in (0, 1) \) is called the **marginal propensity to consume**.
The fraction \(1 - b \in (0, 1) \) is called the **marginal propensity to save**.
The third equation simply states that investment is exogenous at level \(i \).

- *exogenous* means *determined outside this model*.

Substituting the second equation into the first gives \((1 - b)y = i\).
Solving this equation for \(y \) gives

\[
y = \frac{1}{1 - b}i
\]

The quantity \(\frac{1}{1 - b} \) is called the **investment multiplier** or simply the **multiplier**.

Applying the formula for the sum of an infinite geometric series, we can write the above equation as

\[
y = i \sum_{t=0}^{\infty} b^t
\]

where \(t \) is a nonnegative integer.

So we arrive at the following equivalent expressions for the multiplier:

\[
\frac{1}{1 - b} = \sum_{t=0}^{\infty} b^t
\]

The expression \(\sum_{t=0}^{\infty} b^t \) motivates an interpretation of the multiplier as the outcome of a dynamic process that we describe next.

1.4.2 Dynamic Version

We arrive at a dynamic version by interpreting the nonnegative integer \(t \) as indexing time and changing our specification of the consumption function to take time into account

- we add a one-period lag in how income affects consumption

We let \(c_t \) be consumption at time \(t \) and \(i_t \) be investment at time \(t \).

We modify our consumption function to assume the form

\[
c_t = by_{t-1}
\]

so that \(b \) is the marginal propensity to consume (now) out of last period’s income.

We begin with an initial condition stating that

\[
y_{-1} = 0
\]

We also assume that

\[
i_t = i \quad \text{for all } t \geq 0
\]

so that investment is constant over time.

It follows that

\[
y_0 = i + c_0 = i + by_{-1} = i
\]
and

\[y_1 = c_1 + i = by_0 + i = (1 + b)i \]

and

\[y_2 = c_2 + i = by_1 + i = (1 + b + b^2)i \]

and more generally

\[y_t = by_{t-1} + i = (1 + b + b^2 + \cdots + b^t)i \]

or

\[y_t = \frac{1 - b^{t+1}}{1 - b}i \]

Evidently, as \(t \to +\infty \),

\[y_t \to \frac{1}{1 - b}i \]

Remark 1: The above formula is often applied to assert that an exogenous increase in investment of \(\Delta i \) at time 0 ignites a dynamic process of increases in national income by successive amounts

\[\Delta i, (1 + b)\Delta i, (1 + b + b^2)\Delta i, \cdots \]

at times 0, 1, 2,

Remark 2 Let \(g_t \) be an exogenous sequence of government expenditures.

If we generalize the model so that the national income identity becomes

\[c_t + i_t + g_t = y_t \]

then a version of the preceding argument shows that the government expenditures multiplier is also \(\frac{1}{1 - b} \), so that a permanent increase in government expenditures ultimately leads to an increase in national income equal to the multiplier times the increase in government expenditures.

1.5 Example: Interest Rates and Present Values

We can apply our formula for geometric series to study how interest rates affect values of streams of dollar payments that extend over time.

We work in discrete time and assume that \(t = 0, 1, 2, \ldots \) indexes time.

We let \(r \in (0, 1) \) be a one-period net nominal interest rate

- if the nominal interest rate is 5 percent, then \(r = .05 \)

A one-period gross nominal interest rate \(R \) is defined as

\[R = 1 + r \in (1, 2) \]

- if \(r = .05 \), then \(R = 1.05 \)

Remark: The gross nominal interest rate \(R \) is an exchange rate or relative price of dollars at between times \(t \) and \(t + 1 \). The units of \(R \) are dollars at time \(t + 1 \) per dollar at time \(t \).

When people borrow and lend, they trade dollars now for dollars later or dollars later for dollars now.

The price at which these exchanges occur is the gross nominal interest rate.
• If I sell x dollars to you today, you pay me Rx dollars tomorrow.

• This means that you borrowed x dollars for me at a gross interest rate R and a net interest rate r.

We assume that the net nominal interest rate r is fixed over time, so that R is the gross nominal interest rate at times $t = 0, 1, 2, \ldots$

Two important geometric sequences are

$$1, R, R^2, \ldots$$

(1.8)

and

$$1, R^{-1}, R^{-2}, \ldots$$

(1.9)

Sequence (1.8) tells us how dollar values of an investment accumulate through time.

Sequence (1.9) tells us how to discount future dollars to get their values in terms of today’s dollars.

1.5.1 Accumulation

Geometric sequence (1.8) tells us how one dollar invested and re-invested in a project with gross one period nominal rate of return accumulates

• here we assume that net interest payments are reinvested in the project

• thus, 1 dollar invested at time 0 pays interest r dollars after one period, so we have $r + 1 = R$ dollars at time 1

• at time 1 we reinvest $1 + r = R$ dollars and receive interest of rR dollars at time 2 plus the principal R dollars, so we receive $rR + R = (1 + r)R = R^2$ dollars at the end of period 2

• and so on

Evidently, if we invest x dollars at time 0 and reinvest the proceeds, then the sequence

$$x, xR, xR^2, \ldots$$

tells how our account accumulates at dates $t = 0, 1, 2, \ldots$

1.5.2 Discounting

Geometric sequence (1.9) tells us how much future dollars are worth in terms of today’s dollars.

Remember that the units of R are dollars at $t + 1$ per dollar at t.

It follows that

• the units of R^{-1} are dollars at t per dollar at $t + 1$

• the units of R^{-2} are dollars at t per dollar at $t + 2$

• and so on; the units of R^{-j} are dollars at t per dollar at $t + j$

So if someone has a claim on x dollars at time $t + j$, it is worth xR^{-j} dollars at time t (e.g., today).
1.5.3 Application to Asset Pricing

A lease requires a payments stream of x_t dollars at times $t = 0, 1, 2, ...$ where

$$x_t = G^t x_0$$

where $G = (1 + g)$ and $g \in (0, 1)$.

Thus, lease payments increase at g percent per period.

For a reason soon to be revealed, we assume that $G < R$.

The present value of the lease is

$$p_0 = x_0 + x_1/R + x_2/(R^2) + ...$$

$$= x_0 (1 + GR^{-1} + G^2 R^{-2} + ...)$$

$$= x_0 \frac{1}{1 - GR^{-1}}$$

where the last line uses the formula for an infinite geometric series.

Recall that $R = 1 + r$ and $G = 1 + g$ and that $R > G$ and $r > g$ and that r and g are typically small numbers, e.g., .05 or .03.

Use the Taylor series of $\frac{1}{1+r}$ about $r = 0$, namely,

$$\frac{1}{1+r} = 1 - r + r^2 - r^3 + ...$$

and the fact that r is small to approximate $\frac{1}{1+r} \approx 1 - r$.

Use this approximation to write p_0 as

$$p_0 = x_0 \frac{1}{1 - GR^{-1}}$$

$$= x_0 \frac{1}{1 - (1+g)(1-r)}$$

$$= x_0 \frac{1}{1 - (1+g - r - rg)}$$

$$\approx x_0 \frac{1}{r - g}$$

where the last step uses the approximation $rg \approx 0$.

The approximation

$$p_0 = \frac{x_0}{r - g}$$

is known as the **Gordon formula** for the present value or current price of an infinite payment stream $x_0 G^t$ when the nominal one-period interest rate is r and when $r > g$.

We can also extend the asset pricing formula so that it applies to finite leases.

Let the payment stream on the lease now be x_t for $t = 1, 2, ..., T$, where again

$$x_t = G^t x_0$$

The present value of this lease is:

$$p_0 = x_0 + x_1/R + ... + x_T/R^T$$

$$= x_0 (1 + GR^{-1} + ... + G^T R^{-T})$$

$$= x_0 \frac{1 - G^{T+1} R^{-(T+1)}}{1 - GR^{-1}}$$

14 Chapter 1. Geometric Series for Elementary Economics
Applying the Taylor series to $R^{-(T+1)}$ about $r = 0$ we get:

$$\frac{1}{(1 + r)^{T+1}} = 1 - r(T + 1) + \frac{1}{2}r^2(T + 1)(T + 2) + \cdots \approx 1 - r(T + 1)$$

Similarly, applying the Taylor series to G^{T+1} about $g = 0$:

$$(1 + g)^{T+1} = 1 + (T + 1)g + \frac{T(T + 1)}{2!}g^2 + \frac{(T - 1)T(T + 1)}{3!}g^3 + \cdots \approx 1 + (T + 1)g$$

Thus, we get the following approximation:

$$p_0 = \frac{x_0(1 - (1 + (T + 1)g)(1 - r(T + 1)))}{1 - (1 - r)(1 + g)}$$

Expanding:

$$p_0 = \frac{x_0(1 - 1 + (T + 1)^2rg - r(T + 1) + g(T + 1))}{1 - 1 + r - g + rg}
\approx \frac{x_0(T + 1)(r - g) + x_0rg(T + 1)}{r - g}$$

We could have also approximated by removing the second term $rgx_0(T + 1)$ when T is relatively small compared to $1/(rg)$ to get $x_0(T + 1)$ as in the finite stream approximation.

We will plot the true finite stream present-value and the two approximations, under different values of T, and g and r in Python.

First we plot the true finite stream present-value after computing it below

```python
# True present value of a finite lease
def finite_lease_pv_true(T, g, r, x_0):
    G = (1 + g)
    R = (1 + r)
    return (x_0 * (1 - G**(T + 1) * R**(-T - 1))) / (1 - G * R**(-1))

# First approximation for our finite lease
def finite_lease_pv_approx_1(T, g, r, x_0):
    p = x_0 * (T + 1) + x_0 * r * g * (T + 1) / (r - g)
    return p

# Second approximation for our finite lease
def finite_lease_pv_approx_2(T, g, r, x_0):
    return (x_0 * (T + 1))

# Infinite lease
def infinite_lease(g, r, x_0):
    G = (1 + g)
    R = (1 + r)
    return x_0 / (1 - G * R**(-1))
```

Now that we have defined our functions, we can plot some outcomes.

First we study the quality of our approximations
def plot_function(axes, x_vals, func, args):
 axes.plot(x_vals, func(*args), label=func.__name__)

T_max = 50
T = np.arange(0, T_max+1)
g = 0.02
r = 0.03
x_0 = 1

our_args = (T, g, r, x_0)
funcs = [finite_lease_pv_true,
 finite_lease_pv_approx_1,
 finite_lease_pv_approx_2]
the three functions we want to compare

fig, ax = plt.subplots()
ax.set_title('Finite Lease Present Value T Periods Ahead')
for f in funcs:
 plot_function(ax, T, f, our_args)
ax.legend()
ax.set_xlabel('T Periods Ahead')
ax.set_ylabel('Present Value, p_0')
plt.show()

Evidently our approximations perform well for small values of T.
However, holding g and r fixed, our approximations deteriorate as T increases.
Next we compare the infinite and finite duration lease present values over different lease lengths T.

Convergence of infinite and finite
T_max = 1000
T = np.arange(0, T_max+1)
fig, ax = plt.subplots()
ax.set_title('Infinite and Finite Lease Present Value T Periods Ahead')
(continues on next page)
f_1 = finite_lease_pv_true(T, g, r, x_0)
f_2 = np.full(T_max+1, infinite_lease(g, r, x_0))
ax.plot(T, f_1, label='T-period lease PV')
ax.plot(T, f_2, '--', label='Infinite lease PV')
ax.set_xlabel('\(T\) Periods Ahead')
ax.set_ylabel('Present Value, \(p_0\)')
ax.legend()
plt.show()

The graph above shows how as duration \(T \to +\infty\), the value of a lease of duration \(T\) approaches the value of a perpetual lease.

Now we consider two different views of what happens as \(r\) and \(g\) covary.

```python
# First view
# Changing r and g
fig, ax = plt.subplots()
ax.set_title('Value of lease of length \(T\) periods ahead')
ax.set_xlabel('\(T\) periods ahead')
ax.set_ylabel('Present Value, \(p_0\)')
ax.set_xlabel('\(T\) Periods Ahead')
T_max = 10
T = np.arange(0, T_max + 1)
rs, gs = (0.3, 0.5, 0.4001, 0.4), (0.4, 0.4, 0.4, 0.5), comparisons = ('\(\gg\)', '\(\gg\)', '\(\approx\)', '\(<\)')
for r, g, comp in zip(rs, gs, comparisons):
    ax.plot(finite_lease_pv_true(T, g, r, x_0), label=f'r={r} {comp} g={(g)}')
ax.legend()
plt.show()
```
This graph gives a big hint for why the condition $r > g$ is necessary if a lease of length $T = +\infty$ is to have finite value. For fans of 3-d graphs the same point comes through in the following graph.

If you aren’t enamored of 3-d graphs, feel free to skip the next visualization!

```python
# Second view
fig = plt.figure()
T = 3
ax = plt.subplot(projection='3d')
r = np.arange(0.01, 0.99, 0.005)
g = np.arange(0.011, 0.991, 0.005)
rr, gg = np.meshgrid(r, g)
z = finite_lease_pv_true(T, gg, rr, x_0)

# Removes points where undefined
same = (rr == gg)
z[same] = np.nan
surf = ax.plot_surface(rr, gg, z, cmap=cm.coolwarm,
                        antialiased=True, clim=(0, 15))
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('$r$')
ax.set_ylabel('$g$')
ax.set_zlabel('Present Value, $p_0$')
ax.view_init(20, 10)
ax.set_title('Three Period Lease PV with Varying $g$ and $r$')
plt.show()
```
We can use a little calculus to study how the present value p_0 of a lease varies with r and g. We will use a library called SymPy.

SymPy enables us to do symbolic math calculations including computing derivatives of algebraic equations.

We will illustrate how it works by creating a symbolic expression that represents our present value formula for an infinite lease.

After that, we’ll use SymPy to compute derivatives

```python
# Creates algebraic symbols that can be used in an algebraic expression
g, r, x0 = sym.symbols('g, r, x0')
G = (1 + g)
R = (1 + r)
p0 = x0 / (1 - G * R**(-1))
init_printing(use_latex='mathjax')
print('Our formula is: ')
p0

print('dp0 / dg is:')
dp_dg = sym.diff(p0, g)
```

Our formula is:

$$\frac{x_0}{r+1} + 1$$

print('dp0 / dg is:')
dp_dg = sym.diff(p0, g)
dp_dg
\[\frac{dp_0}{dg} \text{ is:} \]

\[\frac{x_0}{(r+1)(-\frac{g+1}{r+1} + 1)^2} \]

\text{print('dp0 / dr is:')}
\text{dp_dr = sym.diff(p0, r)}
\text{dp_dr}

\[\frac{dp_0}{dr} \text{ is:} \]

\[-\frac{x_0(g + 1)}{(r + 1)^2\left(-\frac{g+1}{r+1} + 1\right)^2} \]

We can see that for \(\frac{dp_0}{dr} < 0\) as long as \(r > g, r > 0\) and \(g > 0\) and \(x_0\) is positive, so \(\frac{dp_0}{dr}\) will always be negative.

Similarly, \(\frac{dp_0}{dg}\) > 0 as long as \(r > g, r > 0\) and \(g > 0\) and \(x_0\) is positive, so \(\frac{dp_0}{dg}\) will always be positive.

1.6 Back to the Keynesian Multiplier

We will now go back to the case of the Keynesian multiplier and plot the time path of \(y_t\), given that consumption is a constant fraction of national income, and investment is fixed.

```python
# Function that calculates a path of y
def calculate_y(i, b, g, T, y_init):
    y = np.zeros(T+1)
    y[0] = i + b * y_init + g
    for t in range(1, T+1):
        y[t] = b * y[t-1] + i + g
    return y

# Initial values
i_0 = 0.3
q_0 = 0.3
# 2/3 of income goes towards consumption
b = 2/3
y_init = 0
T = 100

fig, ax = plt.subplots()
ax.set_title('Path of Aggregate Output Over Time')
ax.set_xlabel('t')
ax.set_ylabel('y_t')
ax.plot(np.arange(0, T+1), calculate_y(i_0, b, g_0, T, y_init))
# Output predicted by geometric series
ax.hlines(i_0 / (1 - b) + q_0 / (1 - b), xmin=-1, xmax=101, linestyles='--')
plt.show()
```
In this model, income grows over time, until it gradually converges to the infinite geometric series sum of income.

We now examine what will happen if we vary the so-called **marginal propensity to consume**, i.e., the fraction of income that is consumed.

```python
bs = (1/3, 2/3, 5/6, 0.9)
fig, ax = plt.subplots()
ax.set_title('Changing Consumption as a Fraction of Income')
ax.set_ylabel('$y_t$')
ax.set_xlabel('$t$')
x = np.arange(0, T+1)
for b in bs:
    y = calculate_y(i_0, b, g_0, T, y_init)
    ax.plot(x, y, label=r'$b=$' + '{:.2f}'.format(b))
ax.legend()
plt.show()
```

1.6. Back to the Keynesian Multiplier
Increasing the marginal propensity to consume \(b \) increases the path of output over time.

Now we will compare the effects on output of increases in investment and government spending.

```python
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 10))
fig.subplots_adjust(hspace=0.3)

x = np.arange(0, T+1)
values = [0.3, 0.4]

for i in values:
    y = calculate_y(i, b, g_0, T, y_init)
    ax1.plot(x, y, label=f"i={i}")
for g in values:
    y = calculate_y(i_0, b, g, T, y_init)
    ax2.plot(x, y, label=f"g={g}")

axes = ax1, ax2
param_labels = "Investment", "Government Spending"

for ax, param in zip(axes, param_labels):
    ax.set_title(f"An Increase in {param} on Output")
    ax.legend(loc="lower right")
    ax.set_ylabel('$y_t$')
    ax.set_xlabel('$t$')
plt.show()
```
Notice here, whether government spending increases from 0.3 to 0.4 or investment increases from 0.3 to 0.4, the shifts in the graphs are identical.
2.1 Overview

This is a Python version of the code for analyzing the COVID-19 pandemic provided by Andrew Atkeson. See, in particular

- NBER Working Paper No. 26867
- COVID-19 Working papers and code

The purpose of his notes is to introduce economists to quantitative modeling of infectious disease dynamics. Dynamics are modeled using a standard SIR (Susceptible-Infected-Removed) model of disease spread.

The model dynamics are represented by a system of ordinary differential equations.

The main objective is to study the impact of suppression through social distancing on the spread of the infection.

The focus is on US outcomes but the parameters can be adjusted to study other countries.

We will use the following standard imports:

```python
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from numpy import exp
```

We will also use SciPy's numerical routine odeint for solving differential equations.
Quantitative Economics with Python

from scipy.integrate import odeint

This routine calls into compiled code from the FORTRAN library odepack.

2.2 The SIR Model

In the version of the SIR model we will analyze there are four states.
All individuals in the population are assumed to be in one of these four states.
The states are: susceptible (S), exposed (E), infected (I) and removed ©.

Comments:
• Those in state R have been infected and either recovered or died.
• Those who have recovered are assumed to have acquired immunity.
• Those in the exposed group are not yet infectious.

2.2.1 Time Path

The flow across states follows the path $S \rightarrow E \rightarrow I \rightarrow R$.
All individuals in the population are eventually infected when the transmission rate is positive and $i(0) > 0$.
The interest is primarily in
• the number of infections at a given time (which determines whether or not the health care system is overwhelmed)
and
• how long the caseload can be deferred (hopefully until a vaccine arrives)

Using lower case letters for the fraction of the population in each state, the dynamics are

\[
\begin{align*}
\dot{s}(t) &= -\beta(t) s(t) i(t) \\
\dot{e}(t) &= \beta(t) s(t) i(t) - \sigma e(t) \\
\dot{i}(t) &= \sigma e(t) - \gamma i(t)
\end{align*}
\] (2.1)

In these equations,
• $\beta(t)$ is called the transmission rate (the rate at which individuals bump into others and expose them to the virus).
• σ is called the infection rate (the rate at which those who are exposed become infected)
• γ is called the recovery rate (the rate at which infected people recover or die).
• the dot symbol \dot{y} represents the time derivative dy/dt.

We do not need to model the fraction r of the population in state R separately because the states form a partition.
In particular, the “removed” fraction of the population is
\[
r = 1 - s - e - i.
\]

We will also track $c = i + r$, which is the cumulative caseload (i.e., all those who have or have had the infection).
The system (2.1) can be written in vector form as

\[
\dot{x} = F(x, t), \quad x := (s, e, i)
\] (2.2)
for suitable definition of F (see the code below).
2.2.2 Parameters

Both \(\sigma \) and \(\gamma \) are thought of as fixed, biologically determined parameters.

As in Atkeson's note, we set

- \(\sigma = 1/5.2 \) to reflect an average incubation period of 5.2 days.
- \(\gamma = 1/18 \) to match an average illness duration of 18 days.

The transmission rate is modeled as

- \(\beta(t) := R(t)\gamma \) where \(R(t) \) is the effective reproduction number at time \(t \).

(The notation is slightly confusing, since \(R(t) \) is different to \(R \), the symbol that represents the removed state.)

2.3 Implementation

First we set the population size to match the US.

```
pop_size = 3.3e8
```

Next we fix parameters as described above.

```
γ = 1 / 18
σ = 1 / 5.2
```

Now we construct a function that represents \(F \) in (2.2)

```python
def F(x, t, R0=1.6):
    """
    Time derivative of the state vector.
    * x is the state vector (array_like)
    * t is time (scalar)
    * R0 is the effective transmission rate, defaulting to a constant
    """
    s, e, i = x

    # New exposure of susceptibles
    β = R0(t) * γ if callable(R0) else R0 * γ
    ne = β * s * i

    # Time derivatives
    ds = -ne
    de = ne - σ * e
    di = σ * e - γ * i

    return ds, de, di
```

Note that \(R_0 \) can be either constant or a given function of time.

The initial conditions are set to
initial conditions of s, e, i
i_0 = 1e-7
e_0 = 4 \times i_0
s_0 = 1 - i_0 - e_0

In vector form the initial condition is

\[x_0 = s_0, e_0, i_0 \]

We solve for the time path numerically using odeint, at a sequence of dates \(t_{vec} \).

```python
def solve_path(R0, t_vec, x_init=x_0):
    """
    Solve for \( i(t) \) and \( c(t) \) via numerical integration,
    given the time path for \( R0 \).
    """
    G = lambda x, t: F(x, t, R0)
    s_path, e_path, i_path = odeint(G, x_init, t_vec).transpose()
    c_path = 1 - s_path - e_path  # cumulative cases
    return i_path, c_path
```

2.4 Experiments

Let’s run some experiments using this code.

The time period we investigate will be 550 days, or around 18 months:

```python
t_length = 550
grid_size = 1000
t_vec = np.linspace(0, t_length, grid_size)
```

2.4.1 Experiment 1: Constant R0 Case

Let’s start with the case where \(R0 \) is constant.

We calculate the time path of infected people under different assumptions for \(R0 \):

```python
R0_vals = np.linspace(1.6, 3.0, 6)
labels = [f'\$R0 = {r:.2f}\$' for r in R0_vals]
i_paths, c_paths = [], []

for r in R0_vals:
i_path, c_path = solve_path(r, t_vec)
i_paths.append(i_path)
c_paths.append(c_path)
```

Here’s some code to plot the time paths.
def plot_paths(paths, labels, times=t_vec):
 fig, ax = plt.subplots()
 for path, label in zip(paths, labels):
 ax.plot(times, path, label=label)
 ax.legend(loc='upper left')
 plt.show()

Let’s plot current cases as a fraction of the population.

plot_paths(i_paths, labels)

As expected, lower effective transmission rates defer the peak of infections.
They also lead to a lower peak in current cases.
Here are cumulative cases, as a fraction of population:

plot_paths(c_paths, labels)
2.4.2 Experiment 2: Changing Mitigation

Let’s look at a scenario where mitigation (e.g., social distancing) is successively imposed.

Here’s a specification for R_0 as a function of time.

```python
def R0_mitigating(t, r0=3, η=1, r_bar=1.6):
    R0 = r0 * exp(-η * t) + (1 - exp(-η * t)) * r_bar
    return R0
```

The idea is that R_0 starts off at 3 and falls to 1.6.

This is due to progressive adoption of stricter mitigation measures.

The parameter η controls the rate, or the speed at which restrictions are imposed.

We consider several different rates:

```python
η_vals = 1/5, 1/10, 1/20, 1/50, 1/100
labels = ['$\eta=%.2f$' % η for η in η_vals]
```

This is what the time path of R_0 looks like at these alternative rates:

```python
fig, ax = plt.subplots()

for η, label in zip(η_vals, labels):
    ax.plot(t_vec, R0_mitigating(t_vec, η=η), label=label)

ax.legend()
plt.show()
```
Let's calculate the time path of infected people:

```python
i_paths, c_paths = [], []
for η in η_vals:
    R0 = lambda t: R0_mitigating(t, η=η)
    i_path, c_path = solve_path(R0, t_vec)
    i_paths.append(i_path)
    c_paths.append(c_path)
```

These are current cases under the different scenarios:

```python
plot_paths(i_paths, labels)
```

Here are cumulative cases, as a fraction of population:

```python
plot_paths(c_paths, labels)
```
2.5 Ending Lockdown

The following replicates additional results by Andrew Atkeson on the timing of lifting lockdown.

Consider these two mitigation scenarios:

1. \(R_t = 0.5 \) for 30 days and then \(R_t = 2 \) for the remaining 17 months. This corresponds to lifting lockdown in 30 days.

2. \(R_t = 0.5 \) for 120 days and then \(R_t = 2 \) for the remaining 14 months. This corresponds to lifting lockdown in 4 months.

The parameters considered here start the model with 25,000 active infections and 75,000 agents already exposed to the virus and thus soon to be contagious.

```
# initial conditions
i_0 = 25_000 / pop_size
e_0 = 75_000 / pop_size
s_0 = 1 - i_0 - e_0
x_0 = s_0, e_0, i_0
```

Let's calculate the paths:

```
R0_paths = (lambda t: 0.5 if t < 30 else 2,
            lambda t: 0.5 if t < 120 else 2)

labels = [f'scenario {i}' for i in (1, 2)]

i_paths, c_paths = [], []

for R0 in R0_paths:
    i_path, c_path = solve_path(R0, t_vec, x_init=x_0)
    i_paths.append(i_path)
    c_paths.append(c_path)
```

Here is the number of active infections:
What kind of mortality can we expect under these scenarios?

Suppose that 1% of cases result in death

$$v = 0.01$$

This is the cumulative number of deaths:

$$paths = [path \cdot v \cdot \text{pop_size} \text{ for path in c_paths}]$$

This is the daily death rate:

2.5. Ending Lockdown
paths = [path * v * γ * pop_size for path in i_paths]
plot_paths(paths, labels)

Pushing the peak of curve further into the future may reduce cumulative deaths if a vaccine is found.
3.1 Overview

Linear algebra is one of the most useful branches of applied mathematics for economists to invest in. For example, many applied problems in economics and finance require the solution of a linear system of equations, such as

\[
\begin{align*}
 y_1 &= a_1x_1 + b x_2 \\
 y_2 &= c x_1 + d x_2
\end{align*}
\]

or, more generally,

\[
\begin{align*}
 y_1 &= a_{11}x_1 + a_{12}x_2 + \cdots + a_{1k}x_k \\
 \vdots \\
 y_n &= a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nk}x_k
\end{align*}
\]

(3.1)

The objective here is to solve for the “unknowns” \(x_1, \ldots, x_k\) given \(a_{11}, \ldots, a_{nk}\) and \(y_1, \ldots, y_n\).

When considering such problems, it is essential that we first consider at least some of the following questions:

- Does a solution actually exist?
- Are there in fact many solutions, and if so how should we interpret them?
- If no solution exists, is there a best “approximate” solution?
- If a solution exists, how should we compute it?
These are the kinds of topics addressed by linear algebra.

In this lecture we will cover the basics of linear and matrix algebra, treating both theory and computation.

We admit some overlap with this lecture, where operations on NumPy arrays were first explained.

Note that this lecture is more theoretical than most, and contains background material that will be used in applications as we go along.

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  # set default figure size
import numpy as np
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import interp2d
from scipy.linalg import inv, solve, det, eig
```

3.2 Vectors

A vector of length n is just a sequence (or array, or tuple) of n numbers, which we write as $x = (x_1, \ldots, x_n)$ or $x = [x_1, \ldots, x_n]$.

We will write these sequences either horizontally or vertically as we please.

(Later, when we wish to perform certain matrix operations, it will become necessary to distinguish between the two)

The set of all n-vectors is denoted by \mathbb{R}^n.

For example, \mathbb{R}^2 is the plane, and a vector in \mathbb{R}^2 is just a point in the plane.

Traditionally, vectors are represented visually as arrows from the origin to the point.

The following figure represents three vectors in this manner:

```python
fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:
    ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:
    ax.spines[spine].set_color('none')
ax.set(xlim=(-5, 5), ylim=(-5, 5))
ax.grid()
vecs = ((2, 4), (-3, 3), (-4, -3.5))
for v in vecs:
    ax.annotate('', xy=v, xytext=(0, 0),
                arrowprops=dict(facecolor='blue',
                                shrink=0,
                                alpha=0.7,
                                width=0.5))
    ax.text(1.1 * v[0], 1.1 * v[1], str(v))
plt.show()
```
3.2.1 Vector Operations

The two most common operators for vectors are addition and scalar multiplication, which we now describe.

As a matter of definition, when we add two vectors, we add them element-by-element

\[
x + y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} := \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}
\]

Scalar multiplication is an operation that takes a number \(\gamma \) and a vector \(x \) and produces

\[
\gamma x := \begin{bmatrix} \gamma x_1 \\ \gamma x_2 \\ \vdots \\ \gamma x_n \end{bmatrix}
\]

Scalar multiplication is illustrated in the next figure.

```python
fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:
    ...
```

(continues on next page)
ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:
 ax.spines[spine].set_color('none')

ax.set(xlim=(-5, 5), ylim=(-5, 5))
x = (2, 2)
ax.annotate('', xy=x, xytext=(0, 0),
 arrowprops=dict(facecolor='blue',
 shrink=0,
 alpha=1,
 width=0.5))

ax.text(x[0] - 0.4, x[1] - 0.2, 'x', fontsize='16')

scalars = (-2, 2)
x = np.array(x)

for s in scalars:
 v = s * x
 ax.annotate('', xy=v, xytext=(0, 0),
 arrowprops=dict(facecolor='red',
 shrink=0,
 alpha=0.5,
 width=0.5))
 ax.text(v[0] + 0.4, v[1] - 0.2, f'$s \cdot x$', fontsize='16')

plt.show()
In Python, a vector can be represented as a list or tuple, such as \(x = (2, 4, 6) \), but is more commonly represented as a NumPy array.

One advantage of NumPy arrays is that scalar multiplication and addition have very natural syntax:

```python
x = np.ones(3)  # Vector of three ones
y = np.array((2, 4, 6))  # Converts tuple (2, 4, 6) into array
x + y
```

```
array([3., 5., 7.])
```

```python
4 * x
```

```
array([4., 4., 4.])
```
3.2.2 Inner Product and Norm

The inner product of vectors \(x, y \in \mathbb{R}^n \) is defined as

\[
x' \ y := \sum_{i=1}^{n} x_i y_i
\]

Two vectors are called orthogonal if their inner product is zero.

The norm of a vector \(x \) represents its “length” (i.e., its distance from the zero vector) and is defined as

\[
\|x\| := \sqrt{x' x} := \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}
\]

The expression \(\|x - y\| \) is thought of as the distance between \(x \) and \(y \).

Continuing on from the previous example, the inner product and norm can be computed as follows:

```python
np.sum(x * y)                  # Inner product of x and y

12.0

np.sqrt(np.sum(x ** 2))       # Norm of x, take one

1.7320508075688772

np.linalg.norm(x)             # Norm of x, take two

1.7320508075688772
```

3.2.3 Span

Given a set of vectors \(A := \{a_1, \ldots, a_k\} \) in \(\mathbb{R}^n \), it’s natural to think about the new vectors we can create by performing linear operations.

New vectors created in this manner are called linear combinations of \(A \).

In particular, \(y \in \mathbb{R}^n \) is a linear combination of \(A := \{a_1, \ldots, a_k\} \) if

\[
y = \beta_1 a_1 + \cdots + \beta_k a_k \text{ for some scalars } \beta_1, \ldots, \beta_k
\]

In this context, the values \(\beta_1, \ldots, \beta_k \) are called the coefficients of the linear combination.

The set of linear combinations of \(A \) is called the span of \(A \).

The next figure shows the span of \(A = \{a_1, a_2\} \) in \(\mathbb{R}^3 \).

The span is a two-dimensional plane passing through these two points and the origin.

```python
fig = plt.figure(figsize=(10, 8))
ax = fig.gca(projection='3d')

x_min, x_max = -5, 5
```
Quantitative Economics with Python

(continued from previous page)

\[y_{\text{min}}, y_{\text{max}} = -5, 5\]

\[\alpha, \beta = 0.2, 0.1\]

ax.set(xlim=(x_min, x_max), ylim=(x_min, x_max), zlim=(x_min, x_max),
 xticks=(0,), yticks=(0,), zticks=(0,))

gs = 3
z = np.linspace(x_min, x_max, gs)
x = np.zeros(gs)
y = np.zeros(gs)
ax.plot(x, y, z, 'k-', lw=2, alpha=0.5)
ax.plot(z, x, y, 'k-', lw=2, alpha=0.5)
ax.plot(y, z, x, 'k-', lw=2, alpha=0.5)

Fixed linear function, to generate a plane
def f(x, y):
 return \alpha \times x + \beta \times y

Vector locations, by coordinate
x_coords = np.array((3, 3))
y_coords = np.array((4, -4))
z = f(x_coords, y_coords)
for i in (0, 1):
 ax.text(x_coords[i], y_coords[i], z[i], f'\$a_{i+1}\$', fontsize=14)

Lines to vectors
for i in (0, 1):
 x = (0, x_coords[i])
 y = (0, y_coords[i])
 z = (0, f(x_coords[i], y_coords[i]))
 ax.plot(x, y, z, 'b-', lw=1.5, alpha=0.6)

Draw the plane
grid_size = 20
xr2 = np.linspace(x_min, x_max, grid_size)
yr2 = np.linspace(y_min, y_max, grid_size)
x2, y2 = np.meshgrid(xr2, yr2)
z2 = f(x2, y2)
ax.plot_surface(x2, y2, z2, rstride=1, cstride=1, cmap=cm.jet,
 linewidth=0, antialiased=True, alpha=0.2)
plt.show()
Examples

If A contains only one vector $a_1 \in \mathbb{R}^2$, then its span is just the scalar multiples of a_1, which is the unique line passing through both a_1 and the origin.

If $A = \{e_1, e_2, e_3\}$ consists of the canonical basis vectors of \mathbb{R}^3, that is

\[
e_1 := \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 := \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

then the span of A is all of \mathbb{R}^3, because, for any $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, we can write

\[
x = x_1e_1 + x_2e_2 + x_3e_3
\]

Now consider $A_0 = \{e_1, e_2, e_1 + e_2\}$.
If \(y = (y_1, y_2, y_3) \) is any linear combination of these vectors, then \(y_3 = 0 \) (check it).

Hence \(A_0 \) fails to span all of \(\mathbb{R}^3 \).

3.2.4 Linear Independence

As we’ll see, it’s often desirable to find families of vectors with relatively large span, so that many vectors can be described by linear operators on a few vectors.

The condition we need for a set of vectors to have a large span is what’s called linear independence.

In particular, a collection of vectors \(A := \{a_1, \ldots, a_k\} \) in \(\mathbb{R}^n \) is said to be

- **linearly dependent** if some strict subset of \(A \) has the same span as \(A \).
- **linearly independent** if it is not linearly dependent.

Put differently, a set of vectors is linearly independent if no vector is redundant to the span and linearly dependent otherwise.

To illustrate the idea, recall the figure that showed the span of vectors \(\{a_1, a_2\} \) in \(\mathbb{R}^3 \) as a plane through the origin.

If we take a third vector \(a_3 \) and form the set \(\{a_1, a_2, a_3\} \), this set will be

- linearly dependent if \(a_3 \) lies in the plane
- linearly independent otherwise

As another illustration of the concept, since \(\mathbb{R}^n \) can be spanned by \(n \) vectors (see the discussion of canonical basis vectors above), any collection of \(m > n \) vectors in \(\mathbb{R}^n \) must be linearly dependent.

The following statements are equivalent to linear independence of \(A := \{a_1, \ldots, a_k\} \subset \mathbb{R}^n \):

1. No vector in \(A \) can be formed as a linear combination of the other elements.
2. If \(\beta_1 a_1 + \cdots + \beta_k a_k = 0 \) for scalars \(\beta_1, \ldots, \beta_k \), then \(\beta_1 = \cdots = \beta_k = 0 \).

(The zero in the first expression is the origin of \(\mathbb{R}^n \))

3.2.5 Unique Representations

Another nice thing about sets of linearly independent vectors is that each element in the span has a unique representation as a linear combination of these vectors.

In other words, if \(A := \{a_1, \ldots, a_k\} \subset \mathbb{R}^n \) is linearly independent and

\[
y = \beta_1 a_1 + \cdots + \beta_k a_k
\]

then no other coefficient sequence \(\gamma_1, \ldots, \gamma_k \) will produce the same vector \(y \).

Indeed, if we also have \(y = \gamma_1 a_1 + \cdots + \gamma_k a_k \), then

\[
(\beta_1 - \gamma_1)a_1 + \cdots + (\beta_k - \gamma_k)a_k = 0
\]

Linear independence now implies \(\gamma_i = \beta_i \) for all \(i \).
3.3 Matrices

Matrices are a neat way of organizing data for use in linear operations.

An $n \times k$ matrix is a rectangular array A of numbers with n rows and k columns:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \end{bmatrix}$$

Often, the numbers in the matrix represent coefficients in a system of linear equations, as discussed at the start of this lecture.

For obvious reasons, the matrix A is also called a vector if either $n = 1$ or $k = 1$.

In the former case, A is called a row vector, while in the latter it is called a column vector.

If $n = k$, then A is called square.

The matrix formed by replacing a_{ij} by a_{ji} for every i and j is called the transpose of A and denoted A' or A^\top.

If $A = A'$, then A is called symmetric.

For a square matrix A, the i elements of the form a_{ii} for $i = 1, \ldots, n$ are called the principal diagonal.

A is called diagonal if the only nonzero entries are on the principal diagonal.

If, in addition to being diagonal, each element along the principal diagonal is equal to 1, then A is called the identity matrix and denoted by I.

3.3.1 Matrix Operations

Just as was the case for vectors, a number of algebraic operations are defined for matrices.

Scalar multiplication and addition are immediate generalizations of the vector case:

$$\gamma A = \gamma \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} \end{bmatrix} = \begin{bmatrix} \gamma a_{11} & \cdots & \gamma a_{1k} \\ \vdots & \ddots & \vdots \\ \gamma a_{n1} & \cdots & \gamma a_{nk} \end{bmatrix}$$

and

$$A + B = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} \end{bmatrix} + \begin{bmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1k} + b_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{nk} + b_{nk} \end{bmatrix}$$

In the latter case, the matrices must have the same shape in order for the definition to make sense.

We also have a convention for multiplying two matrices.

The rule for matrix multiplication generalizes the idea of inner products discussed above and is designed to make multiplication play well with basic linear operations.

If A and B are two matrices, then their product AB is formed by taking as its i, j-th element the inner product of the i-th row of A and the j-th column of B.

There are many tutorials to help you visualize this operation, such as this one, or the discussion on the Wikipedia page.

If A is $n \times k$ and B is $j \times m$, then to multiply A and B we require $k = j$, and the resulting matrix AB is $n \times m$.

As perhaps the most important special case, consider multiplying $n \times k$ matrix A and $k \times 1$ column vector x.

According to the preceding rule, this gives us an $n \times 1$ column vector

$$Ax = \begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_k \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + \cdots + a_{1k}x_k \\ \vdots \\ a_{n1}x_1 + \cdots + a_{nk}x_k \end{bmatrix}$$

(3.2)

Note: AB and BA are not generally the same thing.

Another important special case is the identity matrix.

You should check that if A is $n \times k$ and I is the $k \times k$ identity matrix, then $AI = A$.

If I is the $n \times n$ identity matrix, then $IA = A$.

3.3.2 Matrices in NumPy

NumPy arrays are also used as matrices, and have fast, efficient functions and methods for all the standard matrix operations\(^1\).

You can create them manually from tuples of tuples (or lists of lists) as follows

```python
A = ((1, 2),
     (3, 4))

type(A)
```

tuple

```python
A = np.array(A)

type(A)
```

numpy.ndarray

```python
A.shape
```

(2, 2)

The `shape` attribute is a tuple giving the number of rows and columns — see here for more discussion.

To get the transpose of A, use `A.transpose()` or, more simply, `A.T`.

There are many convenient functions for creating common matrices (matrices of zeros, ones, etc.) — see here.

Since operations are performed elementwise by default, scalar multiplication and addition have very natural syntax

```python
A = np.identity(3)
B = np.ones((3, 3))
2 * A
```

\(^1\) Although there is a specialized matrix data type defined in NumPy, it’s more standard to work with ordinary NumPy arrays. See this discussion.
To multiply matrices we use the @ symbol.

In particular, \(A \@ B \) is matrix multiplication, whereas \(A \ast B \) is element-by-element multiplication.

See here for more discussion.

3.3.3 Matrices as Maps

Each \(n \times k \) matrix \(A \) can be identified with a function \(f(x) = Ax \) that maps \(x \in \mathbb{R}^k \) into \(y = Ax \in \mathbb{R}^n \).

These kinds of functions have a special property: they are linear.

A function \(f : \mathbb{R}^k \to \mathbb{R}^n \) is called linear if, for all \(x, y \in \mathbb{R}^k \) and all scalars \(\alpha, \beta \), we have

\[
 f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)
\]

You can check that this holds for the function \(f(x) = Ax + b \) when \(b \) is the zero vector and fails when \(b \) is nonzero.

In fact, it's known that \(f \) is linear if and only if there exists a matrix \(A \) such that \(f(x) = Ax \) for all \(x \).

3.4 Solving Systems of Equations

Recall again the system of equations (3.1).

If we compare (3.1) and (3.2), we see that (3.1) can now be written more conveniently as

\[
 y = Ax
\]

(3.3)

The problem we face is to determine a vector \(x \in \mathbb{R}^k \) that solves (3.3), taking \(y \) and \(A \) as given.

This is a special case of a more general problem: Find an \(x \) such that \(y = f(x) \).

Given an arbitrary function \(f \) and a \(y \), is there always an \(x \) such that \(y = f(x) \)?

If so, is it always unique?

The answer to both these questions is negative, as the next figure shows
y = f(x)
ya, yb = np.min(y), np.max(y)

fig, axes = plt.subplots(2, 1, figsize=(10, 10))

for ax in axes:
 # Set the axes through the origin
 for spine in ['left', 'bottom']:
 ax.spines[spine].set_position('zero')
 for spine in ['right', 'top']:
 ax.spines[spine].set_color('none')

 ax.set(ylim=(-0.6, 3.2), xlim=(xmin, xmax),
 yticks=(), xticks=())

 ax.plot(x, y, 'k-', lw=2, label='f')
 ax.fill_between(x, ya, yb, facecolor='blue', alpha=0.05)
 ax.vlines([0], ya, yb, lw=3, color='blue', label='range of f')
 ax.text(0.04, -0.3, '0', fontsize=16)

ax = axes[0]

ax.legend(loc='upper right', frameon=False)
ybar = 1.5
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.05, 0.8 * ybar, 'y', fontsize=16)

for i, z in enumerate((-0.35, 0.35)):
 ax.vlines(z, 0, f(z), linestyle='--', alpha=0.5)
 ax.text(z, -0.2, f'x_{i}', fontsize=16)

ax = axes[1]

ybar = 2.6
ax.plot(x, x * 0 + ybar, 'k--', alpha=0.5)
ax.text(0.04, 0.91 * ybar, 'y', fontsize=16)

plt.show()
In the first plot, there are multiple solutions, as the function is not one-to-one, while in the second there are no solutions, since y lies outside the range of f.

Can we impose conditions on A in (3.3) that rule out these problems?

In this context, the most important thing to recognize about the expression Ax is that it corresponds to a linear combination of the columns of A.

In particular, if a_1, \ldots, a_k are the columns of A, then

$$Ax = x_1 a_1 + \cdots + x_k a_k$$

Hence the range of $f(x) = Ax$ is exactly the span of the columns of A.

We want the range to be large so that it contains arbitrary y.

As you might recall, the condition that we want for the span to be large is linear independence.

A happy fact is that linear independence of the columns of A also gives us uniqueness.
Indeed, it follows from our earlier discussion that if \(\{a_1, \ldots, a_k\} \) are linearly independent and \(y = Ax = x_1 a_1 + \cdots + x_k a_k \), then no \(z \neq x \) satisfies \(y = Az \).

3.4.1 The Square Matrix Case

Let's discuss some more details, starting with the case where \(A \) is \(n \times n \).

This is the familiar case where the number of unknowns equals the number of equations.

For arbitrary \(y \in \mathbb{R}^n \), we hope to find a unique \(x \in \mathbb{R}^n \) such that \(y = Ax \).

In view of the observations immediately above, if the columns of \(A \) are linearly independent, then their span, and hence the range of \(f(x) = Ax \), is all of \(\mathbb{R}^n \).

Hence there always exists an \(x \) such that \(y = Ax \).

Moreover, the solution is unique.

In particular, the following are equivalent

1. The columns of \(A \) are linearly independent.
2. For any \(y \in \mathbb{R}^n \), the equation \(y = Ax \) has a unique solution.

The property of having linearly independent columns is sometimes expressed as having full column rank.

Inverse Matrices

Can we give some sort of expression for the solution?

If \(y \) and \(A \) are scalar with \(A \neq 0 \), then the solution is \(x = A^{-1} y \).

A similar expression is available in the matrix case.

In particular, if square matrix \(A \) has full column rank, then it possesses a multiplicative inverse matrix \(A^{-1} \), with the property that \(AA^{-1} = A^{-1}A = I \).

As a consequence, if we pre-multiply both sides of \(y = Ax \) by \(A^{-1} \), we get \(x = A^{-1}y \).

This is the solution that we’re looking for.

Determinants

Another quick comment about square matrices is that to every such matrix we assign a unique number called the determinant of the matrix — you can find the expression for it here.

If the determinant of \(A \) is not zero, then we say that \(A \) is nonsingular.

Perhaps the most important fact about determinants is that \(A \) is nonsingular if and only if \(A \) is of full column rank.

This gives us a useful one-number summary of whether or not a square matrix can be inverted.
3.4.2 More Rows than Columns

This is the $n \times k$ case with $n > k$.

This case is very important in many settings, not least in the setting of linear regression (where n is the number of observations, and k is the number of explanatory variables).

Given arbitrary $y \in \mathbb{R}^n$, we seek an $x \in \mathbb{R}^k$ such that $y = Ax$.

In this setting, the existence of a solution is highly unlikely.

Without much loss of generality, let’s go over the intuition focusing on the case where the columns of A are linearly independent.

It follows that the span of the columns of A is a k-dimensional subspace of \mathbb{R}^n.

This span is very “unlikely” to contain arbitrary $y \in \mathbb{R}^n$.

To see why, recall the figure above, where $k = 2$ and $n = 3$.

Imagine an arbitrarily chosen $y \in \mathbb{R}^3$, located somewhere in that three-dimensional space.

What’s the likelihood that y lies in the span of $\{a_1, a_2\}$ (i.e., the two dimensional plane through these points)?

In a sense, it must be very small, since this plane has zero “thickness”.

As a result, in the $n > k$ case we usually give up on existence.

However, we can still seek the best approximation, for example, an x that makes the distance $\|y - Ax\|$ as small as possible.

To solve this problem, one can use either calculus or the theory of orthogonal projections.

The solution is known to be $\hat{x} = (A' A)^{-1} A' y$ — see for example chapter 3 of these notes.

3.4.3 More Columns than Rows

This is the $n \times k$ case with $n < k$, so there are fewer equations than unknowns.

In this case there are either no solutions or infinitely many — in other words, uniqueness never holds.

For example, consider the case where $k = 3$ and $n = 2$.

Thus, the columns of A consists of 3 vectors in \mathbb{R}^2.

This set can never be linearly independent, since it is possible to find two vectors that span \mathbb{R}^2.

(For example, use the canonical basis vectors)

It follows that one column is a linear combination of the other two.

For example, let’s say that $a_1 = \alpha a_2 + \beta a_3$.

Then if $y = Ax = x_1 a_1 + x_2 a_2 + x_3 a_3$, we can also write

$$y = x_1 (\alpha a_2 + \beta a_3) + x_2 a_2 + x_3 a_3 = (x_1 \alpha + x_2) a_2 + (x_1 \beta + x_3) a_3$$

In other words, uniqueness fails.
3.4.4 Linear Equations with SciPy

Here’s an illustration of how to solve linear equations with SciPy’s `linalg` submodule.

All of these routines are Python front ends to time-tested and highly optimized FORTRAN code.

```python
A = ((1, 2), (3, 4))
A = np.array(A)
y = np.ones((2, 1))  # Column vector
det(A)  # Check that A is nonsingular, and hence invertible

-2.0

A_inv = inv(A)  # Compute the inverse
A_inv

array([[-2., 1.],
       [1.5, -0.5]])

x = A_inv @ y  # Solution
A @ x  # Should equal y

array([[1.],
       [1.0]])

solve(A, y)  # Produces the same solution

array([[-1.],
       [1.0]])
```

Observe how we can solve for \(x = A^{-1}y \) by either via `inv(A) @ y`, or using `solve(A, y)`.

The latter method uses a different algorithm (LU decomposition) that is numerically more stable, and hence should almost always be preferred.

To obtain the least-squares solution \(\hat{x} = (A'A)^{-1}A'y \), use `scipy.linalg.lstsq(A, y)`.

3.5 Eigenvalues and Eigenvectors

Let \(A \) be an \(n \times n \) square matrix.

If \(\lambda \) is scalar and \(v \) is a non-zero vector in \(\mathbb{R}^n \) such that

\[
A v = \lambda v
\]

then we say that \(\lambda \) is an eigenvalue of \(A \), and \(v \) is an eigenvector.

Thus, an eigenvector of \(A \) is a vector such that when the map \(f(x) = Ax \) is applied, \(v \) is merely scaled.

The next figure shows two eigenvectors (blue arrows) and their images under \(A \) (red arrows).

As expected, the image \(Av \) of each \(v \) is just a scaled version of the original.
Quantitative Economics with Python

```python
A = ((1, 2),
     (2, 1))
A = np.array(A)
evals, evects = eig(A)
evects = evects[:, 0], evects[:, 1]

fig, ax = plt.subplots(figsize=(10, 8))
# Set the axes through the origin
for spine in ['left', 'bottom']:
    ax.spines[spine].set_position('zero')
for spine in ['right', 'top']:
    ax.spines[spine].set_color('none')
ax.grid(alpha=0.4)

xmin, xmax = -3, 3
ymin, ymax = -3, 3
ax.set(xlim=(xmin, xmax), ylim=(ymin, ymax))

# Plot each eigenvector
for v in evects:
    ax.annotate('', xy=v, xytext=(0, 0),
               arrowprops=dict(facecolor='blue',
                                shrink=0,
                                alpha=0.6,
                                width=0.5))

# Plot the image of each eigenvector
for v in evects:
    v = A @ v
    ax.annotate('', xy=v, xytext=(0, 0),
                arrowprops=dict(facecolor='red',
                                 shrink=0,
                                 alpha=0.6,
                                 width=0.5))

# Plot the lines they run through
x = np.linspace(xmin, xmax, 3)
for v in evects:
    a = v[1] / v[0]
    ax.plot(x, a * x, 'b-', lw=0.4)

plt.show()
```
The eigenvalue equation is equivalent to \((A - \lambda I)v = 0\), and this has a nonzero solution \(v\) only when the columns of \(A - \lambda I\) are linearly dependent.

This in turn is equivalent to stating that the determinant is zero.

Hence to find all eigenvalues, we can look for \(\lambda\) such that the determinant of \(A - \lambda I\) is zero.

This problem can be expressed as one of solving for the roots of a polynomial in \(\lambda\) of degree \(n\).

This in turn implies the existence of \(n\) solutions in the complex plane, although some might be repeated.

Some nice facts about the eigenvalues of a square matrix \(A\) are as follows:

1. The determinant of \(A\) equals the product of the eigenvalues.
2. The trace of \(A\) (the sum of the elements on the principal diagonal) equals the sum of the eigenvalues.
3. If \(A\) is symmetric, then all of its eigenvalues are real.
4. If \(A\) is invertible and \(\lambda_1, \ldots, \lambda_n\) are its eigenvalues, then the eigenvalues of \(A^{-1}\) are \(1/\lambda_1, \ldots, 1/\lambda_n\).

A corollary of the first statement is that a matrix is invertible if and only if all its eigenvalues are nonzero.

Using SciPy, we can solve for the eigenvalues and eigenvectors of a matrix as follows:

\[
A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}
\]

(continues on next page)
Quantitative Economics with Python

A = np.array(A)
evals, evecs = eig(A)
evals

array([[3.+0.j, -1.+0.j]])
evecs

array([[0.70710678, -0.70710678],
 [0.70710678, 0.70710678]])

Note that the columns of evecs are the eigenvectors.

Since any scalar multiple of an eigenvector is an eigenvector with the same eigenvalue (check it), the eig routine normalizes the length of each eigenvector to one.

3.5.1 Generalized Eigenvalues

It is sometimes useful to consider the generalized eigenvalue problem, which, for given matrices A and B, seeks generalized eigenvalues λ and eigenvectors v such that

$$Av = \lambda Bv$$

This can be solved in SciPy via `scipy.linalg.eig(A, B)`.

Of course, if B is square and invertible, then we can treat the generalized eigenvalue problem as an ordinary eigenvalue problem $B^{-1}Av = \lambda v$, but this is not always the case.

3.6 Further Topics

We round out our discussion by briefly mentioning several other important topics.

3.6.1 Series Expansions

Recall the usual summation formula for a geometric progression, which states that if $|a| < 1$, then $\sum_{k=0}^{\infty} a^k = (1 - a)^{-1}$.

A generalization of this idea exists in the matrix setting.

Matrix Norms

Let A be a square matrix, and let

$$\|A\| := \max_{\|x\|=1} \|Ax\|$$

The norms on the right-hand side are ordinary vector norms, while the norm on the left-hand side is a matrix norm — in this case, the so-called spectral norm.
For example, for a square matrix S, the condition $\|S\| < 1$ means that S is contractive, in the sense that it pulls all vectors towards the origin\(^2\).

Neumann’s Theorem

Let A be a square matrix and let $A^k := AA^{k-1}$ with $A^1 := A$.

In other words, A^k is the k-th power of A.

Neumann’s theorem states the following: If $\|A^k\| < 1$ for some $k \in \mathbb{N}$, then $I - A$ is invertible, and

$$ (I - A)^{-1} = \sum_{k=0}^{\infty} A^k \quad (3.4) $$

Spectral Radius

A result known as Gelfand’s formula tells us that, for any square matrix A,

$$ \rho(A) = \lim_{k \to \infty} \|A^k\|^{1/k} $$

Here $\rho(A)$ is the spectral radius, defined as $\max_i |\lambda_i|$, where $\{\lambda_i\}_i$ is the set of eigenvalues of A.

As a consequence of Gelfand’s formula, if all eigenvalues are strictly less than one in modulus, there exists a k with $\|A^k\| < 1$.

In which case (3.4) is valid.

3.6.2 Positive Definite Matrices

Let A be a symmetric $n \times n$ matrix.

We say that A is

1. **positive definite** if $x'Ax > 0$ for every $x \in \mathbb{R}^n \setminus \{0\}$
2. **positive semi-definite** or **nonnegative definite** if $x'Ax \geq 0$ for every $x \in \mathbb{R}^n$

Analogous definitions exist for negative definite and negative semi-definite matrices.

It is notable that if A is positive definite, then all of its eigenvalues are strictly positive, and hence A is invertible (with positive definite inverse).

3.6.3 Differentiating Linear and Quadratic Forms

The following formulas are useful in many economic contexts. Let

- z, x and a all be $n \times 1$ vectors
- A be an $n \times n$ matrix
- B be an $m \times n$ matrix and y be an $m \times 1$ vector

Then

1. $\frac{\partial a'x}{\partial x} = a$

\(^2\) Suppose that $|S| < 1$. Take any nonzero vector x, and let $r := |x|$. We have $|Sx| = r|S(x/r)| \leq r|S| < r = |x|$. Hence every point is pulled towards the origin.
2. \(\frac{\partial A x}{\partial x} = A' \)
3. \(\frac{\partial A' x}{\partial x} = (A + A') x \)
4. \(\frac{\partial y' B z}{\partial y} = B z \)
5. \(\frac{\partial y' B z}{\partial B} = y z' \)

Exercise 3.7.1 below asks you to apply these formulas.

3.6.4 Further Reading

The documentation of the `scipy.linalg` submodule can be found [here](#).

Chapters 2 and 3 of the *Econometric Theory* contains a discussion of linear algebra along the same lines as above, with solved exercises.

If you don’t mind a slightly abstract approach, a nice intermediate-level text on linear algebra is [Janich94].

3.7 Exercises

Exercise 3.7.1

Let \(x \) be a given \(n \times 1 \) vector and consider the problem

\[
v(x) = \max_{y, u} \{ -y' P y - u' Q u \}
\]

subject to the linear constraint

\[
y = A x + B u
\]

Here
- \(P \) is an \(n \times n \) matrix and \(Q \) is an \(m \times m \) matrix
- \(A \) is an \(n \times n \) matrix and \(B \) is an \(n \times m \) matrix
- both \(P \) and \(Q \) are symmetric and positive semidefinite

(What must the dimensions of \(y \) and \(u \) be to make this a well-posed problem?)

One way to solve the problem is to form the Lagrangian

\[
\mathcal{L} = -y' P y - u' Q u + \lambda' [A x + B u - y]
\]

where \(\lambda \) is an \(n \times 1 \) vector of Lagrange multipliers.

Try applying the formulas given above for differentiating quadratic and linear forms to obtain the first-order conditions for maximizing \(\mathcal{L} \) with respect to \(y, u \) and minimizing it with respect to \(\lambda \).

Show that these conditions imply that

1. \(\lambda = -2 P y \).
2. The optimizing choice of \(u \) satisfies \(u = -(Q + B' P B)^{-1} B' P A x \).
3. The function \(v \) satisfies \(v(x) = -x' \tilde{P} x \) where \(\tilde{P} = A' P A - A' P B (Q + B' P B)^{-1} B' P A \).
As we will see, in economic contexts Lagrange multipliers often are shadow prices.

Note: If we don’t care about the Lagrange multipliers, we can substitute the constraint into the objective function, and then just maximize

\[-(A x + B u)' P (A x + B u) - u' Q u\]

with respect to \(u\). You can verify that this leads to the same maximizer.

Solution to Exercise 3.7.1

We have an optimization problem:

\[v(x) = \max_{y,u} \{-y' P y - u' Q u\}\]

s.t.

\[y = A x + B u\]

with primitives

- \(P\) be a symmetric and positive semidefinite \(n \times n\) matrix
- \(Q\) be a symmetric and positive semidefinite \(m \times m\) matrix
- \(A\) an \(n \times n\) matrix
- \(B\) an \(n \times m\) matrix

The associated Lagrangian is:

\[L = -y' P y - u' Q u + \lambda' [A x + B u - y]\]

Step 1.

Differentiating Lagrangian equation w.r.t \(y\) and setting its derivative equal to zero yields

\[
\frac{\partial L}{\partial y} = -(P + P') y - \lambda = -2 P y - \lambda = 0,
\]

since \(P\) is symmetric.

Accordingly, the first-order condition for maximizing \(L\) w.r.t. \(y\) implies

\[\lambda = -2 P y\]

Step 2.

Differentiating Lagrangian equation w.r.t. \(u\) and setting its derivative equal to zero yields

\[
\frac{\partial L}{\partial u} = -(Q + Q') u - B' \lambda = -2 Q u + B' \lambda = 0
\]

Substituting \(\lambda = -2 P y\) gives

\[Q u + B' P y = 0\]

Substituting the linear constraint \(y = A x + B u\) into above equation gives

\[Q u + B' P (A x + B u) = 0\]
\[(Q + B'PB)u + B'PAx = 0\]

which is the first-order condition for maximizing \(L\) w.r.t. \(u\).

Thus, the optimal choice of \(u\) must satisfy

\[u = -(Q + B'PB)^{-1}B'PAx,\]

which follows from the definition of the first-order conditions for Lagrangian equation.

Step 3.

Rewriting our problem by substituting the constraint into the objective function, we get

\[v(x) = \max_u \left\{ -(Ax + Bu)'P(Ax + Bu) - u'Qu \right\}\]

Since we know the optimal choice of \(u\) satisfies \(u = -(Q + B'PB)^{-1}B'PAx\), then

\[v(x) = -(Ax + Bu)'P(Ax + Bu) - u'Qu \quad \text{with} \quad u = -(Q + B'PB)^{-1}B'PAx\]

To evaluate the function

\[v(x) = -(Ax + Bu)'P(Ax + Bu) - u'Qu = -(x'A' + u'B')P(Ax + Bu) - u'Qu = -x'A'PAx - u'B'PAx - u'A'PBu - u'Qu = -x'A'PAx - 2u'B'PAx - u'(Q + B'PB)u\]

For simplicity, denote by \(S := (Q + B'PB)^{-1}B'PA\), then \(u = -Sx\).

Regarding the second term \(-2u'B'PAx\),

\[-2u'B'PAx = -2x'S'B'PAx = 2x'A'PB(Q + B'PB)^{-1}B'PAx\]

Notice that the term \((Q + B'PB)^{-1}\) is symmetric as both \(P\) and \(Q\) are symmetric.

Regarding the third term \(-u'(Q + B'PB)u\),

\[-u'(Q + B'PB)u = -x'S'(Q + B'PB)Sx = -x'A'PB(Q + B'PB)^{-1}B'PAx\]

Hence, the summation of second and third terms is \(x'A'PB(Q + B'PB)^{-1}B'PAx\).

This implies that

\[v(x) = -x'A'PAx - 2u'B'PAx - u'(Q + B'PB)u = -x'A'PAx + x'A'PB(Q + B'PB)^{-1}B'PAx = -x'[A'PA - A'PB(Q + B'PB)^{-1}B'PA]x\]

Therefore, the solution to the optimization problem \(v(x) = -x'\tilde{P}x\) follows the above result by denoting \(\tilde{P} := A'PA - A'PB(Q + B'PB)^{-1}B'PA\)
4.1 Overview

This lecture describes the QR decomposition and how it relates to

- Orthogonal projection and least squares
- A Gram-Schmidt process
- Eigenvalues and eigenvectors

We’ll write some Python code to help consolidate our understandings.

4.2 Matrix Factorization

The QR decomposition (also called the QR factorization) of a matrix is a decomposition of a matrix into the product of an orthogonal matrix and a triangular matrix.

A QR decomposition of a real matrix \(A \) takes the form

\[
A = QR
\]

where

- \(Q \) is an orthogonal matrix (so that \(Q^T Q = I \))
- \(R \) is an upper triangular matrix

We’ll use a Gram-Schmidt process to compute a QR decomposition

Because doing so is so educational, we’ll write our own Python code to do the job

4.3 Gram-Schmidt process

We’ll start with a square matrix \(A \).

If a square matrix \(A \) is nonsingular, then a QR factorization is unique.

We’ll deal with a rectangular matrix \(A \) later.

Actually, our algorithm will work with a rectangular \(A \) that is not square.
4.3.1 Gram-Schmidt process for square A

Here we apply a Gram-Schmidt process to the columns of matrix A.

In particular, let

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

Let $\| \cdot \|$ denote the L2 norm.

The Gram-Schmidt algorithm repeatedly combines the following two steps in a particular order

- **normalize** a vector to have unit norm
- **orthogonalize** the next vector

To begin, we set $u_1 = a_1$ and then **normalize**:

$$u_1 = a_1, \quad e_1 = \frac{u_1}{\|u_1\|}$$

We **orthogonalize** first to compute u_2 and then **normalize** to create e_2:

$$u_2 = a_2 - (a_2 \cdot e_1)e_1, \quad e_2 = \frac{u_2}{\|u_2\|}$$

We invite the reader to verify that e_1 is orthogonal to e_2 by checking that $e_1 \cdot e_2 = 0$.

The Gram-Schmidt procedure continues iterating.

Thus, for $k = 2, \ldots, n - 1$ we construct

$$u_{k+1} = a_{k+1} - (a_{k+1} \cdot e_1)e_1 - \cdots - (a_{k+1} \cdot e_k)e_k, \quad e_{k+1} = \frac{u_{k+1}}{\|u_{k+1}\|}$$

Here $(a_j \cdot e_i)$ can be interpreted as the linear least squares regression coefficient of a_j on e_i

- it is the inner product of a_j and e_i divided by the inner product of e_i where $e_i \cdot e_i = 1$, as normalization has assured us.
- this regression coefficient has an interpretation as being a covariance divided by a variance

It can be verified that

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix} \begin{bmatrix} a_1 \cdot e_1 & a_2 \cdot e_1 & \cdots & a_n \cdot e_1 \\ 0 & a_2 \cdot e_2 & \cdots & a_n \cdot e_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \cdot e_n \end{bmatrix}$$

Thus, we have constructed the decomposision

$$A = QR$$

where

$$Q = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$$

and

$$R = \begin{bmatrix} a_1 \cdot e_1 & a_2 \cdot e_1 & \cdots & a_n \cdot e_1 \\ 0 & a_2 \cdot e_2 & \cdots & a_n \cdot e_2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n \cdot e_n \end{bmatrix}$$
4.3.2 \(A \) not square

Now suppose that \(A \) is an \(n \times m \) matrix where \(m > n \).

Then a \(QR \) decomposition is

\[
A = \begin{bmatrix}
a_1 & a_2 & \cdots & a_m \\
\end{bmatrix} = \begin{bmatrix}
e_1 & e_2 & \cdots & e_n \\
\end{bmatrix} \begin{bmatrix}
a_1 \cdot e_1 & a_2 \cdot e_1 & \cdots & a_n \cdot e_1 \\
0 & a_2 \cdot e_2 & \cdots & a_n \cdot e_2 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_n \cdot e_n \\
\end{bmatrix} \begin{bmatrix}
a_{n+1} \cdot e_1 & a_{n+1} \cdot e_2 & \cdots & a_m \cdot e_1 \\
\end{bmatrix}
\]

which implies that

\[
a_1 = (a_1 \cdot e_1)e_1 \\
a_2 = (a_2 \cdot e_1)e_1 + (a_2 \cdot e_2)e_2 \\
\vdots \\
a_n = (a_n \cdot e_1)e_1 + (a_n \cdot e_2)e_2 + \cdots + (a_n \cdot e_n)e_n \\
a_{n+1} = (a_{n+1} \cdot e_1)e_1 + (a_{n+1} \cdot e_2)e_2 + \cdots + (a_{n+1} \cdot e_n)e_n \\
\vdots \\
a_m = (a_m \cdot e_1)e_1 + (a_m \cdot e_2)e_2 + \cdots + (a_m \cdot e_n)e_n
\]

4.4 Some Code

Now let’s write some homemade Python code to implement a QR decomposition by deploying the Gram-Schmidt process described above.

```python
import numpy as np
from scipy.linalg import qr

def QR_Decomposition(A):
    n, m = A.shape  # get the shape of A

    Q = np.empty((n, n))  # initialize matrix Q
    u = np.empty((n, n))  # initialize matrix u

    u[:, 0] = A[:, 0]
    Q[:, 0] = u[:, 0] / np.linalg.norm(u[:, 0])

    for i in range(1, n):
        u[:, i] = A[:, i]
        for j in range(i):
            u[:, i] -= (A[:, i] @ Q[:, j]) * Q[:, j]  # get each u vector

        Q[:, i] = u[:, i] / np.linalg.norm(u[:, i])  # compute each e vetor

    R = np.zeros((n, m))
    for i in range(n):
        for j in range(i, m):
            R[i, j] = A[:, j] @ Q[:, i]

    return Q, R
```

4.4. Some Code
The preceding code is fine but can benefit from some further housekeeping.

We want to do this because later in this notebook we want to compare results from using our homemade code above with the code for a QR that the Python \texttt{scipy} package delivers.

There can be sign differences between the Q and R matrices produced by different numerical algorithms.

All of these are valid QR decompositions because of how the sign differences cancel out when we compute QR.

However, to make the results from our homemade function and the QR module in \texttt{scipy} comparable, let’s require that Q have positive diagonal entries.

We do this by adjusting the signs of the columns in Q and the rows in R appropriately.

To accomplish this we’ll define a pair of functions.

```python
def diag_sign(A):
    """Compute the signs of the diagonal of matrix A""
    D = np.diag(np.sign(np.diag(A)))
    return D

def adjust_sign(Q, R):
    """Adjust the signs of the columns in Q and rows in R to impose positive diagonal of Q""
    D = diag_sign(Q)
    Q[:, :], R[:, :] = Q @ D, D @ R
    return Q, R
```

4.5 Example

Now let’s do an example.

```python
A = np.array([[1.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0]])
```

```text
array([[1., 1., 0.],
       [1., 0., 1.],
       [0., 1., 1.]])
```

```python
Q, R = adjust_sign(“QR_Decomposition(A)"
```

```text
Q
```
Let's compare outcomes with what the `scipy` package produces:

```python
Q_scipy, R_scipy = adjust_sign(*qr(A))
print('Our Q:
', Q)
print('Scipy Q:
', Q_scipy)
print('Our R:
', R)
print('Scipy R:
', R_scipy)
```

The above outcomes give us the good news that our homemade function agrees with what scipy produces.

Now let's do a QR decomposition for a rectangular matrix A that is $n \times m$ with $m > n$.

```python
A = np.array([[1, 3, 4], [2, 0, 9]])
Q, R = adjust_sign("QR_Decomposition(A))
```
(array([[0.4472136 , -0.89442719],
 [0.89442719, 0.4472136]]),
array([[2.23606798, 1.34164079, 9.8386991],
 [0. , -2.68328157, 0.4472136]]))

Q, R = adjust_sign(qr(A))
Q, R

(array([[0.4472136 , -0.89442719],
 [0.89442719, 0.4472136]]),
array([[2.23606798, 1.34164079, 9.8386991],
 [0. , -2.68328157, 0.4472136]]))

4.6 Using QR Decomposition to Compute Eigenvalues

Now for a useful fact about the QR algorithm.

The following iterations on the QR decomposition can be used to compute **eigenvalues** of a **square** matrix A.

Here is the algorithm:

1. Set $A_0 = A$ and form $A_0 = Q_0R_0$
2. Form $A_1 = R_0Q_0$. Note that A_1 is similar to A_0 (easy to verify) and so has the same eigenvalues.
3. Form $A_1 = Q_1R_1$ (i.e., form the QR decomposition of A_1).
4. Form $A_2 = R_1Q_1$ and then $A_2 = Q_2R_2$.
5. Iterate to convergence.
6. Compute eigenvalues of A and compare them to the diagonal values of the limiting A_n found from this process.

Remark: this algorithm is close to one of the most efficient ways of computing eigenvalues!

Let's write some Python code to try out the algorithm

```python
def QR_eigvals(A, tol=1e-12, maxiter=1000):
    """Find the eigenvalues of A using QR decomposition.""

    A_old = np.copy(A)
    A_new = np.copy(A)

    diff = np.inf
    i = 0
    while (diff > tol) and (i < maxiter):
        A_old[:, :] = A_new
        Q, R = QR_Decomposition(A_old)
        A_new[:, :] = R @ Q
        diff = np.abs(A_new - A_old).max()
        i += 1

    eigvals = np.diag(A_new)
    return eigvals
```

64 Chapter 4. QR Decomposition
Now let’s try the code and compare the results with what `scipy.linalg.eigvals` gives us

Here goes

```python
# experiment this with one random A matrix
A = np.random.random((3, 3))

sorted(QR_eigvals(A))
```

```plaintext
[-0.6974552152280986, -0.16002562991039396, 1.5836358711806946]
```

Compare with the `scipy` package.

```python
sorted(np.linalg.eigvals(A))
```

```plaintext
[-0.6974552152280971, -0.16002562991039082, 1.5836358711806946]
```

4.7 QR and PCA

There are interesting connections between the QR decomposition and principal components analysis (PCA).

Here are some.

1. Let X' be a $k \times n$ random matrix where the jth column is a random draw from $\mathcal{N}(\mu, \Sigma)$ where μ is $k \times 1$ vector of means and Σ is a $k \times k$ covariance matrix. We want $n >> k$ – this is an “econometrics example”.

2. Form $X' = QR$ where Q is $k \times k$ and R is $k \times n$.

3. Form the eigenvalues of RR', i.e., we’ll compute $RR' = \tilde{P}\Lambda\tilde{P}'$.

4. Form $X'X = Q\tilde{P}\Lambda\tilde{P}'Q'$ and compare it with the eigen decomposition $X'X = P\hat{\Lambda}P'$.

5. It will turn out that that $\Lambda = \hat{\Lambda}$ and that $P = Q\tilde{P}$.

Let’s verify conjecture 5 with some Python code.

Start by simulating a random (n, k) matrix X.

```python
k = 5
n = 1000

# generate some random moments
\overline{\mu} = np.random.random(size=k)
C = np.random.random((k, k))
Σ = C.T @ C

# X is random matrix where each column follows multivariate normal dist.
X = np.random.multivariate_normal(\overline{\mu}, Σ, size=n)

X.shape
```

```plaintext
(1000, 5)
```
Quantitative Economics with Python

Let’s apply the QR decomposition to X'.

```python
Q, R = adjust_sign(‘QR_Decomposition(X.T))
```

Check the shapes of Q and R.

```python
Q.shape, R.shape
```

```
((5, 5), (5, 1000))
```

Now we can construct $RR' = \tilde{P}\Lambda\tilde{P}'$ and form an eigen decomposition.

```python
RR = R @ R.T
\Lambda, P_tilde = np.linalg.eigh(RR)
\Lambda = np.diag(\Lambda)
```

We can also apply the decomposition to $X'X = \hat{P}\Lambda\hat{P}'$.

```python
XX = X.T @ X
\Lambda_hat, P = np.linalg.eigh(XX)
\Lambda_hat = np.diag(\Lambda_hat)
```

Compare the eigenvalues which are on the diagonals of Λ and Λ'.

```python
\Lambda, \Lambda_hat
```

```
(array([ 25.01966386, 155.44318195, 432.85298383, 590.00428355,
          8565.19515691]),
   array([ 25.01966386, 155.44318195, 432.85298383, 590.00428355,
          8565.19515691]))
```

Let’s compare P and $Q\tilde{P}$.

Again we need to be careful about sign differences between the columns of P and $Q\tilde{P}$.

```python
QP_tilde = Q @ P_tilde
np.abs(P @ diag_sign(P) - QP_tilde @ diag_sign(QP_tilde)).max()
```

```
4.274358644806853e-15
```

Let’s verify that $X'X$ can be decomposed as $Q\tilde{P}\Lambda\tilde{P}'Q'$.

```python
QPAPQ = Q @ P_tilde @ \Lambda @ P_tilde.T @ Q.T
np.abs(QPAPQ - XX).max()
```

```
4.774847184307873e-12
```
COMPLEX NUMBERS AND TRIGONOMETRY

Contents

- Complex Numbers and Trigonometry
 - Overview
 - De Moivre’s Theorem
 - Applications of de Moivre’s Theorem

5.1 Overview

This lecture introduces some elementary mathematics and trigonometry.

Useful and interesting in its own right, these concepts reap substantial rewards when studying dynamics generated by linear difference equations or linear differential equations.

For example, these tools are keys to understanding outcomes attained by Paul Samuelson (1939) in his classic paper on interactions between the investment accelerator and the Keynesian consumption function, our topic in the lecture Samuelson Multiplier Accelerator.

In addition to providing foundations for Samuelson's work and extensions of it, this lecture can be read as a stand-alone quick reminder of key results from elementary high school trigonometry.

So let’s dive in.

5.1.1 Complex Numbers

A complex number has a real part x and a purely imaginary part y.

The Euclidean, polar, and trigonometric forms of a complex number z are:

$$z = x + iy = re^{i\theta} = r(\cos \theta + i \sin \theta)$$

The second equality above is known as Euler’s formula

- Euler contributed many other formulas too!

The complex conjugate \bar{z} of z is defined as

$$\bar{z} = x - iy = re^{-i\theta} = r(\cos \theta - i \sin \theta)$$
The value x is the real part of z and y is the imaginary part of z.

The symbol $|z| = \sqrt{z \cdot \overline{z}} = r$ represents the modulus of z.

The value r is the Euclidean distance of vector (x, y) from the origin:

$$r = |z| = \sqrt{x^2 + y^2}$$

The value θ is the angle of (x, y) with respect to the real axis.

Evidently, the tangent of θ is $\left(\frac{y}{x}\right)$.

Therefore,

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Three elementary trigonometric functions are

$$\cos \theta = \frac{x}{r} = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{y}{r} = \frac{e^{i\theta} - e^{-i\theta}}{2i}, \quad \tan \theta = \frac{y}{x}$$

We’ll need the following imports:

```python
# Abbreviate useful values and functions
n = np.pi

# Set parameters
r = 2
θ = n/3
x = r * np.cos(θ)
x_range = np.linspace(0, x, 1000)
θ_range = np.linspace(0, θ, 1000)

# Plot
fig = plt.figure(figsize=(8, 8))
ax = plt.subplot(111, projection='polar')

ax.plot((0, θ), (0, r), marker='o', color='b')  # Plot r
ax.plot(np.zeros(x_range.shape), x_range, color='b')  # Plot x
ax.plot(θ_range, x / np.cos(θ_range), color='b')  # Plot y
```

5.1.2 An Example

Consider the complex number $z = 1 + \sqrt{3}i$.

For $z = 1 + \sqrt{3}i$, $x = 1$, $y = \sqrt{3}$.

It follows that $r = 2$ and $\theta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} = 60^\circ$.

Let’s use Python to plot the trigonometric form of the complex number $z = 1 + \sqrt{3}i$. (continues on next page)
```python
ax.plot(θ_range, np.full(θ_range.shape, 0.1), color='r') # Plot θ
ax.margins(0) # Let the plot starts at origin
ax.set_title("Trigonometry of complex numbers", va='bottom', fontsize='x-large')
ax.set_rmax(2)
ax.set_rticks((0.5, 1, 1.5, 2)) # Less radial ticks
ax.set_rlabel_position(-88.5) # Get radial labels away from plotted line
ax.text(θ, r+0.01, r'\textcolor{red}{z = x + iy = 1 + \sqrt{3}, i}$') # Label z
ax.text(θ+0.2, 1, '$r = 2$') # Label r
ax.text(0-0.2, 0.5, '$x = 1$') # Label x
ax.text(0.5, 1.2, r'\textcolor{red}{y = \sqrt{3}}$') # Label y
ax.text(0.25, 0.15, r'\textcolor{red}{\theta = 60^o}$') # Label θ
ax.grid(True)
plt.show()
```
5.2 De Moivre’s Theorem

de Moivre’s theorem states that:

\[(r \cos \theta + i \sin \theta)^n = r^n e^{in\theta} = r^n (\cos n\theta + i \sin n\theta)\]

To prove de Moivre’s theorem, note that

\[(r \cos \theta + i \sin \theta)^n = (re^{i\theta})^n\]

and compute.
5.3 Applications of de Moivre’s Theorem

5.3.1 Example 1

We can use de Moivre’s theorem to show that \(r = \sqrt{x^2 + y^2} \).

We have

\[
1 = e^{i\theta} e^{-i\theta} = (\cos \theta + i \sin \theta)(\cos (-\theta) + i \sin (-\theta)) = (\cos \theta + i \sin \theta)(\cos \theta - i \sin \theta) = \cos^2 \theta + \sin^2 \theta = \frac{x^2}{r^2} + \frac{y^2}{r^2}
\]

and thus

\[
x^2 + y^2 = r^2
\]

We recognize this as a theorem of Pythagoras.

5.3.2 Example 2

Let \(z = re^{i\theta} \) and \(\bar{z} = re^{-i\theta} \) so that \(\bar{z} \) is the complex conjugate of \(z \).

\((z, \bar{z})\) form a complex conjugate pair of complex numbers.

Let \(a = pe^{i\omega} \) and \(\bar{a} = pe^{-i\omega} \) be another complex conjugate pair.

For each element of a sequence of integers \(n = 0, 1, 2, \ldots \).

To do so, we can apply de Moivre’s formula.

Thus,

\[
x_n = az^n + \bar{a}\bar{z}^n = pe^{i\omega}(re^{i\theta})^n + pe^{-i\omega}(re^{-i\theta})^n = pr^n e^{i(\omega+n\theta)} + pr^n e^{-i(\omega+n\theta)} = pr^n \cos(\omega + n\theta) + i \sin(\omega + n\theta) + \cos(\omega + n\theta) - i \sin(\omega + n\theta)
\]

\[
= 2pr^n \cos(\omega + n\theta)
\]

5.3.3 Example 3

This example provides machinery that is at the heard of Samuelson’s analysis of his multiplier-accelerator model [Sam39].

Thus, consider a second-order linear difference equation

\[
x_{n+2} = c_1x_{n+1} + c_2x_n
\]

whose characteristic polynomial is

\[
z^2 - c_1z - c_2 = 0
\]
or

\[(z^2 - c_1 z - c_2) = (z - z_1)(z - z_2) = 0\]

has roots \(z_1, z_2\).

A **solution** is a sequence \(\{x_n\}_{n=0}^\infty\) that satisfies the difference equation.

Under the following circumstances, we can apply our example 2 formula to solve the difference equation

- the roots \(z_1, z_2\) of the characteristic polynomial of the difference equation form a complex conjugate pair
- the values \(x_0, x_1\) are given initial conditions

To solve the difference equation, recall from example 2 that

\[x_n = 2pr^n \cos (\omega + n\theta)\]

where \(\omega, p\) are coefficients to be determined from information encoded in the initial conditions \(x_1, x_0\).

Since \(x_0 = 2p \cos \omega\) and \(x_1 = 2pr \cos(\omega + \theta)\) the ratio of \(x_1\) to \(x_0\) is

\[\frac{x_1}{x_0} = \frac{r \cos(\omega + \theta)}{\cos \omega}\]

We can solve this equation for \(\omega\) then solve for \(p\) using \(x_0 = 2pr^0 \cos (\omega + n\theta)\).

With the **sympy** package in Python, we are able to solve and plot the dynamics of \(x_n\) given different values of \(n\).

In this example, we set the initial values: \(-r = 0.9\cdot\theta = \frac{\pi}{4}\cdot x_0 = 4\cdot x_1 = r \cdot 2\sqrt{2} = 1.8\sqrt{2}\).

We first numerically solve for \(\omega\) and \(p\) using `nsolve` in the **sympy** package based on the above initial condition:

```python
# Set parameters
r = 0.9
θ = π/4
x0 = 4
x1 = 2 * r * sqrt(2)

# Define symbols to be calculated
ω, p = symbols('ω p', real=True)

# Solve for ω
## Note: we choose the solution near 0
eq1 = Eq(x1/x0 - r * cos(ω+θ) / cos(ω), 0)
ω = nsolve(eq1, ω, 0)
ω = float(ω)
print(f'ω = {ω:.3f}')

# Solve for p
eq2 = Eq(x0 - 2 * p * cos(ω), 0)
p = nsolve(eq2, p, 0)
p = float(p)
print(f'p = {p:.3f}')
```

\[ω = 0.000\]

\[p = 2.000\]

Using the code above, we compute that \(ω = 0\) and \(p = 2\).

Then we plug in the values we solve for \(ω\) and \(p\) and plot the dynamic.
Define range of n
max_n = 30
n = np.arange(0, max_n+1, 0.01)

Define x_n
x = lambda n: 2 * p * r**n * np.cos(ω + n * θ)

Plot
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(n, x(n))
ax.set(xlim=(0, max_n), ylim=(-5, 5), xlabel='n', ylabel='x_n')

Set x-axis in the middle of the plot
ax.spines['bottom'].set_position('center')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ticklab = ax.xaxis.get_ticklabels()[0] # Set x-label position
trans = ticklab.get_transform()
ax.xaxis.set_label_coords(31, 0, transform=trans)
ticklab = ax.yaxis.get_ticklabels()[0] # Set y-label position
trans = ticklab.get_transform()
ax.yaxis.set_label_coords(0, 5, transform=trans)

ax.grid()
plt.show()
5.3.4 Trigonometric Identities

We can obtain a complete suite of trigonometric identities by appropriately manipulating polar forms of complex numbers. We’ll get many of them by deducing implications of the equality

\[e^{i(\omega + \theta)} = e^{i\omega} e^{i\theta} \]

For example, we’ll calculate identities for \(\cos(\omega + \theta) \) and \(\sin(\omega + \theta) \).

Using the sine and cosine formulas presented at the beginning of this lecture, we have:

\[
\begin{align*}
\cos(\omega + \theta) &= \frac{e^{i(\omega+\theta)} + e^{-i(\omega+\theta)}}{2} \\
\sin(\omega + \theta) &= \frac{e^{i(\omega+\theta)} - e^{-i(\omega+\theta)}}{2i}
\end{align*}
\]

We can also obtain the trigonometric identities as follows:

\[
\begin{align*}
\cos(\omega + \theta) + i \sin(\omega + \theta) &= e^{i(\omega+\theta)} \\
&= e^{i\omega} e^{i\theta} \\
&= (\cos \omega + i \sin \omega)(\cos \theta + i \sin \theta) \\
&= (\cos \omega \cos \theta - \sin \omega \sin \theta) + i(\cos \omega \sin \theta + \sin \omega \cos \theta)
\end{align*}
\]

Since both real and imaginary parts of the above formula should be equal, we get:

\[
\begin{align*}
\cos(\omega + \theta) &= \cos \omega \cos \theta - \sin \omega \sin \theta \\
\sin(\omega + \theta) &= \cos \omega \sin \theta + \sin \omega \cos \theta
\end{align*}
\]

The equations above are also known as the angle sum identities. We can verify the equations using the simplify function in the sympy package:

```python
# Define symbols
ω, θ = symbols('ω θ', real=True)

# Verify
print("\cos(\omega)\cos(\theta) - \sin(\omega)\sin(\theta) = ", simplify(cos(ω)*cos(θ) - sin(ω) * sin(θ)))
print("\cos(\omega)\sin(\theta) + \sin(\omega)\cos(\theta) = ", simplify(cos(ω)*sin(θ) + sin(ω) * cos(θ)))
```

\[
\begin{align*}
\cos(\omega)\cos(\theta) - \sin(\omega)\sin(\theta) &= \cos(\theta + \omega) \\
\cos(\omega)\sin(\theta) + \sin(\omega)\cos(\theta) &= \sin(\theta + \omega)
\end{align*}
\]

5.3.5 Trigonometric Integrals

We can also compute the trigonometric integrals using polar forms of complex numbers. For example, we want to solve the following integral:

\[
\int_{-\pi}^{\pi} \cos(\omega) \sin(\omega) \, d\omega
\]
Using Euler’s formula, we have:

\[
\int \cos(\omega) \sin(\omega) \, d\omega = \int \frac{(e^{i\omega} + e^{-i\omega}) (e^{i\omega} - e^{-i\omega})}{2i} \, d\omega \\
= \frac{1}{4i} \int e^{2i\omega} - e^{-2i\omega} \, d\omega \\
= \frac{1}{4i} \left(-\frac{i}{2} e^{2i\omega} - \frac{i}{2} e^{-2i\omega} + C_1 \right) \\
= -\frac{1}{8} \left[(e^{i\omega})^2 + (e^{-i\omega})^2 - 2 \right] + C_2 \\
= -\frac{1}{8} (e^{i\omega} - e^{-i\omega})^2 + C_2 \\
= \frac{1}{2} \left(\frac{e^{i\omega} - e^{-i\omega}}{2i} \right)^2 + C_2 \\
= \frac{1}{2} \sin^2(\omega) + C_2
\]

and thus:

\[
\int_{-\pi}^{\pi} \cos(\omega) \sin(\omega) \, d\omega = \frac{1}{2} \sin^2(\pi) - \frac{1}{2} \sin^2(-\pi) = 0
\]

We can verify the analytical as well as numerical results using `integrate` in the `sympy` package:

```python
# Set initial printing
init_printing()

ω = Symbol('ω')
print('The analytical solution for integral of cos(ω)sin(ω) is:')
integrate(cos(ω) * sin(ω), ω)
print('The numerical solution for the integral of cos(ω)sin(ω) from -π to π is: ')
integrate(cos(ω) * sin(ω), (ω, -π, π))
```

The analytical solution for integral of \(\cos(\omega)\sin(\omega)\) is:

\[
\frac{\sin^2(\omega)}{2}
\]

The numerical solution for the integral of \(\cos(\omega)\sin(\omega)\) from \(-π\) to \(π\) is:

0
5.3.6 Exercises

Exercise 5.3.1

We invite the reader to verify analytically and with the sympy package the following two equalities:

\[\int_{-\pi}^{\pi} \cos(\omega)^2 \, d\omega = \frac{\pi}{2} \]

\[\int_{-\pi}^{\pi} \sin(\omega)^2 \, d\omega = \frac{\pi}{2} \]
6.1 Overview

This lecture describes circulant matrices and some of their properties.

Circulant matrices have a special structure that connects them to useful concepts including

- convolution
- Fourier transforms
- permutation matrices

Because of these connections, circulant matrices are widely used in machine learning, for example, in image processing.

We begin by importing some Python packages

```python
import numpy as np
from numba import njit
import matplotlib.pyplot as plt
#matplotlib inline

np.set_printoptions(precision=3, suppress=True)
```

6.2 Constructing a Circulant Matrix

To construct an $N \times N$ circulant matrix, we need only the first row, say,

$$
\begin{bmatrix}
c_0 & c_1 & c_2 & c_3 & \cdots & c_{N-1}
\end{bmatrix}.
$$

After setting entries in the first row, the remaining rows of a circulant matrix are determined as follows:

$$
C =
\begin{bmatrix}
c_0 & c_1 & c_2 & c_3 & \cdots & c_{N-1} \\
c_{N-1} & c_0 & c_1 & c_2 & \cdots & c_{N-2} \\
c_{N-2} & c_{N-1} & c_0 & c_1 & \cdots & c_{N-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
c_3 & c_4 & c_5 & c_6 & \cdots & c_2 \\
c_2 & c_3 & c_4 & c_5 & \cdots & c_1 \\
c_1 & c_2 & c_3 & c_4 & \cdots & c_0
\end{bmatrix}
$$

(6.1)

It is also possible to construct a circulant matrix by creating the transpose of the above matrix, in which case only the first column needs to be specified.

Let’s write some Python code to generate a circulant matrix.
@njit
def construct_cirlulant(row):
 N = row.size
 C = np.empty((N, N))
 for i in range(N):
 C[i, i:] = row[:N-i]
 C[i, :i] = row[N-i:]
 return C

a simple case when N = 3
construct_cirlulant(np.array([1., 2., 3.]))
array([[1., 2., 3.],
 [3., 1., 2.],
 [2., 3., 1.]])

6.2.1 Some Properties of Circulant Matrices

Here are some useful properties:

Suppose that A and B are both circulant matrices. Then it can be verified that

- The transpose of a circulant matrix is a circulant matrix.
- $A + B$ is a circulant matrix
- AB is a circulant matrix
- $AB = BA$

Now consider a circulant matrix with first row

$$c = [c_0 \ c_1 \ \ldots \ c_{N-1}]$$

and consider a vector

$$a = [a_0 \ a_1 \ \ldots \ a_{N-1}]$$

The convolution of vectors c and a is defined as the vector $b = c * a$ with components

$$b_k = \sum_{i=0}^{n-1} c_{k-i} a_i \quad (6.2)$$

We use $*$ to denote convolution via the calculation described in equation (6.2).

It can be verified that the vector b satisfies

$$b = C^T a$$

where C^T is the transpose of the circulant matrix defined in equation (6.1).
6.3 Connection to Permutation Matrix

A good way to construct a circulant matrix is to use a permutation matrix. Before defining a permutation matrix, we’ll define a permutation.

A permutation of a set of the set of non-negative integers \(\{0, 1, 2, \ldots \} \) is a one-to-one mapping of the set into itself. A permutation of a set \(\{1, 2, \ldots , n \} \) rearranges the \(n \) integers in the set.

A permutation matrix is obtained by permuting the rows of an \(n \times n \) identity matrix according to a permutation of the numbers 1 to \(n \).

Thus, every row and every column contain precisely a single 1 with 0 everywhere else.

Every permutation corresponds to a unique permutation matrix. For example, the \(N \times N \) matrix

\[
P = \begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
\end{bmatrix}
\] (6.3)

serves as a cyclic shift operator that, when applied to an \(N \times 1 \) vector \(h \), shifts entries in rows 2 through \(N \) up one row and shifts the entry in row 1 to row \(N \).

Eigenvalues of the cyclic shift permutation matrix \(P \) defined in equation (6.3) can be computed by constructing

\[
P - \lambda I = \begin{bmatrix}
-\lambda & 1 & 0 & 0 & \cdots & 0 \\
0 & -\lambda & 1 & 0 & \cdots & 0 \\
0 & 0 & -\lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -\lambda \\
1 & 0 & 0 & 0 & \cdots & -\lambda \\
\end{bmatrix}
\]

and solving

\[
\det(P - \lambda I) = (-1)^N \lambda^N - 1 = 0
\]

Eigenvalues \(\lambda_i \) can be complex. Magnitudes \(| \lambda_i | \) of these eigenvalues \(\lambda_i \) all equal 1.

Thus, singular values of the permutation matrix \(P \) defined in equation (6.3) all equal 1.

It can be verified that permutation matrices are orthogonal matrices:

\[
PP' = I
\]
6.4 Examples with Python

Let’s write some Python code to illustrate these ideas.

```python
@njit
def construct_P(N):
    P = np.zeros((N, N))
    for i in range(N-1):
        P[i, i+1] = 1
    P[-1, 0] = 1
    return P

P4 = construct_P(4)
P4
```

```
array([[0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.],
       [1., 0., 0., 0.]])
```

```python
# compute the eigenvalues and eigenvectors
Z, Q = np.linalg.eig(P4)
for i in range(4):
    print(f'\{i\} = \{Z[i].real\}, \nvec\{i\} = (Q[{i}, :])
```

```
0 = -1.0+0.0j
vec0 = [-0.5+0.0j 0.0+0.5j 0.0-0.5j -0.5+0.0j]
1 = 0.0+1.0j
vec1 = [ 0.5+0.0j -0.5+0.0j -0.5-0.0j -0.5+0.0j]
2 = 0.0-1.0j
vec2 = [-0.5+0.0j 0.0-0.5j 0.0+0.5j -0.5+0.0j]
3 = 1.0+0.0j
vec3 = [ 0.5+0.0j 0.5-0.0j 0.5+0.0j -0.5+0.0j]
```

In graphs below, we shall portray eigenvalues of a shift permutation matrix in the complex plane.

These eigenvalues are uniformly distributed along the unit circle.

They are the n roots of unity, meaning they are the n numbers z that solve $z^n = 1$, where z is a complex number.

In particular, the n roots of unity are

$$z = \exp\left(\frac{2\pi j k}{N}\right), \quad k = 0, \ldots, N - 1$$

where j denotes the purely imaginary unit number.
```python
fig, ax = plt.subplots(2, 2, figsize=(10, 10))

for i, N in enumerate([3, 4, 6, 8]):
    row_i = i // 2
    col_i = i % 2

    P = construct_P(N)
    M, Q = np.linalg.eig(P)

    circ = plt.Circle((0, 0), radius=1, edgecolor='b', facecolor='None')
    ax[row_i, col_i].add_patch(circ)

    for j in range(N):
        ax[row_i, col_i].scatter(M[j].real, M[j].imag, c='b')

    ax[row_i, col_i].set_title(f'N = {N}"
    ax[row_i, col_i].set_xlabel('real')
    ax[row_i, col_i].set_ylabel('imaginary')

plt.show()
```
Quantitative Economics with Python

For a vector of coefficients \(\{c_i\}_{i=0}^{n-1} \), eigenvectors of \(P \) are also eigenvectors of

\[
C = c_0 I + c_1 P + c_2 P^2 + \cdots + c_{N-1} P^{N-1}.
\]

Consider an example in which \(N = 8 \) and let \(w = e^{-2\pi j/N} \).

It can be verified that the matrix \(F_8 \) of eigenvectors of \(P_8 \) is

\[
F_8 = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^2 & \cdots & w^7 \\
1 & w^2 & w^4 & \cdots & w^{14} \\
1 & w^3 & w^6 & \cdots & w^{21} \\
1 & w^4 & w^8 & \cdots & w^{28} \\
1 & w^5 & w^{10} & \cdots & w^{35} \\
1 & w^6 & w^{12} & \cdots & w^{42} \\
1 & w^7 & w^{14} & \cdots & w^{49}
\end{bmatrix}
\]

The matrix \(F_8 \) defines a Discrete Fourier Transform.
To convert it into an orthogonal eigenvector matrix, we can simply normalize it by dividing every entry by $\sqrt{8}$.

- Stare at the first column of F_8 above to convince yourself of this fact.

The eigenvalues corresponding to each eigenvector are $\{w^j\}_{j=0}^7$ in order.

```python
def construct_F(N):
    w = np.e ** (-complex(0, 2*np.pi/N))

    F = np.ones((N, N), dtype=complex)
    for i in range(1, N):
        F[i, 1:] = w ** (i * np.arange(1, N))

    return F, w

F8, w = construct_F(8)
```

```plaintext
w
(0.7071067811865476-0.7071067811865475j)
F8
```

```plaintext
array([[ 1. +0.j,  1. +0.j],
        [ 1. +0.j,  0.707-0.707j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j],
        [ 1. +0.j,  0. -1.j,  1. +0.j,  1. +0.j,  1. +0.j,  1. +0.j,  1. +0.j,  1. +0.j],
        [ 1. +0.j,  0. -1.j,  0. -1.j,  1. +0.j,  1. +0.j,  1. +0.j,  1. +0.j,  1. +0.j],
        [ 1. +0.j,  0.707+0.707j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j],
        [ 1. +0.j,  0. -1.j,  0. -1.j,  0.707+0.707j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j],
        [ 1. +0.j,  0. -1.j,  0. -1.j,  0. -1.j,  0.707+0.707j,  0. -1.j,  0. -1.j,  0. -1.j],
        [ 1. +0.j,  0. -1.j,  0. -1.j,  0. -1.j,  0. -1.j,  0.707+0.707j,  0. -1.j,  0.707+0.707j]])
```

```plaintext
# normalize
Q8 = F8 / np.sqrt(8)
```

```plaintext
# verify the orthogonality (unitarity)
Q8 @ np.conjugate(Q8)
```

```plaintext
array([[ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [-0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [-0.-0.j, -0.-0.j, 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j],
        [ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
        [ 1.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]])
(continues on next page)
Let’s verify that $k$th column of $Q_8$ is an eigenvector of $P_8$ with an eigenvalue $w^k$.

```
P8 = construct_P(8)

diff_arr = np.empty(8, dtype=complex)
for j in range(8):
 diff = P8 @ Q8[:, j] - w ** j * Q8[:, j]
 diff_arr[j] = diff @ diff.T

diff_arr
```

```
array([0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j, -0.+0.j])
```

### 6.5 Associated Permutation Matrix

Next, we execute calculations to verify that the circulant matrix $C$ defined in equation (6.1) can be written as

$$
C = c_0I + c_1P + \ldots + c_{n-1}P^{n-1}
$$

and that every eigenvector of $P$ is also an eigenvector of $C$.

We illustrate this for $N = 8$ case.

```
c = np.random.random(8)

c
```

```
array([0.617, 0.023, 0.615, 0.223, 0.127, 0.351, 0.346, 0.664])
```

```
C8 = construct_cirlulant(c)

Compute $c_0I + c_1P + \ldots + c_{n-1}P^{n-1}$.
```
Now let’s compute the difference between two circulant matrices that we have constructed in two different ways.

```
np.abs(C - C8).max()
```

0.0

The $k$th column of $P_8$ associated with eigenvalue $w^{k-1}$ is an eigenvector of $C_8$ associated with an eigenvalue $\sum_{h=0}^{7} c_j w^{hk}$.

```
__C8 = np.zeros(8, dtype=complex)

for j in range(8):
 for k in range(8):
 __C8[j] += c[k] * w ** (j * k)
```

```
__C8
```

array([[ 2.967+0.j , 0.571+0.274j, -0.217+0.513j, 0.411+0.812j,
        0.445-0.j , 0.411-0.812j, -0.217-0.513j, 0.571-0.274j]])

We can verify this by comparing $C_8 @ Q8[:, j]$ with $\_\_C8[j] * Q8[:, j]$. 

6.5. Associated Permutation Matrix 85
# verify
for j in range(8):
    diff = C8 @ Q8[:, j] - C8[j] * Q8[:, j]
    print(diff)

[[0. + 0.j  0. + 0.j]
 [ 0. + 0.j  0. + 0.j -0. + 0.j  0. + 0.j]
 [-0. + 0.j  0. + 0.j -0. + 0.j  0. + 0.j]
 [ 0. + 0.j -0. + 0.j -0. + 0.j  0. + 0.j]
 [ 0. + 0.j -0. + 0.j -0. + 0.j  0. + 0.j]
 [ 0. + 0.j  0. + 0.j  0. + 0.j -0. + 0.j  0. + 0.j  0. + 0.j  0. + 0.j  0. + 0.j]
 [ 0. + 0.j  0. + 0.j  0. + 0.j  0. + 0.j -0. + 0.j  0. + 0.j  0. + 0.j  0. + 0.j]
 [ 0. + 0.j  0. + 0.j -0. + 0.j]

6.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) allows us to represent a discrete time sequence as a weighted sum of complex sinusoids.

Consider a sequence of \(N\) real numbers \(\{x_j\}_{j=0}^{N-1}\).

The Discrete Fourier Transform maps \(\{x_j\}_{j=0}^{N-1}\) into a sequence of complex numbers \(\{X_k\}_{k=0}^{N-1}\) where

\[
X_k = \sum_{n=0}^{N-1} x_n e^{-2\pi \frac{kn}{N}}
\]

```python
def DFT(x):
 "The discrete Fourier transform."

 N = len(x)
 w = np.e ** (-complex(0, 2*np.pi/N))

 X = np.zeros(N, dtype=complex)
 for k in range(N):
 for n in range(N):
 X[k] += x[n] * w ** (k * n)

 return X
```

Consider the following example.

\[
x_n = \begin{cases} 
1/2 & n = 0, 1 \\
0 & \text{otherwise}
\end{cases}
\]

```python
x = np.zeros(10)
x[0:2] = 1/2
x
```
Apply a discrete Fourier transform.

\[ X = \text{DFT}(x) \]

\[
\begin{array}{cccccccc}
1.0000 + 0.0000j & 0.9051 - 0.2941j & 0.6551 - 0.4757j & 0.3450 - 0.4757j & 0.0951 - 0.2941j & 0.0000 + 0.0000j & 0.0951 + 0.2941j & 0.3451 + 0.4757j & 0.6551 + 0.4757j & 0.9051 + 0.2941j
\end{array}
\]

We can plot magnitudes of a sequence of numbers and the associated discrete Fourier transform.

```python
def plot_magnitude(x=None, X=None):
 data = []
 names = []
 xs = []
 if (x is not None):
 data.append(x)
 names.append('x')
 xs.append('n')
 if (X is not None):
 data.append(X)
 names.append('X')
 xs.append('j')
 num = len(data)
 for i in range(num):
 n = data[i].size
 plt.figure(figsize=(8, 3))
 plt.scatter(range(n), np.abs(data[i]))
 plt.vlines(range(n), 0, np.abs(data[i]), color='b')
 plt.xlabel(xs[i])
 plt.ylabel('magnitude')
 plt.title(names[i])
 plt.show()

plot_magnitude(x=x, X=X)
```
The inverse Fourier transform transforms a Fourier transform \( X \) of \( x \) back to \( x \).

The inverse Fourier transform is defined as

\[
x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{2\pi i \frac{kn}{N}}, \quad n = 0, 1, \ldots, N - 1
\]

```python
def inverse_transform(X):
 N = len(X)
 w = np.e ** (complex(0, 2*n.pi/N))
 x = np.zeros(N, dtype=complex)
 for n in range(N):
 for k in range(N):
 x[n] += X[k] * w ** (k * n) / N
 return x
```

The inverse Fourier transform is shown graphically in the figure below.
Another example is

\[ x_n = 2 \cos \left( \frac{2\pi}{40} \frac{11}{n} \right), \quad n = 0, 1, 2, \ldots, 19 \]

Since \( N = 20 \), we cannot use an integer multiple of \( \frac{1}{20} \) to represent a frequency \( \frac{11}{40} \).

To handle this, we shall end up using all \( N \) of the available frequencies in the DFT.

Since \( \frac{11}{40} \) is in between \( \frac{10}{40} \) and \( \frac{12}{40} \) (each of which is an integer multiple of \( \frac{1}{20} \)), the complex coefficients in the DFT have their largest magnitudes at \( k = 5, 6, 15, 16 \), not just at a single frequency.

```python
N = 20
x = np.empty(N)
for j in range(N):
 x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)
X = DFT(x)
plot_magnitude(x=x, X=X)
```
What happens if we change the last example to \( x_n = 2 \cos \left( \frac{10}{40} \pi n \right) \)?

Note that \( \frac{10}{40} \) is an integer multiple of \( \frac{1}{20} \).

```python
N = 20
x = np.empty(N)
for j in range(N):
x[j] = 2 * np.cos(2 * np.pi * 10 * j / 40)

X = DFT(x)

plot_magnitude(x=x, X=X)
```
If we represent the discrete Fourier transform as a matrix, we discover that it equals the matrix $F_N$ of eigenvectors of the permutation matrix $P_N$.

We can use the example where $x_n = 2 \cos \left( \frac{11 \pi}{40} n \right)$, $n = 0, 1, 2, \ldots 19$ to illustrate this.

```python
N = 20
x = np.empty(N)
for j in range(N):
 x[j] = 2 * np.cos(2 * np.pi * 11 * j / 40)

x

array([2. , -0.313, -1.902, 0.908, 1.618, -1.176, 1.782,
 0.618, -1.975, -0. , 1.975, -0.618, -1.782, 1.176,
 -1.618, -0.908, 1.902, 0.313])
```

First use the summation formula to transform $x$ to $X$.

```python
X = DFT(x)
X

array([2.0 +0.j , 2.0 +0.558j, 2.0 +1.218j, 2.0 +2.174j, 2.0 +4.087j,
 2.0+12.785j, 2.0-12.466j, 2.0-3.751j, 2.0-1.801j, 2.0-0.778j,
 2.0-0.j , 2.0 +0.778j, 2.0 +1.801j, 2.0 +3.751j, 2.0+12.466j,
 -2.0-12.785j, -2.0-4.087j, -2.0-2.174j, -2.0-1.218j, -2.0-0.558j])
```

Now let’s evaluate the outcome of postmultiplying the eigenvector matrix $F_{20}$ by the vector $x$, a product that we claim should equal the Fourier transform of the sequence $\{x_n\}_{n=0}^{N-1}$.

```python
F20, _ = construct_F(20)
F20 @ x
```
Similarly, the inverse DFT can be expressed as a inverse DFT matrix $F_{20}^{-1}$.

```python
F20_inv = np.linalg.inv(F20)
F20_inv @ X
```

```python
array([2. +0.j, -0.313+0.j, -1.902-0.j, 0.908+0.j, 1.618+0.j,
 -1.414-0.j, -1.176-0.j, 1.782-0.j, 0.618+0.j, -1.975+0.j,
 -0. -0.j, 1.975+0.j, -0.618+0.j, -1.782-0.j, 1.176-0.j,
 1.414+0.j, -1.618+0.j, -0.908-0.j, 1.902-0.j, 0.313+0.j])
```
In addition to regular packages contained in Anaconda by default, this lecture also requires:

```python
!pip install quandl
import numpy as np
import numpy.linalg as LA
import matplotlib.pyplot as plt
%matplotlib inline
import quandl as ql
import pandas as pd
```

### 7.1 Overview

The **singular value decomposition** is a work-horse in applications of least squares projection that form foundations for important machine learning methods.

This lecture describes the singular value decomposition and two of its uses:

- principal components analysis (PCA)
- dynamic mode decomposition (DMD)

Each of these can be thought of as a data-reduction procedure designed to capture salient patterns by projecting data onto a limited set of factors.

### 7.2 The Setup

Let $X$ be an $m \times n$ matrix of rank $p$.

Necessarily, $p \leq \min(m, n)$.

In this lecture, we’ll think of $X$ as a matrix of **data**.

- each column is an **individual** – a time period or person, depending on the application
- each row is a **random variable** describing an attribute of a time period or a person, depending on the application

We’ll be interested in two cases

- A **short and fat** case in which $m << n$, so that there are many more columns (individuals) than rows (attributes).
- A **tall and skinny** case in which $m >> n$, so that there are many more rows (attributes) than columns (individuals).
We’ll apply a singular value decomposition of $X$ in both situations.

In the first case in which there are many more individuals $n$ than attributes $m$, we learn sample moments of a joint distribution by taking averages across observations of functions of the observations.

In this $m \ll n$ case, we’ll look for patterns by using a singular value decomposition to do a principal components analysis (PCA).

In the $m \gg n$ case in which there are many more attributes $m$ than individuals $n$, we’ll proceed in a different way.

We’ll again use a singular value decomposition, but now to construct a dynamic mode decomposition (DMD).

## 7.3 Singular Value Decomposition

A singular value decomposition of an $m \times n$ matrix $X$ of rank $p \leq \min(m,n)$ is

$$X = U \Sigma V^T$$

where

$$UU^T = I \quad U^T U = I$$

$$VV^T = I \quad V^T V = I$$

where

- $U$ is an $m \times m$ matrix whose columns are eigenvectors of $X^T X$
- $V$ is an $n \times n$ matrix whose columns are eigenvectors of $XX^T$
- $\Sigma$ is an $m \times n$ matrix in which the first $p$ places on its main diagonal are positive numbers $\sigma_1, \sigma_2, \ldots, \sigma_p$ called singular values; remaining entries of $\Sigma$ are all zero
- The $p$ singular values are square roots of the eigenvalues of the $m \times m$ matrix $XX^T$ and the $n \times n$ matrix $X^T X$
- When $U$ is a complex valued matrix, $U^T$ denotes the conjugate-transpose or Hermitian-transpose of $U$, meaning that $U^T_{ij}$ is the complex conjugate of $U_{ji}$
- Similarly, when $V$ is a complex valued matrix, $V^T$ denotes the conjugate-transpose or Hermitian-transpose of $V$

In what is called a full SVD, the shapes of $U$, $\Sigma$, and $V$ are $(m,m)$, $(m,n)$, $(n,n)$, respectively.

There is also an alternative shape convention called an economy or reduced SVD.

Thus, note that because we assume that $X$ has rank $p$, there are only $p$ nonzero singular values, where $p = \text{rank}(X) \leq \min(m,n)$.

A reduced SVD uses this fact to express $U$, $\Sigma$, and $V$ as matrices with shapes $(m,p)$, $(p,p)$, $(n,p)$.

## 7.4 Properties of Full and Reduced SVD’s


For a full SVD,

$$UU^T = I \quad U^T U = I$$

$$VV^T = I \quad V^T V = I$$

But these properties don’t hold for a reduced SVD.

Which properties hold depend on whether we are in a tall-skinny case or a short-fat case.
• In a **tall-skinny** case in which $m >> n$, for a **reduced** SVD

\[
UU^T \neq I \quad U^TU = I \\
VV^T = I \quad V^TV = I
\]

• In a **short-fat** case in which $m << n$, for a **reduced** SVD

\[
UU^T = I \quad U^TU = I \\
VV^T = I \quad V^TV \neq I
\]

When we study Dynamic Mode Decomposition below, we shall want to remember this caveat because sometimes we’ll be using reduced SVD’s to compute key objects.

Let’s do an exercise to compare **full** and **reduced** SVD’s.

To review,

• in a **full** SVD
  - $U$ is $m \times m$
  - $\Sigma$ is $m \times n$
  - $V$ is $n \times n$

• in a **reduced** SVD
  - $U$ is $m \times p$
  - $\Sigma$ is $p \times p$
  - $V$ is $n \times p$

First, let’s study a case in which $m = 5 > n = 2$.

(This is a small example of the **tall-skinny** case that will concern us when we study **Dynamic Mode Decompositions** below.)

```python
import numpy as np
X = np.random.rand(5, 2)
U, S, V = np.linalg.svd(X, full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False) # economy SVD
print('U, S, V =')
U, S, V
```

```
U, S, V =
(array([[-0.39640724, 0.69435655, -0.52707227, -0.23602323, -0.16497919],
 [-0.60956681, -0.60213788, -0.21290895, 0.05389201, -0.46650156],
 [-0.50503796, 0.28003376, 0.80873067, -0.07825908, -0.07967412],
 [-0.11721388, 0.22073646, -0.05556996, 0.96665425, 0.005278],
 [-0.44998575, -0.16779588, -0.14046805, -0.02904749, 0.8653221]]),
array([[1.40819727, 0.55103855],
 [0.68454614, -0.72896954]]))
```

```python
defect = lambda x: x[0][0] - x[1][0]
print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat
```

```
Uhat, Shat, Vhat =
```

7.4. Properties of Full and Reduced SVD’s
\[
\text{array([[-0.39640724, 0.69435655],}
\text{[-0.60956681, -0.60213788],}
\text{[-0.50503796, 0.28003376],}
\text{[-0.11721388, 0.22073646],}
\text{[-0.44998575, -0.16779588]],}
\text{array([1.40819727, 0.55103855]),}
\text{array([[0.72896954, -0.68454614],}
\text{[ 0.68454614, -0.72896954]])])}
\]

```
rr = np.linalg.matrix_rank(X)
print(f'rank of X = {rr}')
```

```
rank of X = 2
```

**Properties:**

- Where \( U \) is constructed via a full SVD, \( U^T U = I_{p \times p} \) and \( U U^T = I_{m \times m} \)
- Where \( \hat{U} \) is constructed via a reduced SVD, although \( \hat{U}^T \hat{U} = I_{p \times p} \) it happens that \( \hat{U} \hat{U}^T \neq I_{m \times m} \)

We illustrate these properties for our example with the following code cells.

```
UTU = U.T@U
UUT = U@U.T
print('UUT, UTU =')
UUT, UTU
```

```
UUT, UTU =
```

```
(array([1.00000000e+00, 3.75118523e-18, -1.20405818e-16,
 -9.87506944e-17, -3.33999083e-17],
 [3.75118523e-18, 1.00000000e+00, -1.15809257e-17,
 1.51326494e-17, -6.09077799e-17],
 [-1.20405818e-16, -1.15809257e-17, 1.00000000e+00,
 -2.45853982e-17, 5.56143478e-18],
 [-9.87506944e-17, 1.51326494e-17, -2.45853982e-17,
 1.00000000e+00, 4.26118013e-18],
 [-3.33999083e-17, -6.09077799e-17, 5.56143478e-18,
 4.26118013e-18, 1.00000000e+00]),
array([1.00000000e+00, 5.63211253e-18, -1.63637865e-16,
 -3.35766975e-17, -1.22762705e-16],
 [5.63211253e-17, 1.00000000e+00, 1.15017249e-16,
 5.29526774e-17, -8.53330792e-18],
 [-1.63637865e-16, 1.15017249e-16, 1.00000000e+00,
 -3.22332703e-17, -3.51465750e-17],
 [-3.35766975e-17, 5.29526774e-17, -3.22332703e-17,
 1.00000000e+00, -3.28390898e-18],
 [-1.22762705e-16, -8.53330792e-18, -3.51465750e-17,
 -3.28390898e-18, 1.00000000e+00])),
```

```
UhatUhatT = Uhat@Uhat.T
UhatTUhat = Uhat.T@Uhat
print('UhatUhatT, UhatTUhat =')
UhatUhatT, UhatTUhat
```

```
UhatUhatT, UhatTUhat =
```
Remarks:

The cells above illustrate application of the \texttt{fullmatrices=True} and \texttt{full-matrices=False} options. Using \texttt{full-matrices=False} returns a reduced singular value decomposition.

This option implements an optimal reduced rank approximation of a matrix, in the sense of minimizing the Frobenius norm of the discrepancy between the approximating matrix and the matrix being approximated.

Optimality in this sense is established in the celebrated Eckart–Young theorem. See \url{https://en.wikipedia.org/wiki/Low-rank_approximation}.

When we study Dynamic Mode Decompositions below, it will be important for us to remember the preceding properties of full and reduced SVD’s in such tall-skinny cases.

Now let’s turn to a short-fat case.

To illustrate this case, we’ll set $m = 2 < 5 = n$

```python
import numpy as np
X = np.random.rand(2, 5)
U, S, V = np.linalg.svd(X, full_matrices=True) # full SVD
Uhat, Shat, Vhat = np.linalg.svd(X, full_matrices=False) # economy SVD
print('U, S, V = ')
U, S, V

U, S, V =

(array([[-0.54273168, -0.83990614],
 [-0.83990614, 0.54273168]]),
 array([1.72748535, 0.80507799]),
 array([[0.62228931, -0.68507046, 0.32600462, -0.06949969, -0.17979228],
 [-0.45623529, 0.05643884, 0.85943658, -0.04129407, -0.21983536],
 [-0.060823 , -0.1371031 , 0.01175706, 0.98742809, -0.04848545],
 [-0.40805036, -0.55302575, 0.00153761, -0.06642129, 0.72335555]]))
print('Uhat, Shat, Vhat = ')
Uhat, Shat, Vhat

Uhat, Shat, Vhat =

(array([[-0.54273168, -0.83990614],
 [-0.83990614, 0.54273168]]),
 array([1.72748535, 0.80507799]),
 array([[0.62228931, -0.68507046, 0.32600462, -0.06949969, -0.17979228],
 [-0.45623529, 0.05643884, 0.85943658, -0.04129407, -0.21983536],
 [-0.060823 , -0.1371031 , 0.01175706, 0.98742809, -0.04848545],
 [-0.40805036, -0.55302575, 0.00153761, -0.06642129, 0.72335555]]))
```

(continues on next page)
array([[ 0.62228931, 0.68507046, 0.32600462, -0.06949969, -0.17979228]],

7.5 Digression: Polar Decomposition

A singular value decomposition (SVD) of $X$ is related to a polar decomposition of $X$:

$$X = SQ$$

where

$$S = U \Sigma U^T$$
$$Q = UV^T$$

and $S$ is evidently a symmetric matrix and $Q$ is an orthogonal matrix.

7.6 Principal Components Analysis (PCA)

Let’s begin with a case in which $n >> m$, so that we have many more individuals $n$ than attributes $m$.

The matrix $X$ is short and fat in an $n >> m$ case as opposed to a tall and skinny case with $m >> n$ to be discussed later.

We regard $X$ as an $m \times n$ matrix of data:

$$X = [X_1 \mid X_2 \mid \cdots \mid X_n]$$

where for $j = 1, \ldots, n$ the column vector $X_j = [X_{1j} \mid X_{2j} \mid \cdots \mid X_{mj}]$ is a vector of observations on variables $[x_1 \mid x_2 \mid \cdots \mid x_m]$.

In a time series setting, we would think of columns $j$ as indexing different times at which random variables are observed, while rows index different random variables.

In a cross section setting, we would think of columns $j$ as indexing different individuals for which random variables are observed, while rows index different attributes.

The number of positive singular values equals the rank of matrix $X$.

Arrange the singular values in decreasing order.

Arrange the positive singular values on the main diagonal of the matrix $\Sigma$ of into a vector $\sigma_R$.

Set all other entries of $\Sigma$ to zero.
7.7 Relationship of PCA to SVD

To relate a SVD to a PCA (principal component analysis) of data set $X$, first construct the SVD of the data matrix $X$:

$$X = U\Sigma V^T = \sigma_1 U_1 V_1^T + \sigma_2 U_2 V_2^T + \cdots + \sigma_p U_p V_p^T$$  \hspace{1cm} (7.1)

where

$$U = [U_1 | U_2 | \ldots | U_m]$$

$$V^T = \begin{bmatrix} V_1^T \\ V_2^T \\ \vdots \\ V_n^T \end{bmatrix}$$

In equation (7.1), each of the $m \times n$ matrices $U_j V_j^T$ is evidently of rank 1.

Thus, we have

$$X = \sigma_1 \begin{bmatrix} U_{11} V_1^T \\ U_{21} V_1^T \\ \vdots \\ U_{m1} V_1^T \end{bmatrix} + \sigma_2 \begin{bmatrix} U_{12} V_2^T \\ U_{22} V_2^T \\ \vdots \\ U_{m2} V_2^T \end{bmatrix} + \cdots + \sigma_p \begin{bmatrix} U_{1p} V_p^T \\ U_{2p} V_p^T \\ \vdots \\ U_{mp} V_p^T \end{bmatrix}$$  \hspace{1cm} (7.2)

Here is how we would interpret the objects in the matrix equation (7.2) in a time series context:

- for each $k = 1, \ldots, n$, the object $\{V_{kj}\}_{j=1}^n$ is a time series for the $k$th principal component

$$U_j = \begin{bmatrix} U_{1k} \\ U_{2k} \\ \vdots \\ U_{mk} \end{bmatrix} \quad k = 1, \ldots, m$$

is a vector of loadings of variables $X_i$ on the $k$th principal component, $i = 1, \ldots, m$

- $\sigma_k$ for each $k = 1, \ldots, p$ is the strength of $k$th principal component, where strength means contribution to the overall covariance of $X$.

7.8 PCA with Eigenvalues and Eigenvectors

We now use an eigen decomposition of a sample covariance matrix to do PCA.

Let $X_{m \times n}$ be our $m \times n$ data matrix.

Let's assume that sample means of all variables are zero.

We can assure this by pre-processing the data by subtracting sample means.

Define a sample covariance matrix $\Omega$ as

$$\Omega = XX^T$$

Then use an eigen decomposition to represent $\Omega$ as follows:

$$\Omega = P\Lambda P^T$$

Here

- $P$ is $m \times m$ matrix of eigenvectors of $\Omega$
• $\Lambda$ is a diagonal matrix of eigenvalues of $\Omega$

We can then represent $X$ as

$$X = P\epsilon$$

where

$$\epsilon = P^{-1}X$$

and

$$\epsilon\epsilon^T = \Lambda.$$  

We can verify that

$$XX^T = P\Lambda P^T.$$  \hspace{1cm} (7.3)

It follows that we can represent the data matrix $X$ as

$$X = [X_1|X_2| \ldots |X_m] = [P_1|P_2| \ldots |P_m] \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix} = P_1\epsilon_1 + P_2\epsilon_2 + \ldots + P_m\epsilon_m$$

To reconcile the preceding representation with the PCA that we had obtained earlier through the SVD, we first note that $\epsilon_j^2 = \lambda_j \equiv \sigma_j^2$.

Now define $\tilde{\epsilon}_j = \frac{\epsilon_j}{\sqrt{\lambda_j}}$, which implies that $\tilde{\epsilon}_j^2\tilde{\epsilon}_j^T = 1$.

Therefore

$$X = \sqrt{\lambda_1}P_1\tilde{\epsilon}_1 + \sqrt{\lambda_2}P_2\tilde{\epsilon}_2 + \ldots + \sqrt{\lambda_m}P_m\tilde{\epsilon}_m$$

$$= \sigma_1P_1\tilde{\epsilon}_1 + \sigma_2P_2\tilde{\epsilon}_2 + \ldots + \sigma_mP_m\tilde{\epsilon}_m,$$

which agrees with

$$X = \sigma_1U_1V_1^T + \sigma_2U_2V_2^T + \ldots + \sigma_rU_rV_r^T$$

provided that we set

• $U_j = P_j$ (a vector of loadings of variables on principal component $j$)

• $V_k^T = \tilde{\epsilon}_k$ (the $k$th principal component)

Because there are alternative algorithms for computing $P$ and $U$ for given a data matrix $X$, depending on algorithms used, we might have sign differences or different orders between eigenvectors.

We can resolve such ambiguities about $U$ and $P$ by

1. sorting eigenvalues and singular values in descending order
2. imposing positive diagonals on $P$ and $U$ and adjusting signs in $V^T$ accordingly
### 7.9 Connections

To pull things together, it is useful to assemble and compare some formulas presented above. First, consider an SVD of an \( m \times n \) matrix:

\[
X = U\Sigma V^T
\]

Compute:

\[
XX^T = U\Sigma V^T V\Sigma U^T
\equiv U\Sigma \Sigma^T U^T
\equiv U\Lambda U^T
\]

(7.4)

Compare representation (7.4) with equation (7.3) above. Evidently, \( U \) in the SVD is the matrix \( P \) of eigenvectors of \( XX^T \) and \( \Sigma \Sigma^T \) is the matrix \( \Lambda \) of eigenvalues.

Second, let’s compute

\[
X^T X = V\Sigma^T U^T U\Sigma V^T
\equiv V\Sigma^T \Sigma V^T
\]

Thus, the matrix \( V \) in the SVD is the matrix of eigenvectors of \( X^T X \).

Summarizing and fitting things together, we have the eigen decomposition of the sample covariance matrix

\[
XX^T = P\Lambda P^T
\]

where \( P \) is an orthogonal matrix.

Further, from the SVD of \( X \), we know that

\[
XX^T = U\Sigma \Sigma^T U^T
\]

where \( U \) is an orthonal matrix.

Thus, \( P = U \) and we have the representation of \( X \)

\[
X = P\epsilon = U\Sigma V^T
\]

It follows that

\[
U^T X = \Sigma V^T = \epsilon
\]

Note that the preceding implies that

\[
\epsilon^T = \Sigma V^T V\Sigma^T = \Sigma \Sigma^T = \Lambda,
\]

so that everything fits together.

Below we define a class `DecomAnalysis` that wraps PCA and SVD for a given a data matrix \( X \).

```python
class DecomAnalysis:
 ""
 A class for conducting PCA and SVD.
 ""
```

(continues on next page)
def __init__(self, X, n_component=None):
    self.X = X
    self.Ω = (X @ X.T)

    self.m, self.n = X.shape
    self.r = LA.matrix_rank(X)

    if n_component:
        self.n_component = n_component
    else:
        self.n_component = self.m

def pca(self):
    Λ, P = LA.eigh(self.Ω)  # columns of P are eigenvectors
    ind = sorted(range(Λ.size), key=lambda x: Λ[x], reverse=True)

    # sort by eigenvalues
    self.Λ = Λ[ind]
    P = P[:, ind]
    self.P = P @ diag_sign(P)

    self.Λ = np.diag(self.Λ)

    self.explained_ratio_pca = np.cumsum(self.Λ) / np.sum(self.Λ)

    # compute the N by T matrix of principal components
    self.Φ = self.P.T @ self.X

    P = self.P[:, :self.n_component]
    Φ = self.Φ[:, :self.n_component, :]

    # transform data
    self.X_pca = P @ Φ

def svd(self):
    U, Φ, VT = LA.svd(self.X)

    ind = sorted(range(Φ.size), key=lambda x: Φ[x], reverse=True)

    # sort by eigenvalues
    d = min(self.m, self.n)

    self.Φ = Φ[ind]
    U = U[:, ind]
    D = diag_sign(U)
    self.U = U @ D
    VT[:, d:] = D @ VT[ind, :]
    self.VT = VT

    self.Σ = np.zeros((self.m, self.n))
    self.Σ[:d, :d] = np.diag(self.Φ)
We also define a function that prints out information so that we can compare decompositions obtained by different algorithms.

```python
def compare_pca_svd(da):

 # loading matrices
 fig, axs = plt.subplots(1, 2, figsize=(14, 5))
 plt.suptitle('loadings')
 axs[0].plot(da.P.T)

 print('Eigenvalues and Singular values
')
 print(f'\lambda = {da.\lambda}
')
 print(f'\sigma^2 = {da.\sigma**2}
')
 print('
')

 # transform data
 self.X_pca = P @ X
```

(continues on next page)
For an example PCA applied to analyzing the structure of intelligence tests see this lecture *Multivariable Normal Distribution*. Look at parts of that lecture that describe and illustrate the classic factor analysis model.

### 7.10 Dynamic Mode Decomposition (DMD)

We turn to the **tall and skinny** case associated with **Dynamic Mode Decomposition**, the case in which $m >> n$.

Here an $m \times n$ data matrix $\tilde{X}$ contains many more attributes $m$ than individuals $n$.

Dynamic mode decomposition was introduced by [Sch10].

You can read more about Dynamic Mode Decomposition here [KBBWP16] and here [BK19] (section 7.2).

We want to fit a **first-order vector autoregression**

$$X_{t+1} = AX_t + C\epsilon_{t+1}$$  \hspace{1cm} (7.5)

where $\epsilon_{t+1}$ is the time $t + 1$ instance of an i.i.d. $m \times 1$ random vector with mean vector zero and identity covariance matrix and

where the $m \times 1$ vector $X_t$ is

$$X_t = [X_{1,t} \quad X_{2,t} \quad \cdots \quad X_{m,t}]^T$$ \hspace{1cm} (7.6)

and where $T$ again denotes complex transposition and $X_{i,t}$ is an observation on variable $i$ at time $t$.

We want to fit equation (7.5).

Our data are organized in an $m \times (n + 1)$ matrix $\tilde{X}$

$$\tilde{X} = [X_1 \mid X_2 \mid \cdots \mid X_n \mid X_{n+1}]$$

where for $t = 1, \ldots, n + 1$, the $m \times 1$ vector $X_t$ is given by (7.6).

Thus, we want to estimate a system (7.5) that consists of $m$ least squares regressions of **everything** on one lagged value of **everything**.
The $i$th equation of (7.5) is a regression of $X_{i,t+1}$ on the vector $X_t$.

We proceed as follows.

From $\tilde{X}$, we form two $m \times n$ matrices

$$X = [X_1 | X_2 | \cdots | X_n]$$

and

$$X' = [X_2 | X_3 | \cdots | X_{n+1}]$$

Here $'$ does not indicate matrix transposition but instead is part of the name of the matrix $X'$.

In forming $X$ and $X'$, we have in each case dropped a column from $\tilde{X}$, the last column in the case of $X$, and the first column in the case of $X'$.

Evidently, $X$ and $X'$ are both $m \times n$ matrices.

We denote the rank of $X$ as $p \leq \min(m, n)$.

Two possible cases are

- $n >> m$, so that we have many more time series observations $n$ than variables $m$
- $m >> n$, so that we have many more variables $m$ than time series observations $n$

At a general level that includes both of these special cases, a common formula describes the least square estimator $\hat{A}$ of $A$ for both cases.

But some important details differ.

The common formula is

$$\hat{A} = X'X^+$$

(7.7)

where $X^+$ is the pseudo-inverse of $X$.

Applicable formulas for the pseudo-inverse differ for our two cases.

**Short-Fat Case:**

When $n >> m$, so that we have many more time series observations $n$ than variables $m$ and when $X$ has linearly independent rows, $XX^T$ has an inverse and the pseudo-inverse $X^+$ is

$$X^+ = X^T(XX^T)^{-1}$$

Here $X^+$ is a right-inverse that verifies $XX^+ = I_{m \times m}$.

In this case, our formula (7.7) for the least-squares estimator of the population matrix of regression coefficients $A$ becomes

$$\hat{A} = X'X^T(XX^T)^{-1}$$

(7.8)

This formula for least-squares regression coefficients widely used in econometrics.

For example, it is used to estimate vector autoregressions.

The right side of formula (7.8) is proportional to the empirical cross second moment matrix of $X_{t+1}$ and $X_t$ times the inverse of the second moment matrix of $X_t$.

**Tall-Skinny Case:**

When $m >> n$, so that we have many more attributes $m$ than time series observations $n$ and when $X$ has linearly independent columns, $X^TX$ has an inverse and the pseudo-inverse $X^+$ is

$$X^+ = (X^TX)^{-1}X^T$$
Here $X^+$ is a **left-inverse** that verifies $X^+ X = I_{n \times n}$.

In this case, our formula (7.7) for a least-squares estimator of $A$ becomes

$$\hat{A} = X'(X^T X)^{-1} X^T$$

(7.9)

Please compare formulas (7.8) and (7.9) for $\hat{A}$.

Here we are interested in formula (7.9).

The $i$th row of $\hat{A}$ is an $m \times 1$ vector of regression coefficients of $X_{i,t+1}$ on $X_{j,t}$, $j = 1, \ldots, m$.

If we use formula (7.9) to calculate $\hat{AX}$ we find that

$$\hat{AX} = X'$$

so that the regression equation **fits perfectly**.

This is the usual outcome in an **underdetermined least-squares** model.

To reiterate, in our **tall-skinny** case in which we have a number $n$ of observations that is small relative to the number $m$ of attributes that appear in the vector $X_t$, we want to fit equation (7.5).

To offer ideas about how we can efficiently calculate the pseudo-inverse $X^+$, as our estimator $\hat{A}$ of $A$ we form an $m \times m$ matrix that solves the least-squares best-fit problem

$$\hat{A} = \arg\min_A \|X' - \hat{AX}\|_F$$

(7.10)

where $\| \cdot \|_F$ denotes the Frobenius (or Euclidean) norm of a matrix.

The Frobenius norm is defined as

$$\|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} |A_{ij}|^2}$$

The minimizer of the right side of equation (7.10) is

$$\hat{A} = X'X^+$$

(7.11)

where the (possibly huge) $n \times m$ matrix $X^+ = (X^T X)^{-1} X^T$ is again a pseudo-inverse of $X$.

For some situations that we are interested in, $X^T X$ can be close to singular, a situation that can make some numerical algorithms be error-prone.

To acknowledge that possibility, we’ll use efficient algorithms for computing and for constructing reduced rank approximations of $\hat{A}$ in formula (7.9).

The $i$th row of $\hat{A}$ is an $m \times 1$ vector of regression coefficients of $X_{i,t+1}$ on $X_{j,t}$, $j = 1, \ldots, m$.

An efficient way to compute the pseudo-inverse $X^+$ is to start with a singular value decomposition

$$X = U\Sigma V^T$$

(7.12)

where we remind ourselves that for a **reduced SVD**, $X$ is an $m \times n$ matrix of data, $U$ is an $m \times p$ matrix, $\Sigma$ is a $p \times p$ matrix, and $V$ is an $n \times p$ matrix.

We can efficiently construct the pertinent pseudo-inverse $X^+$ by recognizing the following string of equalities.

$$X^+ = (X^T X)^{-1} X^T$$

$$= (V\Sigma U^T U\Sigma V^T)^{-1} V\Sigma U^T$$

$$= (V\Sigma V^T)^{-1} V\Sigma U^T$$

$$= V\Sigma^{-1} V^T V\Sigma U^T$$

$$= V\Sigma^{-1} U^T$$

(7.13)
(Since we are in the \( m >> n \) case in which \( V^T V = I_{p \times p} \) in a reduced SVD, we can use the preceding string of equalities for a reduced SVD as well as for a full SVD.)

Thus, we shall construct a pseudo-inverse \( X^+ \) of \( X \) by using a singular value decomposition of \( X \) in equation (7.12) to compute

\[
X^+ = V \Sigma^{-1} U^T \tag{7.14}
\]

where the matrix \( \Sigma^{-1} \) is constructed by replacing each non-zero element of \( \Sigma \) with \( \sigma_j^{-1} \).

We can use formula (7.14) together with formula (7.11) to compute the matrix \( \hat{A} \) of regression coefficients.

Thus, our estimator \( \hat{A} = X'X'^+ \) of the \( m \times m \) matrix of coefficients \( A \) is

\[
\hat{A} = X'V \Sigma^{-1} U^T \tag{7.15}
\]

We’ll eventually use dynamic mode decomposition to compute a rank \( r \) approximation to \( \hat{A} \), where \( r < p \).

**Remark:** In our Python code, we’ll sometimes use a reduced SVD.

Next, we describe alternative representations of our first-order linear dynamic system.

**Guide to three representations:** In practice, we’ll be interested in Representation 3. We present the first 2 in order to set the stage for some intermediate steps that might help us understand what is under the hood of Representation 3. In applications, we’ll use only a small subset of the DMD to approximate dynamics. To to that, we’ll want to be using the reduced SVD’s affiliated with representation 3, not the full SVD’s affiliated with Representations 1 and 2.

### 7.11 Representation 1

In this representation, we shall use a full SVD of \( X \).

We use the \( m \) columns of \( U \), and thus the \( m \) rows of \( U^T \), to define a \( m \times 1 \) vector \( \tilde{b}_t \) as

\[
\tilde{b}_t = U^T X_t. \tag{7.16}
\]

The original data \( X_t \) can be represented as

\[
X_t = U \tilde{b}_t \tag{7.17}
\]

(Here we use \( b \) to remind ourselves that we are creating a basis vector.)

Since we are now using a full SVD, \( UU^T = I_{m \times m} \).

So it follows from equation (7.16) that we can reconstruct \( X_t \) from \( \tilde{b}_t \).

In particular,

- Equation (7.16) serves as an encoder that rotates the \( m \times 1 \) vector \( X_t \) to become an \( m \times 1 \) vector \( \tilde{b}_t \).
- Equation (7.17) serves as a decoder that reconstructs the \( m \times 1 \) vector \( X_t \) by rotating the \( m \times 1 \) vector \( \tilde{b}_t \).

Define a transition matrix for an \( m \times 1 \) basis vector \( \tilde{b}_t \) by

\[
\hat{A} = U^T \hat{A} U \tag{7.18}
\]

We can recover \( \hat{A} \) from

\[
\hat{A} = U \hat{A} U^T
\]
Dynamics of the $m \times 1$ basis vector $\tilde{b}_t$ are governed by
\[
\tilde{b}_{t+1} = \tilde{A}\tilde{b}_t
\]
To construct forecasts $X_{t+1}$ of future values of $X_t$ conditional on $X_1$, we can apply decoders (i.e., rotators) to both sides of this equation and deduce
\[
X_{t+1} = U\tilde{A}^T X_1
\]
where we use $X_{t+1}$, $t \geq 1$ to denote a forecast.

### 7.12 Representation 2

This representation is related to one originally proposed by [Sch10]. It can be regarded as an intermediate step to a related representation 3 to be presented later.

As with Representation 1, we continue to
- use a **full SVD** and not a reduced SVD

As we observed and illustrated earlier in this lecture
- (a) for a full SVD $UU^T = I_{m \times m}$ and $U^TU = I_{p \times p}$ are both identity matrices
- (b) for a reduced SVD of $X$, $U^TU$ is not an identity matrix.

As we shall see later, a full SVD is too confining for what we ultimately want to do, namely, situations in which $U^TU$ is **not** an identity matrix because we use a reduced SVD of $X$.

But for now, let’s proceed under the assumption that we are using a full SVD so that both of the preceding two requirements (a) and (b) are satisfied.

Form an eigendecomposition of the $m \times m$ matrix $\tilde{A} = U^T \tilde{A}U$ defined in equation (7.18):
\[
\tilde{A} = W\Lambda W^{-1}
\]
where $\Lambda$ is a diagonal matrix of eigenvalues and $W$ is an $m \times m$ matrix whose columns are eigenvectors corresponding to rows (eigenvalues) in $\Lambda$.

When $UU^T = I_{m \times m}$, as is true with a full SVD of $X$, it follows that
\[
\tilde{A} = U\tilde{A}U^T = UW\Lambda W^{-1}U^T
\]
According to equation (7.20), the diagonal matrix $\Lambda$ contains eigenvalues of $\tilde{A}$ and corresponding eigenvectors of $\tilde{A}$ are columns of the matrix $UW$.

It follows that the systematic (i.e., not random) parts of the $X_t$ dynamics captured by our first-order vector autoregressions are described by
\[
X_{t+1} = UW\Lambda W^{-1}U^T X_t
\]
Multiplying both sides of the above equation by $W^{-1}U^T$ gives
\[
W^{-1}U^T X_{t+1} = \Lambda W^{-1}U^T X_t
\]
or
\[
\tilde{b}_{t+1} = \Lambda \tilde{b}_t
\]
where our encoder is now

\[ \hat{b}_t = W^{-1}U^T X_t \]

and our decoder is

\[ X_t = UW \hat{b}_t \]

We can use this representation to construct a predictor \( \overline{X}_{t+1} \) of \( X_{t+1} \) conditional on \( X_1 \) via:

\[ \overline{X}_{t+1} = UWA^TW^{-1}U^TX_1 \]  \hspace{1cm} (7.21)

In effect, [Sch10] defined an \( m \times m \) matrix \( \Phi_s \) as

\[ \Phi_s = UW \]  \hspace{1cm} (7.22)

and a generalized inverse

\[ \Phi_s^+ = W^{-1}U^T \]  \hspace{1cm} (7.23)

[Sch10] then represented equation (7.21) as

\[ \overline{X}_{t+1} = \Phi_s A^T \Phi_s^+ X_1 \]  \hspace{1cm} (7.24)

Components of the basis vector \( \hat{b}_t = W^{-1}U^T X_t \equiv \Phi_s^+ X_t \) are often called DMD modes, or sometimes also DMD projected modes.

To understand why they are called projected modes, notice that

\[ \Phi_s^+ = (\Phi_s^T \Phi_s)^{-1} \Phi_s^T \]

so that the \( m \times p \) matrix

\[ \hat{b} = \Phi_s^+ X \]

is a matrix of regression coefficients of the \( m \times n \) matrix \( X \) on the \( m \times p \) matrix \( \Phi_s \).

We'll say more about this interpretation in a related context when we discuss representation 3.

We turn next to an alternative representation suggested by Tu et al. [TRL+14].

It is more appropriate to use this alternative representation when, as in practice is typically the case, we use a reduced SVD.

### 7.13 Representation 3

Departing from the procedures used to construct Representations 1 and 2, each of which deployed a full SVD, we now use a reduced SVD.

Again, we let \( p \leq \min(m, n) \) be the rank of \( X \).

Construct a reduced SVD

\[ X = \tilde{U} \tilde{\Sigma} \tilde{V}^T, \]

where now \( \tilde{U} \) is \( m \times p \), \( \tilde{\Sigma} \) is \( p \times p \), and \( \tilde{V}^T \) is \( p \times n \).
Our minimum-norm least-squares estimator approximator of $A$ now has representation

$$
\hat{A} = X'\hat{V}\hat{\Sigma}^{-1}\hat{U}^T
$$

(7.25)

Paralleling a step in Representation 1, define a transition matrix for a rotated $p \times 1$ state $\tilde{b}_t$ by

$$
\tilde{A} = \tilde{U}^T\hat{A}\tilde{U}
$$

(7.26)

**Interpretation as projection coefficients**

[BK22] remark that $\tilde{A}$ can be interpreted in terms of a projection of $\hat{A}$ onto the $p$ modes in $\tilde{U}$.

To verify this, first note that, because $\tilde{U}^T\tilde{U} = I$, it follows that

$$
\tilde{A} = \tilde{U}^T\hat{A}\tilde{U} = \tilde{U}^T X'\hat{V}\hat{\Sigma}^{-1}\hat{U}^T = \tilde{U}^T X'\hat{V}\hat{\Sigma}^{-1}\tilde{U}^T
$$

(7.27)

Next, we’ll just compute the regression coefficients in a projection of $\hat{A}$ on $\tilde{U}$ using the standard least-square formula

$$(\tilde{U}^T\tilde{U})^{-1}\tilde{U}^T \hat{A} = (\tilde{U}^T\tilde{U})^{-1}\tilde{U}^T X'\hat{V}\hat{\Sigma}^{-1}\tilde{U}^T = \tilde{U}^T X'\hat{V}\hat{\Sigma}^{-1}\tilde{U}^T = \tilde{A}.$$

Note that because we are now working with a reduced SVD, $\tilde{U}\tilde{U}^T \neq I$.

Consequently,

$$
\hat{A} \neq \tilde{U}\hat{A}\tilde{U}^T,
$$

and we can’t simply recover $\hat{A}$ from $\tilde{A}$ and $\tilde{U}$.

Nevertheless, we hope for the best and proceed to construct an eigendecomposition of the $p \times p$ matrix $\tilde{A}$:

$$
\tilde{A} = \tilde{W}\Lambda\tilde{W}^{-1}.
$$

(7.28)

Mimicking our procedure in Representation 2, we cross our fingers and compute an $m \times p$ matrix

$$
\tilde{\Phi}_s = \tilde{U}\tilde{W}
$$

(7.29)

that corresponds to (7.22) for a full SVD.

At this point, where $\hat{A}$ is given by formula (7.25) it is interesting to compute $\hat{A}\tilde{\Phi}_s$:

$$
\hat{A}\tilde{\Phi}_s = (X'\hat{V}\hat{\Sigma}^{-1}\hat{U}^T)(\tilde{U}\tilde{W}) = X'\hat{V}\hat{\Sigma}^{-1}\tilde{W} \neq (\tilde{U}\tilde{W})\Lambda = \tilde{\Phi}_s\Lambda
$$

That $\hat{A}\tilde{\Phi}_s \neq \tilde{\Phi}_s\Lambda$ means, that unlike the corresponding situation in Representation 2, columns of $\tilde{\Phi}_s = \tilde{U}\tilde{W}$ are not eigenvectors of $\hat{A}$ corresponding to eigenvalues on the diagonal of matrix $\Lambda$.

But in a quest for eigenvectors of $\hat{A}$ that we can compute with a reduced SVD, let’s define the $m \times p$ matrix $\Phi$ as

$$
\Phi \equiv \hat{A}\tilde{\Phi}_s = X'\hat{V}\hat{\Sigma}^{-1}\tilde{W}
$$

(7.30)

It turns out that columns of $\Phi$ are eigenvectors of $\hat{A}$.

This is a consequence of a result established by Tu et al. [TRL+14], which we now present.

**Proposition** The $p$ columns of $\Phi$ are eigenvectors of $\hat{A}$. 

110 Chapter 7. Singular Value Decomposition (SVD)
Proof: From formula (7.30) we have
\[ \hat{A}\Phi = (X'\tilde{V}\tilde{\Sigma}^{-1}\tilde{U}^T)(X'\tilde{V}\tilde{\Sigma}^{-1}\tilde{W}) \]
\[ = X'\tilde{V}\tilde{\Sigma}^{-1}\tilde{A}\tilde{W} \]
\[ = X'\tilde{V}\tilde{\Sigma}^{-1}\tilde{W}\Lambda \]
\[ = \Phi\Lambda \]

Thus, we have deduced that
\[ \hat{A}\Phi = \Phi\Lambda \quad (7.31) \]

Let \( \phi_i \) be the \( i \)th column of \( \Phi \) and \( \lambda_i \) be the corresponding \( i \) eigenvalue of \( \hat{A} \) from decomposition (7.28).

Writing out the \( m \times 1 \) vectors on both sides of equation (7.31) and equating them gives
\[ \hat{A}\phi_i = \lambda_i\phi_i. \]

This equation confirms that \( \phi_i \) is an eigenvector of \( \hat{A} \) that corresponds to eigenvalue \( \lambda_i \) of both \( \hat{A} \) and \( \hat{A} \).

This concludes the proof.

Also see [BK22] (p. 238)

7.13.1 Decoder of \( X \) as a linear projection

From eigendecomposition (7.31) we can represent \( \hat{A} \) as
\[ \hat{A} = \Phi\Lambda\Phi^+. \quad (7.32) \]

From formula (7.32) we can deduce the reduced dimension dynamics
\[ \tilde{b}_{t+1} = \Lambda\tilde{b}_t \]
where
\[ \tilde{b}_t = \Phi^+X_t \quad (7.33) \]

Since the \( m \times p \) matrix \( \Phi \) has \( p \) linearly independent columns, the generalized inverse of \( \Phi \) is
\[ \Phi^+ = (\Phi^T\Phi)^{-1}\Phi^T \]
and so
\[ \tilde{b} = (\Phi^T\Phi)^{-1}\Phi^TX \quad (7.34) \]

The \( p \times n \) matrix \( \tilde{b} \) is recognizable as a matrix of least squares regression coefficients of the \( m \times n \) matrix \( X \) on the \( m \times p \) matrix \( \Phi \) and consequently
\[ \tilde{X} = \Phi\tilde{b} \quad (7.35) \]
is an \( m \times n \) matrix of least squares projections of \( X \) on \( \Phi \).

By virtue of least-squares projection theory discussed here https://python-advanced.quantecon.org/orth_proj.html, we can represent \( X \) as the sum of the projection \( \tilde{X} \) of \( X \) on \( \Phi \) plus a matrix of errors.
To verify this, note that the least squares projection $\tilde{X}$ is related to $X$ by

$$X = \tilde{X} + \epsilon$$

or

$$X = \Phi \tilde{b} + \epsilon$$

(7.36)

where $\epsilon$ is an $m \times n$ matrix of least squares errors satisfying the least squares orthogonality conditions $\epsilon^T \Phi = 0$ or

$$(X - \Phi \tilde{b})^T \Phi = 0_{m \times p}$$

(7.37)

Rearranging the orthogonality conditions (7.37) gives $X^T \Phi = \tilde{b} \Phi^T \Phi$, which implies formula (7.34).

### 7.13.2 A useful approximation

There is a useful way to approximate the $p \times 1$ vector $\tilde{b}_1$ instead of using formula (7.33).

In particular, the following argument adapted from [BK22] (page 240) provides a computationally efficient way to approximate $\tilde{b}_1$.

For convenience, we’ll do this first for time $t = 1$.

For $t = 1$, from equation (7.36) we have

$$\tilde{X}_1 = \Phi \tilde{b}_1$$

(7.38)

where $\tilde{b}_1$ is a $p \times 1$ vector.

Recall from representation 1 above that $X_1 = U\tilde{b}_1$, where $\tilde{b}_1$ is a time 1 basis vector for representation 1 and $U$ is from a full SVD of $X$.

It then follows from equation (7.36) that

$$U\tilde{b}_1 = X' V \Sigma^{-1} W \tilde{b}_1 + \epsilon_1$$

where $\epsilon_1$ is a least-squares error vector from equation (7.36).

It follows that

$$\tilde{b}_1 = U^T X' V \Sigma^{-1} W \tilde{b}_1 + U^T \epsilon_1$$

Replacing the error term $U^T \epsilon_1$ by zero, and replacing $U$ from a full SVD of $X$ with $\bar{U}$ from a reduced SVD, we obtain an approximation $\tilde{b}_1$ to $\tilde{b}_1$:

$$\tilde{b}_1 = \bar{U}^T X' V \Sigma^{-1} W \tilde{b}_1$$

Recall that from equation (7.27), $\bar{A} = \bar{U}^T X' V \Sigma^{-1}$.

It then follows that

$$\tilde{b}_1 = \bar{A} W \tilde{b}_1$$

and therefore, by the eigendecomposition (7.28) of $\bar{A}$, we have

$$\tilde{b}_1 = \bar{W} \Lambda \tilde{b}_1$$
Consequently, 

\[ \tilde{b}_1 = (\tilde{W}\Lambda)^{-1}\tilde{b}_1 \]

or

\[ \tilde{b}_1 = (\tilde{W}\Lambda)^{-1}\tilde{U}^TX_1, \quad (7.39) \]

which is computationally efficient approximation to the following instance of equation (7.33) for the initial vector \( \tilde{b}_1 \):

\[ \tilde{b}_1 = \Phi^+X_1 \quad (7.40) \]

(To highlight that (7.39) is an approximation, users of DMD sometimes call components of the basis vector \( \tilde{b}_t = \Phi^+X_t \) the exact DMD modes.)

Conditional on \( X_t \), we can compute our decoded \( \tilde{X}_{t+j}, j = 1, 2, \ldots \) from either

\[ \tilde{X}_{t+j} = \Phi\Lambda^j\Phi^+X_t \quad (7.41) \]

or use the approximation

\[ \tilde{X}_{t+j} = \Phi\Lambda^j(W\Lambda)^{-1}\tilde{U}^TX_t. \quad (7.42) \]

We can then use \( \tilde{X}_{t+j} \) or \( \tilde{X}_{t+j} \) to forecast \( X_{t+j} \).

### 7.13.3 Using Fewer Modes

In applications, we'll actually want to just a few modes, often three or less.

Some of the preceding formulas assume that we have retained all \( p \) modes associated with the positive singular values of \( X \).

We can adjust our formulas to describe a situation in which we instead retain only the \( r < p \) largest singular values.

In that case, we simply replace \( \tilde{\Sigma} \) with the appropriate \( r \times r \) matrix of singular values, \( \tilde{U} \) with the \( m \times r \) matrix whose columns correspond to the \( r \) largest singular values, and \( \tilde{V} \) with the \( n \times r \) matrix whose columns correspond to the \( r \) largest singular values.

Counterparts of all of the salient formulas above then apply.

### 7.14 Source for Some Python Code

You can find a Python implementation of DMD here:

https://mathlab.github.io/PyDMD/
8.1 Overview

Many economic problems involve finding fixed points or zeros (sometimes called “roots”) of functions. For example, in a simple supply and demand model, an equilibrium price is one that makes excess demand zero. In other words, an equilibrium is a zero of the excess demand function.

There are various computational techniques for solving for fixed points and zeros. In this lecture we study an important gradient-based technique called Newton’s method. Newton’s method does not always work but, in situations where it does, convergence is often fast when compared to other methods.

The lecture will apply Newton’s method in one-dimensional and multi-dimensional settings to solve fixed-point and zero-finding problems.

- When finding the fixed point of a function $f$, Newton’s method updates an existing guess of the fixed point by solving for the fixed point of a linear approximation to the function $f$.
- When finding the zero of a function $f$, Newton’s method updates an existing guess by solving for the zero of a linear approximation to the function $f$.

To build intuition, we first consider an easy, one-dimensional fixed point problem where we know the solution and solve it using both successive approximation and Newton’s method.

Then we apply Newton’s method to multi-dimensional settings to solve market for equilibria with multiple goods.

At the end of the lecture we leverage the power of JAX and automatic differentiation to solve a very high-dimensional equilibrium problem.
We use the following imports in this lecture

```python
import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from scipy.optimize import root
import jax
import jax.numpy as jnp

plt.rcParams["figure.figsize"] = (10, 5.7)
```

### 8.2 Fixed Point Computation Using Newton’s Method

In this section we solve the fixed point of the law of motion for capital in the setting of the Solow growth model. We will inspect the fixed point visually, solve it by successive approximation, and then apply Newton’s method to achieve faster convergence.

#### 8.2.1 The Solow Model

In the Solow growth model, assuming Cobb-Douglas production technology and zero population growth, the law of motion for capital is

\[ k_{t+1} = g(k_t) \quad \text{where} \quad g(k) := sA k^\alpha + (1 - \delta)k \quad (8.1) \]

Here

- \( k_t \) is capital stock per worker,
- \( A, \alpha > 0 \) are production parameters, \( \alpha < 1 \)
- \( s > 0 \) is a savings rate, and
- \( \delta \in (0, 1) \) is a rate of depreciation

In this example, we wish to calculate the unique strictly positive fixed point of \( g \), the law of motion for capital. In other words, we seek a \( k^* > 0 \) such that \( g(k^*) = k^* \).

- such a \( k^* \) is called a steady state, since \( k_t = k^* \) implies \( k_{t+1} = k^* \).

Using pencil and paper to solve \( g(k) = k \), you will be able to confirm that

\[ k^* = \left( \frac{sA}{\delta} \right)^{1/(1-\alpha)} \]

#### 8.2.2 Implementation

Let’s store our parameters in `namedtuple` to help us keep our code clean and concise.

```python
SolowParameters = namedtuplen("SolowParameters", ('A', 's', 'alpha', 'delta'))
```

This function creates a suitable `namedtuple` with default parameter values.
```python
def create_solow_params(A=2.0, s=0.3, α=0.3, δ=0.4):
 "Creates a Solow model parameterization with default values."
 return SolowParameters(A=A, s=s, α=α, δ=δ)
```

The next two functions implement the law of motion (8.2.1) and store the true fixed point $k^*$.

```python
def g(k, params):
 A, s, α, δ = params
 return A * s * k**α + (1 - δ) * k

def exact_fixed_point(params):
 A, s, α, δ = params
 return ((s * A) / δ) ** (1 / (1 - α))
```

Here is a function to provide a 45 degree plot of the dynamics.

```python
def plot_45(params, ax, fontsize=14):
 k_min, k_max = 0.0, 3.0
 k_grid = np.linspace(k_min, k_max, 1200)

 # Plot the functions
 lb = r"$g(k) = sA^{\alpha} + (1 - \delta)k$"
 ax.plot(k_grid, g(k_grid, params), lw=2, alpha=0.6, label=lb)
 ax.plot(k_grid, k_grid, "k--", lw=1, alpha=0.7, label="45")

 # Show and annotate the fixed point
 kstar = exact_fixed_point(params)
 fps = (kstar,)
 ax.plot(fps, fps, "go", ms=10, alpha=0.6)
 ax.annotate(r"$k^* = (sA / \delta)^{1/(1-\alpha)}$",
 xy=(kstar, kstar),
 xycoords="data",
 xytext=(20, -20),
 textcoords="offset points",
 fontsize=fontsize)

 ax.legend(loc="upper left", frameon=False, fontsize=fontsize)

 ax.set_yticks((0, 1, 2, 3))
 ax.set_yticklabels((0.0, 1.0, 2.0, 3.0), fontsize=fontsize)
 ax.set_ylim(0, 3)
 ax.set_xlabel("k_t", fontsize=fontsize)
 ax.set_ylabel("k_{t+1}", fontsize=fontsize)
```

Let's look at the 45 degree diagram for two parameterizations.

```python
params = create_solow_params()
fig, ax = plt.subplots(figsize=(8, 8))
plot_45(params, ax)
plt.show()
```
\[ g(k) = sA k^\alpha + (1 - \delta) k \]

\[ k^* = \left( \frac{sA}{\delta} \right)^{\frac{1}{1-\alpha}} \]
We see that $k^*$ is indeed the unique positive fixed point.

**Successive Approximation**

First let’s compute the fixed point using successive approximation.

In this case, successive approximation means repeatedly updating capital from some initial state $k_0$ using the law of motion.

Here’s a time series from a particular choice of $k_0$.

```python
def compute_iterates(k_0, f, params, n=25):
 """Compute time series of length n generated by arbitrary function f."""
 k = k_0
 k_iterates = []
 for t in range(n):
 (continues on next page)"""
```
Quantitative Economics with Python

```python
k_iterates = []
k = f(k, params)
return k_iterates
```

```python
params = create_solow_params()
k_0 = 0.25
k_series = compute_iterates(k_0, g, params)
k_star = exact_fixed_point(params)

fig, ax = plt.subplots()
ax.plot(k_series, 'o')
ax.plot([k_star] * len(k_series), 'k--')
ax.set_ylim(0, 3)
plt.show()
```

Let's see the output for a long time series.

```python
k_series = compute_iterates(k_0, g, params, n=10_000)
k_star_approx = k_series[-1]
k_star_approx
```

1.7846741842265788

This is close to the true value.

```python
k_star
```

1.7846741842265788

Chapter 8. Using Newton’s Method to Solve Economic Models
Newton’s Method

In general, when applying Newton’s fixed point method to some function \( g \), we start with a guess \( x_0 \) of the fixed point and then update by solving for the fixed point of a tangent line at \( x_0 \).

To begin with, we recall that the first-order approximation of \( g \) at \( x_0 \) (i.e., the first order Taylor approximation of \( g \) at \( x_0 \)) is the function

\[
\hat{g}(x) \approx g(x_0) + g'(x_0)(x - x_0)
\] (8.2)

We solve for the fixed point of \( \hat{g} \) by calculating the \( x_1 \) that solves

\[
x_1 = \frac{g(x_0) - g'(x_0)x_0}{1 - g'(x_0)}
\]

Generalising the process above, Newton’s fixed point method iterates on

\[
x_{t+1} = \frac{g(x_t) - g'(x_t)x_t}{1 - g'(x_t)}, \quad x_0 \text{ given}
\] (8.3)

To implement Newton’s method we observe that the derivative of the law of motion for capital (8.2.1) is

\[
g'(k) = \alpha s A k^{\alpha - 1} + (1 - \delta)
\] (8.4)

Let’s define this:

```python
def Dg(k, params):
 A, s, alpha, delta = params
 return alpha * A * s * k**(alpha - 1) + (1 - delta)
```

Here’s a function \( q \) representing (8.2.3).

```python
def q(k, params):
 return (g(k, params) - Dg(k, params) * k) / (1 - Dg(k, params))
```

Now let’s plot some trajectories.

```python
def plot_trajectories(params,
 k0_a=0.8, # first initial condition
 k0_b=3.1, # second initial condition
 n=20, # length of time series
 fs=14): # fontsize
 fig, axes = plt.subplots(2, 1, figsize=(10, 6))
 ax1, ax2 = axes

 ks1 = compute_iterates(k0_a, g, params, n)
 ax1.plot(ks1, "-o", label="successive approximation")

 ks2 = compute_iterates(k0_b, g, params, n)
 ax2.plot(ks2, "-o", label="successive approximation")

 ks3 = compute_iterates(k0_a, q, params, n)
 ax1.plot(ks3, "-o", label="newton steps")

 ks4 = compute_iterates(k0_b, q, params, n)
 ax2.plot(ks4, "-o", label="newton steps")
```

(continues on next page)
for ax in axes:
    ax.plot(k_star * np.ones(n), "k--")
    ax.legend(fontsize=fs, frameon=False)
    ax.set_ylim(0.6, 3.2)
    ax.set_yticks((k_star,))
    ax.set_yticklabels(
        "$k^*$", fontsize=fs)
    ax.set_xticks(np.linspace(0, 19, 20))
plt.show()

params = create_solow_params()
plot_trajectories(params)

We can see that Newton’s method converges faster than successive approximation.

## 8.3 Root-Finding in One Dimension

In the previous section we computed fixed points.

In fact Newton’s method is more commonly associated with the problem of finding zeros of functions.

Let’s discuss this “root-finding” problem and then show how it is connected to the problem of finding fixed points.
8.3.1 Newton’s Method for Zeros

Let’s suppose we want to find an \( x \) such that \( f(x) = 0 \) for some smooth function \( f \) mapping real numbers to real numbers. Suppose we have a guess \( x_0 \) and we want to update it to a new point \( x_1 \).

As a first step, we take the first-order approximation of \( f \) around \( x_0 \):

\[
\hat{f}(x) \approx f(x_0) + f'(x_0)(x - x_0)
\]

Now we solve for the zero of \( \hat{f} \).

In particular, we set \( \hat{f}(x_1) = 0 \) and solve for \( x_1 \) to get

\[
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}, \quad x_0 \text{ given}
\]

Generalizing the formula above, for one-dimensional zero-finding problems, Newton’s method iterates on

\[
x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)}, \quad x_0 \text{ given} \tag{8.5}
\]

The following code implements the iteration (8.3.1)

```python
def newton(f, Df, x_0, tol=1e-7, max_iter=100_000):
x = x_0

 # Implement the zero-finding formula
def q(x):
 return x - f(x) / Df(x)

 error = tol + 1
 n = 0
 while error > tol:
 n += 1
 if n > max_iter:
 raise Exception('Max iteration reached without convergence')
 y = q(x)
 error = np.abs(x - y)
 x = y
 print(f'iteration {n}, error = {error:.5f}
return x
```

Numerous libraries implement Newton’s method in one dimension, including SciPy, so the code is just for illustrative purposes.

(That said, when we want to apply Newton’s method using techniques such as automatic differentiation or GPU acceleration, it will be helpful to know how to implement Newton’s method ourselves.)

8.3.2 Application to Finding Fixed Points

Now consider again the Solow fixed-point calculation, where we solve for \( k \) satisfying \( g(k) = k \).

We can convert to this to a zero-finding problem by setting \( f(x) := g(x) - x \).

Any zero of \( f \) is clearly a fixed point of \( g \).

Let’s apply this idea to the Solow problem
```python
params = create_solow_params()
k_star_approx_newton = newton(f=lambda x: g(x, params) - x,
 Df=lambda x: Dg(x, params) - 1,
 x_0=0.8)
```

```
iteration 1, error = 1.27209
iteration 2, error = 0.28180
iteration 3, error = 0.00561
iteration 4, error = 0.00000
iteration 5, error = 0.00000
```

The result confirms the descent we saw in the graphs above: a very accurate result is reached with only 5 iterations.

### 8.4 Multivariate Newton’s Method

In this section, we introduce a two-good problem, present a visualization of the problem, and solve for the equilibrium of the two-good market using both a zero finder in SciPy and Newton’s method.

We then expand the idea to a larger market with 5,000 goods and compare the performance of the two methods again. We will see a significant performance gain when using Newton’s method.

#### 8.4.1 A Two Goods Market Equilibrium

Let’s start by computing the market equilibrium of a two-good problem.

We consider a market for two related products, good 0 and good 1, with price vector \( p = (p_0, p_1) \).

Supply of good \( i \) at price \( p \),

\[
q_s^i(p) = b_i \sqrt{p_i}
\]

Demand of good \( i \) at price \( p \) is,

\[
q_d^i(p) = \exp(-a_{i0} p_0) + \exp(-a_{i1} p_1) + c_i
\]

Here \( c_i, b_i \) and \( a_{ij} \) are parameters.

For example, the two goods might be computer components that are typically used together, in which case they are complements. Hence demand depends on the price of both components.

The excess demand function is,

\[
e_i(p) = q_d^i(p) - q_s^i(p), \quad i = 0, 1
\]

An equilibrium price vector \( p^* \) satisfies \( e_i(p^*) = 0 \).

We set

\[
A = \begin{pmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{pmatrix}, \quad b = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \quad \text{and} \quad c = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix}
\]

for this particular question.
A Graphical Exploration

Since our problem is only two-dimensional, we can use graphical analysis to visualize and help understand the problem. Our first step is to define the excess demand function

\[ e(p) = \begin{pmatrix} e_0(p) \\ e_1(p) \end{pmatrix} \]

The function below calculates the excess demand for given parameters

```python
def e(p, A, b, c):
 return np.exp(-A @ p) + c - b * np.sqrt(p)
```

Our default parameter values will be

\[ A = \begin{pmatrix} 0.5 & 0.4 \\ 0.8 & 0.2 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{and} \quad c = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

At a price level of \( p = (1, 0.5) \), the excess demand is

```python
ex_demand = e((1.0, 0.5), A, b, c)
print('The excess demand for good 0 is {:.3f}'.format(ex_demand[0]))
print('The excess demand for good 1 is {:.3f}'.format(ex_demand[1]))
```

The excess demand for good 0 is 0.497
The excess demand for good 1 is 0.699

Next we plot the two functions \( e_0 \) and \( e_1 \) on a grid of \((p_0, p_1)\) values, using contour surfaces and lines.

We will use the following function to build the contour plots

```python
def plot_excess_demand(ax, good=0, grid_size=100, grid_max=4, surface=True):
 # Create a 100x100 grid
 p_grid = np.linspace(0, grid_max, grid_size)
 z = np.empty((100, 100))
 for i, p_1 in enumerate(p_grid):
 for j, p_2 in enumerate(p_grid):
 z[i, j] = e((p_1, p_2), A, b, c)[good]
 if surface:
 cs1 = ax.contourf(p_grid, p_grid, z.T, alpha=0.5)
 plt.colorbar(cs1, ax=ax, format='%.6f')
 ctr1 = ax.contour(p_grid, p_grid, z.T, levels=[0.0])
 ax.set_xlabel('\$p_0\$')
```

(continues on next page)
Here’s our plot of $e_0$:

```python
fig, ax = plt.subplots()
plot_excess_demand(ax, good=0)
plt.show()
```

Here’s our plot of $e_1$:

```python
fig, ax = plt.subplots()
plot_excess_demand(ax, good=1)
plt.show()
```
We see the black contour line of zero, which tells us when $e_i(p) = 0$.

For a price vector $p$ such that $e_i(p) = 0$ we know that good $i$ is in equilibrium (demand equals supply). If these two contour lines cross at some price vector $p^*$, then $p^*$ is an equilibrium price vector.

```python
fig, ax = plt.subplots(figsize=(10, 5.7))
for good in (0, 1):
 plot_excess_demand(ax, good=good, surface=False)
plt.show()
```
It seems there is an equilibrium close to \( p = (1.6, 1.5) \).

**Using a Multidimensional Root Finder**

To solve for \( p^* \) more precisely, we use a zero-finding algorithm from `scipy.optimize`. We supply \( p = (1, 1) \) as our initial guess.

```python
init_p = np.ones(2)
```

This uses the modified Powell method to find the zero

```python
%%time
solution = root(lambda p: e(p, A, b, c), init_p, method='hybr')
```

Here's the resulting value:

```python
p = solution.x
p
```

```python
array([1.57080182, 1.46928838])
```

This looks close to our guess from observing the figure. We can plug it back into \( e \) to test that \( e(p) \approx 0 \):

```python
np.max(np.abs(e(p, A, b, c)))
```
Adding Gradient Information

In many cases, for zero-finding algorithms applied to smooth functions, supplying the Jacobian of the function leads to better convergence properties.

Here we manually calculate the elements of the Jacobian

\[ J(p) = \begin{bmatrix} \frac{\partial e_0}{\partial p_0}(p) & \frac{\partial e_0}{\partial p_1}(p) \\ \frac{\partial e_1}{\partial p_0}(p) & \frac{\partial e_1}{\partial p_1}(p) \end{bmatrix} \]

```python
def jacobian(p, A, b, c):
p_0, p_1 = p
a_00, a_01 = A[:, 0]
a_10, a_11 = A[:, 1]
j_00 = -a_00 * np.exp(-a_00 * p_0) - (b[0] / 2) * p_0 ** (-1/2)
j_01 = -a_01 * np.exp(-a_01 * p_1)
j_10 = -a_10 * np.exp(-a_10 * p_0)
j_11 = -a_11 * np.exp(-a_11 * p_1) - (b[1] / 2) * p_1 ** (-1/2)
J = [[j_00, j_01],
 [j_10, j_11]]
return np.array(J)
```

```python
%%time
solution = root(lambda p: e(p, A, b, c),
 init_p,
 jac=lambda p: jacobian(p, A, b, c),
 method='hybr')
```

```
CPU times: user 260 µs, sys: 18 µs, total: 278 µs
Wall time: 262 µs
```

Now the solution is even more accurate (although, in this low-dimensional problem, the difference is quite small):

```python
p = solution.x
np.max(np.abs(e(p, A, b, c)))
```

```
1.3322676295501878e-15
```

Using Newton’s Method

Now let’s use Newton’s method to compute the equilibrium price using the multivariate version of Newton’s method

\[ p_{n+1} = p_n - J_e(p_n)^{-1} e(p_n) \] (8.6)

This is a multivariate version of (8.3.1)
(Here \( J_e(p_n) \) is the Jacobian of \( e \) evaluated at \( p_n \).)
The iteration starts from some initial guess of the price vector \( p_0 \).

Here, instead of coding Jacobian by hand, we use the `jax.jacobian()` function to auto-differentiate and calculate the Jacobian.

With only slight modification, we can generalize our previous attempt to multi-dimensional problems

```python
def newton(f, x_0, tol=1e-5, max_iter=10):
 x = x_0
 q = jax.jit(lambda x: x - jnp.linalg.solve(jax.jacobian(f)(x), f(x))
 error = tol + 1
 n = 0
 while error > tol:
 n+=1
 if(n > max_iter):
 raise Exception('Max iteration reached without convergence')
 y = q(x)
 if(any(jnp.isnan(y))):
 raise Exception('Solution not found with NaN generated')
 error = jnp.linalg.norm(x - y)
 x = y
 print(f'iteration {n}, error = {error:.5f}')
 print('Result = ' + f'\{x} \n')
 return x
```

We find the algorithm terminates in 4 steps

```python
%%time
p = newton(lambda p: e(p, A, b, c), init_p).block_until_ready()
```

```
iteration 1, error = 0.62515
iteration 2, error = 0.11152
iteration 3, error = 0.00258
iteration 4, error = 0.00000

Result = [1.5708019 1.4692883]
```

The result is very accurate.

With the larger overhead, the speed is not better than the optimized `scipy` function.

However, things will change when we move to higher dimensional problems.
### 8.4.2 A High-Dimensional Problem

Our next step is to investigate a large market with 5,000 goods.

To handle this large problem we will use Google JAX.

The excess demand function is essentially the same, but now the matrix $A$ is $5000 \times 5000$ and the parameter vectors $b$ and $c$ are $5000 \times 1$.

```python
dim = 5_000
np.random.seed(123)

Create a random matrix A and normalize the rows to sum to one
A = np.random.rand(dim, dim)
A = jnp.asarray(A)
s = jnp.sum(A, axis=0)
A = A / s

Set up b and c
b = jnp.ones(dim)
c = jnp.ones(dim)
```

Here is essentially the same demand function we applied before, but now using `jax.numpy` for the calculations.

```python
def e(p, A, b, c):
 return jnp.exp(- jnp.dot(A, p)) + c - b * jnp.sqrt(p)
```

Here’s our initial condition

```python
init_p = jnp.ones(dim)
```

By leveraging the power of Newton’s method, JAX accelerated linear algebra, automatic differentiation, and a GPU, we obtain a relatively small error for this very large problem in just a few seconds:

```python
%%time
p = newton(lambda p: e(p, A, b, c), init_p).block_until_ready()
```

```
iteration 1, error = 29.97755
iteration 2, error = 5.09284
iteration 3, error = 0.10971
iteration 4, error = 0.00005
iteration 5, error = 0.00001
iteration 6, error = 0.00001
Result = [1.501596 1.4990965 1.4964366 ... 1.4844416 1.490006 1.4991018]
CPU times: user 7.29 s, sys: 2.05 s, total: 9.33 s
Wall time: 6.22 s
```
With the same tolerance, SciPy’s `root` function takes much longer to run, even with the Jacobian supplied.

```python

%%time
solution = root(lambda p: e(p, A, b, c),
 init_p,
 jac=lambda p: jax.jacobian(e)(p, A, b, c),
 method='hybr',
 tol=1e-5)

CPU times: user 2min 38s, sys: 51.4 ms, total: 2min 38s
Wall time: 2min 38s

p = solution.x
np.max(np.abs(e(p, A, b, c)))

9.536743e-07
```

The result is also less accurate.

### 8.5 Exercises

**Exercise 8.5.1**

Consider a three-dimensional extension of the Solow fixed point problem with

\[
A = \begin{pmatrix} 2 & 3 & 3 \\ 2 & 4 & 2 \\ 1 & 5 & 1 \end{pmatrix}, \quad s = 0.2, \quad \alpha = 0.5, \quad \delta = 0.8
\]

As before the law of motion is

\[
k_{t+1} = g(k_t) \quad \text{where} \quad g(k) := sAk^\alpha + (1 - \delta)k
\]

However \( k_t \) is now a \( 3 \times 1 \) vector.

Solve for the fixed point using Newton’s method with the following initial values:

\[
k_{1_0} = (1, 1, 1)
\]
\[
k_{2_0} = (3, 5, 5)
\]
\[
k_{3_0} = (50, 50, 50)
\]

**Hint:**

- The computation of the fixed point is equivalent to computing \( k^* \) such that \( f(k^*) - k^* = 0 \).
- If you are unsure about your solution, you can start with the solved example:
\[ A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \]

with \( s = 0.3 \), \( \alpha = 0.3 \), and \( \delta = 0.4 \) and starting value:

\[ k_0 = (1, 1, 1) \]

The result should converge to the analytical solution.

**Solution to Exercise 8.5.1**

Let's first define the parameters for this problem

\[
A = \text{jnp.array}([[2.0, 3.0, 3.0], \\
                     [2.0, 4.0, 2.0], \\
                     [1.0, 5.0, 1.0]])
\]

\[
s = 0.2 \\
\alpha = 0.5 \\
\delta = 0.8
\]

\[
\text{initLs} = [\text{jnp.ones(3)}, \\
               \text{jnp.array([3.0, 5.0, 5.0])}, \\
               \text{jnp.repeat(50.0, 3)}]
\]

Then define the multivariate version of the formula for the (8.2.1)

\[
def \text{multivariate_solow}(k, A=A, s=s, \alpha=\alpha, \delta=\delta):
    \text{return } (s * \text{jnp.dot}(A, k**\alpha) + (1 - \delta) * k)
\]

Let's run through each starting value and see the output

```python
attempt = 1
for init in initLs:
 print(f'Attempt {attempt}: Starting value is {init} \n')
 \#time k = newton(lambda k: \text{multivariate_solow}(k) - k, \ init).block_until_ready()
 print('-'*64)
 attempt += 1

Attempt 1: Starting value is [1. 1. 1.]

iteration 1, error = 50.49632
iteration 2, error = 41.10939
iteration 3, error = 4.29413
iteration 4, error = 0.38543
iteration 5, error = 0.00544
iteration 6, error = 0.00000
Result = [3.8405812 3.8707178 3.4109197]```

(continues on next page)
We find that the results are invariant to the starting values given the well-defined property of this question. But the number of iterations it takes to converge is dependent on the starting values.

Let substitute the output back to the formulate to check our last result:

```python
multivariate_solow(k) - k
```

```
DeviceArray([-2.3841858e-07, 2.3841858e-07, 4.7683716e-07], dtype=float32)
```

Note the error is very small.

We can also test our results on the known solution:

```python
A = jnp.array([[2.0, 0.0, 0.0],
               [0.0, 2.0, 0.0],
               [0.0, 0.0, 2.0]])

s = 0.3
α = 0.3
δ = 0.4
init = jnp.repeat(1.0, 3)
```

(continues on next page)
The result is very close to the ground truth but still slightly different.

We can increase the precision of the floating point numbers and restrict the tolerance to obtain a more accurate approximation (see detailed discussion in the lecture on JAX)

```python
from jax.config import config
config.update("jax_enable_x64", True)
init = init.astype('float64')
%time k = newton(lambda k: multivariate_solow(k, A=A, s=s, a=a, δ=δ) - k, 
                init).block_until_ready()
```

```text
iteration 1, error = 1.57459
iteration 2, error = 0.21345
iteration 3, error = 0.00205
iteration 4, error = 0.00000

Result = [1.78467418 1.78467418 1.78467418]

CPU times: user 768 ms, sys: 0 ns, total: 768 ms
Wall time: 668 ms
```

We can see it steps towards a more accurate solution.

Exercise 8.5.2

In this exercise, let’s try different initial values and check how Newton’s method responds to different starting points.

Let’s define a three-good problem with the following default values:

\[
A = \begin{pmatrix}
0.2 & 0.1 & 0.7 \\
0.3 & 0.2 & 0.5 \\
0.1 & 0.8 & 0.1 \\
\end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \text{and} \quad c = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]
For this exercise, use the following extreme price vectors as initial values:

\[p_1^0 = (5, 5, 5) \]
\[p_2^0 = (1, 1, 1) \]
\[p_3^0 = (4.5, 0.1, 4) \]

Set the tolerance to 0.0 for more accurate output.

Hint: Similar to exercise 1, enabling float64 for JAX can improve the precision of our results.

Solution to Exercise 8.5.2

Define parameters and initial values

\[
A = \text{jnp.array([[0.2, 0.1, 0.7],
 [0.3, 0.2, 0.5],
 [0.1, 0.8, 0.1]]})
\]

\[
b = \text{jnp.array([1.0, 1.0, 1.0])}
\]

\[
c = \text{jnp.array([1.0, 1.0, 1.0])}
\]

\[
\text{initLs} = \text{[jnp.repeat(5.0, 3),
 jnp.ones(3),
 jnp.array([4.5, 0.1, 4.0])]}\]

Let’s run through each initial guess and check the output

```python
attempt = 1
for init in initLs:
    print(f'Attempt {attempt}: Starting value is {init} \n')
    init = init.astype('float64')
    \%time p = newton(lambda p: e(p, A, b, c), \n        init, \n        tol=0.0).block_until_ready()
    print('-' * 64)
    attempt += 1
```

Attempt 1: Starting value is [5. 5. 5.]

iteration 1, error = 9.24381

Exception Traceback (most recent call last)
<timed exec> in <module>

/tmp/ipykernel_7846/3851865876.py in newton(f, x_0, tol, max_iter)
 10 y = q(x)
```
Quantitative Economics with Python

8.5. Exercises 137
We can find that Newton’s method may fail for some starting values. Sometimes it may take a few initial guesses to achieve convergence. Substitute the result back to the formula to check our result:

\[ e(p, A, b, c) \]

DeviceArray([[0., 0., 0.], dtype=float64])

We can see the result is very accurate.
Part II

Elementary Statistics
CHAPTER
NINE

ELEMENTARY PROBABILITY WITH MATRICES

This lecture uses matrix algebra to illustrate some basic ideas about probability theory. After providing somewhat informal definitions of the underlying objects, we'll use matrices and vectors to describe probability distributions.

Among concepts that we'll be studying include

- a joint probability distribution
- marginal distributions associated with a given joint distribution
- conditional probability distributions
- statistical independence of two random variables
- joint distributions associated with a prescribed set of marginal distributions
  - couplings
  - copulas
- the probability distribution of a sum of two independent random variables
  - convolution of marginal distributions
- parameters that define a probability distribution
- sufficient statistics as data summaries

We'll use a matrix to represent a bivariate probability distribution and a vector to represent a univariate probability distribution.

As usual, we'll start with some imports

```python
!pip install prettytable

import numpy as np
import matplotlib.pyplot as plt
import prettytable as pt
from mpl_toolkits.mplot3d import Axes3D
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('retina')
%matplotlib inline
```

/tmp/ipykernel_15592/4202758366.py:6: DeprecationWarning: `set_matplotlib_formats` is deprecated since IPython 7.23, directly use `matplotlib_inline.backend_inline.set_matplotlib_formats()`
  set_matplotlib_formats('retina')
9.1 Sketch of Basic Concepts

We'll briefly define what we mean by a \textit{probability space}, a \textit{probability measure}, and a \textit{random variable}.

For most of this lecture, we sweep these objects into the background, but they are there underlying the other objects that we'll mainly focus on.

Let $\Omega$ be a set of possible underlying outcomes and let $\omega \in \Omega$ be a particular underlying outcomes.

Let $\mathcal{G} \subset \Omega$ be a subset of $\Omega$.

Let $\mathcal{F}$ be a collection of such subsets $\mathcal{G} \subset \Omega$.

The pair $\Omega, \mathcal{F}$ forms our \textit{probability space} on which we want to put a probability measure.

A \textit{probability measure} $\mu$ maps a set of possible underlying outcomes $\mathcal{G} \in \mathcal{F}$ into a scalar number between 0 and 1

- this is the “probability” that $X$ belongs to $A$, denoted by $\text{Prob}\{X \in A\}$.

A \textit{random variable} $X(\omega)$ is a function of the underlying outcome $\omega \in \Omega$.

The random variable $X(\omega)$ has a \textit{probability distribution} that is induced by the underlying probability measure $\mu$ and the function $X(\omega)$:

$$\text{Prob}(X \in A) = \int_{\mathcal{G}} \mu(\omega) d\omega \quad (9.1)$$

where $\mathcal{G}$ is the subset of $\Omega$ for which $X(\omega) \in A$.

We call this the induced probability distribution of random variable $X$.

9.2 Digression: What Does Probability Mean?

Before diving in, we'll say a few words about what probability theory means and how it connects to statistics.

These are topics that are also touched on in the quantecon lectures https://python.quantecon.org/prob_meaning.html and https://python.quantecon.org/navy_captain.html.

For much of this lecture we'll be discussing fixed “population” probabilities.

These are purely mathematical objects.

To appreciate how statisticians connect probabilities to data, the key is to understand the following concepts:

- A single draw from a probability distribution
- Repeated independently and identically distributed (i.i.d.) draws of “samples” or “realizations” from the same probability distribution
- A statistic defined as a function of a sequence of samples
- An empirical distribution or histogram (a binned empirical distribution) that records observed relative frequencies
- The idea that a population probability distribution is what we anticipate relative frequencies will be in a long sequence of i.i.d. draws. Here the following mathematical machinery makes precise what is meant by anticipated relative frequencies
  - Law of Large Numbers (LLN)
  - Central Limit Theorem (CLT)
Scalar example
Consider the following discrete distribution

\[ X \sim \{ f_i \}_{i=0}^{I-1}, \quad f_i \geq 0, \quad \sum_{i} f_i = 1 \]

Draw a sample \( x_0, x_1, \ldots, x_{N-1} \), \( N \) draws of \( X \) from \( \{ f_i \}_{i=1}^{I} \).

What do the “identical” and “independent” mean in IID or iid (“identically and independently distributed)?

• “identical” means that each draw is from the same distribution.
• “independent” means that the joint distribution equal the product of marginal distributions, i.e.,

\[
\Pr\{ x_0 = i_0, x_1 = i_1, \ldots, x_{N-1} = i_{N-1} \} = \Pr\{ x_0 = i_0 \} \cdots \Pr\{ x_{I-1} = i_{I-1} \} = f_{i_0} f_{i_1} \cdots f_{i_{N-1}}
\]

Consider the empirical distribution:

\[
\tilde{f}_i = \frac{N_i}{N} \sim \text{frequency of draws for which } X = i
\]

Key ideas that justify connecting probability theory with statistics are laws of large numbers and central limit theorems

LLN:
• A Law of Large Numbers (LLN) states that \( \tilde{f}_i \to f_i \) as \( N \to \infty \)

CLT:
• A Central Limit Theorem (CLT) describes a rate at which \( \tilde{f}_i \to f_i \)

Remarks
• For “frequentist” statisticians, anticipated relative frequency is all that a probability distribution means.
• But for a Bayesian it means something more or different.

9.3 Representing Probability Distributions

A probability distribution \( \Pr(X \in A) \) can be described by its cumulative distribution function (CDF)

\[ F_X(x) = \Pr\{ X \leq x \} \]

Sometimes, but not always, a random variable can also be described by density function \( f(x) \) that is related to its CDF by

\[
\Pr\{ X \in B \} = \int_{t \in B} f(t) dt
\]

\[
F(x) = \int_{-\infty}^{x} f(t) dt
\]

Here \( B \) is a set of possible \( X \)'s whose probability we want to compute.

When a probability density exists, a probability distribution can be characterized either by its CDF or by its density.

For a discrete-valued random variable
• the number of possible values of $X$ is finite or countably infinite
• we replace a density with a probability mass function, a non-negative sequence that sums to one
• we replace integration with summation in the formula like (9.1) that relates a CDF to a probability mass function

In this lecture, we mostly discuss discrete random variables.
Doing this enables us to confine our tool set basically to linear algebra.
Later we’ll briefly discuss how to approximate a continuous random variable with a discrete random variable.

9.4 Univariate Probability Distributions

We’ll devote most of this lecture to discrete-valued random variables, but we’ll say a few things about continuous-valued random variables.

9.4.1 Discrete random variable

Let $X$ be a discrete random variable that takes possible values: $i = 0, 1, \ldots, I - 1 = \bar{X}$.

Here, we choose the maximum index $I - 1$ because of how this aligns nicely with Python’s index convention.

Define $f_i \equiv \text{Prob}\{X = i\}$ and assemble the non-negative vector

$$f = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{I-1} \end{bmatrix}$$

(9.2)

for which $f_i \in [0, 1]$ for each $i$ and $\sum_{i=0}^{I-1} f_i = 1$.

This vector defines a probability mass function.

The distribution (9.2) has parameters $\{f_i\}_{i=0,1,\ldots,I-2}$ since $f_{I-1} = 1 - \sum_{i=0}^{I-2} f_i$.

These parameters pin down the shape of the distribution.

(Sometimes $I = \infty$.)

Such a “non-parametric” distribution has as many “parameters” as there are possible values of the random variable.

We often work with special distributions that are characterized by a small number parameters.

In these special parametric distributions,

$$f_i = g(i; \theta)$$

where $\theta$ is a vector of parameters that is of much smaller dimension than $I$.

Remarks:

• The concept of parameter is intimately related to the notion of sufficient statistic.

• Sufficient statistic are nonlinear function of a data set.

• Sufficient statistics are designed to summarize all information about the parameters that is contained in the big data set.

• They are important tools that AI uses to reduce the size of a big data set.
R. A. Fisher provided a sharp definition of information – see https://en.wikipedia.org/wiki/Fisher_information

An example of a parametric probability distribution is a geometric distribution. It is described by
\[ f_i = \text{Prob}\{X = i\} = (1 - \lambda)^i \lambda^i, \quad \lambda \in [0, 1], \quad i = 0, 1, 2, \ldots \]

Evidently, \( \sum_{i=0}^{\infty} f_i = 1 \).

Let \( \theta \) be a vector of parameters of the distribution described by \( f \), then
\[ f_i(\theta) \geq 0, \quad \sum_{i=0}^{\infty} f_i(\theta) = 1 \]

### 9.4.2 Continuous random variable

Let \( X \) be a continuous random variable that takes values \( X \in \tilde{X} = [X_U, X_L] \) whose distributions have parameters \( \theta \).

\[ \text{Prob}\{X \in A\} = \int_{x \in A} f(x; \theta) \, dx; \quad f(x; \theta) \geq 0 \]

where \( A \) is a subset of \( \tilde{X} \) and
\[ \text{Prob}\{X \in \tilde{X}\} = 1 \]

### 9.5 Bivariate Probability Distributions

We'll now discuss a bivariate joint distribution.

To begin, we restrict ourselves to two discrete random variables.

Let \( X, Y \) be two discrete random variables that take values:
\[ X \in \{0, \ldots, J - 1\} \]
\[ Y \in \{0, \ldots, J - 1\} \]

Then their joint distribution is described by a matrix
\[ F_{I \times J} = [f_{ij}]_{i \in \{0, \ldots, J-1\}, j \in \{0, \ldots, J-1\}} \]

whose elements are
\[ f_{ij} = \text{Prob}\{X = i, Y = j\} \geq 0 \]

where
\[ \sum_i \sum_j f_{ij} = 1 \]
9.6 Marginal Probability Distributions

The joint distribution induce marginal distributions

$$
\text{Prob}\{ X = i \} = \sum_{j=0}^{I-1} f_{ij} = \mu_i, \quad i = 0, \ldots, I - 1
$$

$$
\text{Prob}\{ Y = j \} = \sum_{i=0}^{J-1} f_{ij} = \nu_j, \quad j = 0, \ldots, J - 1
$$

For example, let the joint distribution over \((X, Y)\) be

$$
F = \begin{bmatrix}
.25 & .1 \\
.15 & .5
\end{bmatrix}
$$

(9.3)

Then marginal distributions are:

$$
\text{Prob}\{ X = 0 \} = .25 + .1 = .35
$$

$$
\text{Prob}\{ X = 1 \} = .15 + .5 = .65
$$

$$
\text{Prob}\{ Y = 0 \} = .25 + .15 = .4
$$

$$
\text{Prob}\{ Y = 1 \} = .1 + .5 = .6
$$

**Digression:** If two random variables \(X, Y\) are continuous and have joint density \(f(x, y)\), then marginal distributions can be computed by

$$
 f(x) = \int_{\mathbb{R}} f(x, y) dy
$$

$$
 f(y) = \int_{\mathbb{R}} f(x, y) dx
$$

9.7 Conditional Probability Distributions

Conditional probabilities are defined according to

$$
\text{Prob}\{ A \mid B \} = \frac{\text{Prob}\{ A \cap B \}}{\text{Prob}\{ B \}}
$$

where \(A, B\) are two events.

For a pair of discrete random variables, we have the **conditional distribution**

$$
\text{Prob}\{ X = i \mid Y = j \} = \frac{f_{ij}}{\sum_i f_{ij}} = \frac{\text{Prob}\{ X = i, Y = j \}}{\text{Prob}\{ Y = j \}}
$$

where \(i = 0, \ldots, I - 1, \quad j = 0, \ldots, J - 1\).

Note that

$$
\sum_i \text{Prob}\{ X_i = i \mid Y_j = j \} = \sum_i \frac{f_{ij}}{\sum_i f_{ij}} = 1
$$

**Remark:** The mathematics of conditional probability implies **Bayes’ Law**:

$$
\text{Prob}\{ X = i \mid Y = j \} = \frac{\text{Prob}\{ X = i, Y = j \}}{\text{Prob}\{ Y = j \}} = \frac{\text{Prob}\{ Y = j \mid X = i \} \text{Prob}\{ X = i \}}{\text{Prob}\{ Y = j \}}
$$

For the joint distribution (9.3)

$$
\text{Prob}\{ X = 0 \mid Y = 1 \} = \frac{.1}{.1 + .5} = \frac{.1}{.6}
$$
9.8 Statistical Independence

Random variables $X$ and $Y$ are statistically independent if

$$\text{Prob}\{X = i, Y = j\} = f_i g_i$$

where

$$\text{Prob}\{X = i\} = f_i \geq 0, \sum f_i = 1$$
$$\text{Prob}\{Y = j\} = g_j \geq 0, \sum g_j = 1$$

Conditional distributions are

$$\text{Prob}\{X = i|Y = j\} = \frac{f_i g_i}{\sum_i f_i g_j} = \frac{f_i g_i}{g_j} = f_i$$
$$\text{Prob}\{Y = j|X = i\} = \frac{f_i g_i}{\sum_j f_i g_j} = \frac{f_i g_i}{f_i} = g_i$$

9.9 Means and Variances

The mean and variance of a discrete random variable $X$ are

$$\mu_X \equiv \mathbb{E}[X] = \sum_k k \text{Prob}\{X = k\}$$
$$\sigma^2_X \equiv \text{D}[X] = \sum_k (k - \mathbb{E}[X])^2 \text{Prob}\{X = k\}$$

A continuous random variable having density $f_X(x)$ has mean and variance

$$\mu_X \equiv \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$
$$\sigma^2_X \equiv \text{D}[X] = \mathbb{E}[(X - \mu_X)^2] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

9.10 Classic Trick for Generating Random Numbers

Suppose we have at our disposal a pseudo random number that draws a uniform random variable, i.e., one with probability distribution

$$\text{Prob}\{\tilde{X} = i\} = \frac{1}{I}, \ i = 0, \ldots, I - 1$$

How can we transform $\tilde{X}$ to get a random variable $X$ for which $\text{Prob}\{X = i\} = f_i, \ i = 0, \ldots, I - 1$, where $f_i$ is an arbitrary discrete probability distribution on $i = 0, 1, \ldots, I - 1$?

The key tool is the inverse of a cumulative distribution function (CDF).

Observe that the CDF of a distribution is monotone and non-decreasing, taking values between 0 and 1.

We can draw a sample of a random variable $X$ with a known CDF as follows:

- draw a random variable $u$ from a uniform distribution on $[0, 1]$
- pass the sample value of $u$ into the “inverse” target CDF for $X$
X has the target CDF

Thus, knowing the “inverse” CDF of a distribution is enough to simulate from this distribution.

Note: The “inverse” CDF needs to exist for this method to work.

The inverse CDF is

\[ F^{-1}(u) \equiv \inf\{x \in \mathbb{R} : F(x) \geq u\} \quad (0 < u < 1) \]

Here we use infimum because a CDF is a non-decreasing and right-continuous function.

Thus, suppose that

- \( U \) is a uniform random variable \( U \in [0, 1] \)
- We want to sample a random variable \( X \) whose CDF is \( F \).

It turns out that if we use draw uniform random numbers \( U \) and then compute \( X \) from

\[ X = F^{-1}(U), \]

then \( X \) is a random variable with CDF \( F_X(x) = F(x) = \text{Prob}\{X \leq x\} \).

We’ll verify this in the special case in which \( F \) is continuous and bijective so that its inverse function exists and can be denoted by \( F^{-1} \).

Note that

\[ F_X(x) = \text{Prob}\{X \leq x\} = \text{Prob}\{F^{-1}(U) \leq x\} = \text{Prob}\{U \leq F(x)\} = F(x) \]

where the last equality occurs because \( U \) is distributed uniformly on \([0, 1]\) while \( F(x) \) is a constant given \( x \) that also lies on \([0, 1]\).

Let’s use \texttt{numpy} to compute some examples.

**Example: A continuous geometric (exponential) distribution**

Let \( X \) follow a geometric distribution, with parameter \( \lambda > 0 \).

Its density function is

\[ f(x) = \lambda e^{-\lambda x} \]

Its CDF is

\[ F(x) = \int_0^\infty \lambda e^{-\lambda x} = 1 - e^{-\lambda x} \]

Let \( U \) follow a uniform distribution on \([0, 1]\).

\( X \) is a random variable such that \( U = F(X) \).

The distribution \( X \) can be deduced from

\[ U = F(X) = 1 - e^{-\lambda X} \]

\[ \Rightarrow -U = e^{-\lambda X} \]

\[ \Rightarrow \log(1 - U) = -\lambda X \]

\[ \Rightarrow X = \frac{(1 - U)}{-\lambda} \]
Let's draw $u$ from $U[0, 1]$ and calculate $x = \frac{\log(1-U)}{-\lambda}$.

We'll check whether $X$ seems to follow a **continuous geometric** (exponential) distribution.

Let's check with `numpy`.

```python
n, λ = 1_000_000, 0.3

draw uniform numbers
u = np.random.rand(n)

transform
x = -np.log(1-u)/λ

draw geometric distributions
x_g = np.random.exponential(1/λ, n)

plot and compare
plt.hist(x, bins=100, density=True)
plt.show()
plt.hist(x_g, bins=100, density=True, alpha=0.6)
plt.show()
```

---

**9.10. Classic Trick for Generating Random Numbers**
Geometric distribution

Let $X$ distributed geometrically, that is

$$\text{Prob}(X = i) = (1 - \lambda)\lambda^i, \quad \lambda \in (0, 1), \quad i = 0, 1, \ldots$$

$$\sum_{i=0}^{\infty} \text{Prob}(X = i) = 1 \iff (1 - \lambda) \sum_{i=0}^{\infty} \lambda^i = \frac{1 - \lambda}{1 - \lambda} = 1$$

Its CDF is given by

$$\text{Prob}(X \leq i) = (1 - \lambda) \sum_{j=0}^{i} \lambda^j$$

$$= (1 - \lambda) \left[ \frac{1 - \lambda^{i+1}}{1 - \lambda} \right]$$

$$= 1 - \lambda^{i+1}$$

$$= F(X) = F_i$$

Again, let $\tilde{U}$ follow a uniform distribution and we want to find $X$ such that $F(X) = \tilde{U}$.

Let's deduce the distribution of $X$ from

$$\tilde{U} = F(X) = 1 - \lambda^{x+1}$$

$$1 - \tilde{U} = \lambda^{x+1}$$

$$\log(1 - \tilde{U}) = (x + 1) \log \lambda$$

$$\frac{\log (1 - \tilde{U})}{\log \lambda} = x + 1$$

$$\frac{\log (1 - \tilde{U})}{\log \lambda} - 1 = x$$
However, $\bar{U} = F^{-1}(X)$ may not be an integer for any $x \geq 0$.
So let

$$x = \left\lceil \frac{\log(1 - \bar{U})}{\log \lambda} - 1 \right\rceil$$

where $\lceil . \rceil$ is the ceiling function.
Thus $x$ is the smallest integer such that the discrete geometric CDF is greater than or equal to $\bar{U}$.
We can verify that $x$ is indeed geometrically distributed by the following numpy program.

**Note:** The exponential distribution is the continuous analog of geometric distribution.

```python
n, λ = 1_000_000, 0.8

draw uniform numbers
u = np.random.rand(n)

transform
x = np.ceil(np.log(1-u)/np.log(λ) - 1)

draw geometric distributions
x_g = np.random.geometric(1-λ, n)

plot and compare
plt.hist(x, bins=150, density=True)
plt.show()
```
Quantitative Economics with Python

```python
np.random.geometric(1-λ, n).max()
```

```
58
```

```python
np.log(0.4)/np.log(0.3)
```

```
0.7610560044063083
```

```python
plt.hist(x_g, bins=150, density=True, alpha=0.6)
plt.show()
```

9.11 Some Discrete Probability Distributions

Let’s write some Python code to compute means and variances of some univariate random variables.

We’ll use our code to

- compute population means and variances from the probability distribution
- generate a sample of $N$ independently and identically distributed draws and compute sample means and variances
- compare population and sample means and variances
9.12 Geometric distribution

\[ \text{Prob}(X = k) = (1 - p)^{k-1}p, \quad k = 1, 2, \ldots \]

\[ \Rightarrow \]

\[ \mathbb{E}(X) = \frac{1}{p} \]

\[ \text{D}(X) = \frac{1 - p}{p^2} \]

We draw observations from the distribution and compare the sample mean and variance with the theoretical results.

```python
specify parameters
p, n = 0.3, 1_000_000

draw observations from the distribution
x = np.random.geometric(p, n)

compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, "\nThe sample variance is: ", σ2_hat)

compare with theoretical results
print("\nThe population mean is: ", 1/p)
print("The population variance is: ", (1-p) / (p^2))
```

The sample mean is: 3.335368
The sample variance is: 7.788306304576002

The population mean is: 3.3333333333333335
The population variance is: 7.777777777777778

9.12.1 Newcomb–Benford distribution

The Newcomb–Benford law fits many data sets, e.g., reports of incomes to tax authorities, in which the leading digit is more likely to be small than large.

See https://en.wikipedia.org/wiki/Benford%27s_law

A Benford probability distribution is

\[ \text{Prob}(X = d) = \log_{10}(d + 1) - \log_{10}(d) = \log_{10}\left(1 + \frac{1}{d}\right) \]

where \( d \in \{1, 2, \ldots, 9\} \) can be thought of as a first digit in a sequence of digits.

This is a well defined discrete distribution since we can verify that probabilities are nonnegative and sum to 1.

\[ \log_{10}\left(1 + \frac{1}{d}\right) \geq 0, \quad \sum_{d=1}^{9} \log_{10}\left(1 + \frac{1}{d}\right) = 1 \]
The mean and variance of a Benford distribution are

\[
\mathbb{E}[X] = \sum_{d=1}^{9} d \log_{10} \left( 1 + \frac{1}{d} \right) \approx 3.4402
\]

\[
\mathbb{V}[X] = \sum_{d=1}^{9} (d - \mathbb{E}[X])^2 \log_{10} \left( 1 + \frac{1}{d} \right) \approx 6.0565
\]

We verify the above and compute the mean and variance using numpy.

```python
Benford_pmf = np.array([np.log10(1+1/d) for d in range(1,10)])
k = np.array(range(1,10))

mean
mean = np.sum(Benford_pmf * k)

variance
var = np.sum([(k-mean)**2 * Benford_pmf])

verify sum to 1
print(np.sum(Benford_pmf))
print(mean)
print(var)

0.9999999999999999
3.440236967123206
6.056512631375667

plot distribution
plt.plot(range(1,10), Benford_pmf, 'o')
plt.title('Benford\'s distribution')
plt.show()
```
### 9.12.2 Pascal (negative binomial) distribution

Consider a sequence of independent Bernoulli trials.

Let $p$ be the probability of success.

Let $X$ be a random variable that represents the number of failures before we get $r$ success.

Its distribution is

$$X \sim NB(r, p)$$

$$\Pr(X = k; r, p) = \binom{k + r - 1}{r - 1} p^r (1 - p)^k$$

Here, we choose from among $k + r - 1$ possible outcomes because the last draw is by definition a success.

We compute the mean and variance to be

$$\mathbb{E}(X) = \frac{k(1 - p)}{p}$$

$$\mathbb{V}(X) = \frac{k(1 - p)}{p^2}$$

### Python Code

```python
specify parameters
r, p, n = 10, 0.3, 1_000_000

draw observations from the distribution
```
Quantitative Economics with Python

x = np.random.negative_binomial(r, p, n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, ", The sample variance is: ", σ2_hat)
print("The population mean is: ", r*(1-p)/p)
print("The population variance is: ", r*(1-p)/p**2)

The sample mean is: 23.355143
The sample variance is: 78.11322244955103
The population mean is: 23.333333333333336
The population variance is: 77.77777777777779

9.13 Continuous Random Variables

9.13.1 Univariate Gaussian distribution

We write

\[ X \sim N(\mu, \sigma^2) \]

to indicate the probability distribution

\[ f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \]

In the below example, we set \( \mu = 0, \sigma = 0.1 \).

# specify parameters
μ, σ = 0, 0.1

# specify number of draws
n = 1_000_000

# draw observations from the distribution
x = np.random.normal(μ, σ, n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ_hat = np.std(x)

print("The sample mean is: ", μ_hat)
print("The sample standard deviation is: ", σ_hat)

The sample mean is: 0.00011630647187211326
The sample standard deviation is: 0.09999890080095793
# compare
print(μ-μ_hat < 1e-3)
print(σ-σ_hat < 1e-3)

True
True

9.13.2 Uniform Distribution

\[ X \sim U[a, b] \]

\[ f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{otherwise} \end{cases} \]

The population mean and variance are

\[ \mathbb{E}(X) = \frac{a + b}{2} \]
\[ \mathbb{V}(X) = \frac{(b - a)^2}{12} \]

# specify parameters
a, b = 10, 20

# specify number of draws
n = 1_000_000

# draw observations from the distribution
x = a + (b-a)*np.random.rand(n)

# compute sample mean and variance
μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat, 
\nThe sample variance is: ", σ2_hat)
print("\nThe population mean is: ", (a+b)/2)
print("The population variance is: ", (b-a)**2/12)

The sample mean is: 15.00367353171861
The sample variance is: 8.332469569387428

The population mean is: 15.0
The population variance is: 8.333333333333334

9.13. Continuous Random Variables
9.14 A Mixed Discrete-Continuous Distribution

We'll motivate this example with a little story.

Suppose that to apply for a job you take an interview and either pass or fail it.

You have 5\% chance to pass an interview and you know your salary will uniformly distributed in the interval 300~400 a day only if you pass.

We can describe your daily salary as a discrete-continuous variable with the following probabilities:

\[
P(X = 0) = 0.95
\]

\[
P(300 \leq X \leq 400) = \int_{300}^{400} f(x) dx = 0.05
\]

\[
f(x) = 0.0005
\]

Let's start by generating a random sample and computing sample moments.

```python
x = np.random.rand(1_000_000)
x[x > 0.95] = 100*x[x > 0.95]+300
x[x > 0.95] = 100*len(x[x > 0.95])+300
x[x <= 0.95] = 0

μ_hat = np.mean(x)
σ2_hat = np.var(x)

print("The sample mean is: ", μ_hat)
print("The sample variance is: ", σ2_hat)

The sample mean is: 17.473696014960662
The sample variance is: 5850.482835955205
```

The analytical mean and variance can be computed:

\[
μ = \int_{300}^{400} xf(x)dx
\]

\[
= 0.0005 \int_{300}^{400} xdx
\]

\[
= 0.0005 \times \frac{1}{2} x^2 \bigg|_{300}^{400}
\]

\[
= 0.0005 \times 17.5^2
\]

\[
σ^2 = 0.95 \times (0 - 17.5)^2 + \int_{300}^{400} (x - 17.5)^2 f(x)dx
\]

\[
= 0.95 \times 17.5^2 + 0.0005 \int_{300}^{400} (x - 17.5)^2 dx
\]

\[
= 0.95 \times 17.5^2 + 0.0005 \times \frac{1}{3} (x - 17.5)^3 \bigg|_{300}^{400}
\]

```python
mean = 0.0005*0.5*(400**2 - 300**2)
var = 0.95*17.5**2+0.0005/3*((400-17.5)**3-(300-17.5)**3)
print("mean: ", mean)
print("variance: ", var)
```
9.15 Matrix Representation of Some Bivariate Distributions

Let’s use matrices to represent a joint distribution, conditional distribution, marginal distribution, and the mean and variance of a bivariate random variable.

The table below illustrates a probability distribution for a bivariate random variable.

\[
F = \begin{bmatrix} f_{ij} \\ \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 \\ 0.1 & 0.4 \\ \end{bmatrix}
\]

Marginal distributions are

\[
\text{Prob}(X = i) = \sum_j f_{ij} = u_i
\]

\[
\text{Prob}(Y = j) = \sum_i f_{ij} = v_j
\]

Below we draw some samples confirm that the “sampling” distribution agrees well with the “population” distribution.

Sample results:

```python
specify parameters
xs = np.array([0, 1])
ys = np.array([10, 20])
f = np.array([[0.3, 0.2], [0.1, 0.4]])
f_cum = np.cumsum(f)

draw random numbers
p = np.random.rand(1_000_000)
x = np.vstack([xs[1]*np.ones(p.shape), ys[1]*np.ones(p.shape)])

map to the bivariate distribution
x[0, p < f_cum[2]] = xs[1]
x[1, p < f_cum[2]] = ys[0]
x[0, p < f_cum[1]] = xs[0]
x[1, p < f_cum[1]] = ys[1]
x[0, p < f_cum[0]] = xs[0]
x[1, p < f_cum[0]] = ys[0]
print(x)

[[0. 1. 0. ... 0. 1. 0.]
 [20. 10. 20. ... 10. 20. 10.]]
```

Here, we use exactly the inverse CDF technique to generate sample from the joint distribution \( F \).
# print output
print("marginal distribution for x")
xmtb = pt.PrettyTable()
xmtb.field_names = ['x_value', 'x_prob']
xmtb.add_row([xs[0], xp])
xmtb.add_row([xs[1], 1-xp])
print(xmtb)

print("marginal distribution for y")
ymtb = pt.PrettyTable()
ymtb.field_names = ['y_value', 'y_prob']
ys = [10, 20]
yc1 = x[1, x[0, :] == xs[0]]
yc2 = x[1, x[0, :] == xs[1]]
yc1p = np.sum(y1c1 == ys[0])/len(y1c1)
cy2p = np.sum(y1c2 == ys[0])/len(y1c2)

# conditional distributions
xc1 = x[0, x[1, :] == ys[0]]
xc2 = x[0, x[1, :] == ys[1]]
yc1 = x[1, x[0, :] == xs[0]]
yc2 = x[1, x[0, :] == xs[1]]
xc1p = np.sum(xc1 == xs[0])/len(xc1)
xc2p = np.sum(xc2 == xs[0])/len(xc2)
yc1p = np.sum(yc1 == ys[0])/len(yc1)
cy2p = np.sum(yc2 == ys[0])/len(yc2)

# print output
print("conditional distribution for x")
xctb = pt.PrettyTable()
xctb.field_names = ['y_value', 'prob(x=0)', 'prob(x=1)']
xctb.add_row([ys[0], xc1p, 1-xc1p])
xctb.add_row([ys[1], xc2p, 1-xc2p])
print(xctb)

print("conditional distribution for y")
yctb = pt.PrettyTable()
yctb.field_names = ['x_value', 'prob(y=10)', 'prob(y=20)']
yctb.add_row([xs[0], yc1p, 1-yc1p])
(continues on next page)
Let's calculate population marginal and conditional probabilities using matrix algebra.

\[
\begin{bmatrix}
  y_1 & y_2 & x \\
  \vdots & \vdots & \vdots \\
  x_1 & 0.3 & 0.2 & 0.5 \\
  x_2 & 0.1 & 0.4 & 0.5 \\
  \vdots & \vdots & \vdots & \vdots \\
  y & 0.4 & 0.6 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
  \text{var} & \text{var}_1 & \text{var}_2 \\
  \vdots & \vdots & \vdots \\
  x & 0.5 & 0.5 \\
  \vdots & \vdots & \vdots \\
  y & 0.4 & 0.6
\end{bmatrix}
\]

(1) Marginal distribution:

\[
\begin{bmatrix}
  x & x_1 & x_2 \\
  \vdots & \vdots & \vdots \\
  y = y_1 & 0.3 & 0.75 & 0.25 \\
  \vdots & \vdots & \vdots & \vdots \\
  y = y_2 & 0.2 & 0.6 & 0.4 \\
  \vdots & \vdots & \vdots & \vdots \\
  \\end{bmatrix}
\]

(2) Conditional distribution:

\[
\begin{bmatrix}
  y & y_1 & y_2 \\
  \vdots & \vdots & \vdots \\
  x = x_1 & 0.3 & 0.6 \\
  \vdots & \vdots & \vdots \\
  x = x_2 & 0.1 & 0.2 \\
  \vdots & \vdots & \vdots \\
\end{bmatrix}
\]

These population objects closely resemble sample counterparts computed above.

Let's wrap some of the functions we have used in a Python class for a general discrete bivariate joint distribution.

9.15. Matrix Representation of Some Bivariate Distributions
class discrete_bijoint:

    def __init__(self, f, xs, ys):
        '''initialization
        -----------------
        parameters:
            f: the bivariate joint probability matrix
            xs: values of x vector
            ys: values of y vector
        '''
        self.f, self.xs, self.ys = f, xs, ys

    def joint_tb(self):
        '''print the joint distribution table'''
        xs = self.xs
        ys = self.ys
        f = self.f
        jtb = pt.PrettyTable()
        jtb.field_names = ['x_value/y_value', *ys, 'marginal sum for x']
        for i in range(len(xs)):
            jtb.add_row([xs[i], *f[i, :], np.sum(f[i, :])])
        jtb.add_row(['marginal sum for y', *np.sum(f, 0), np.sum(f)])
        print("The joint probability distribution for x and y
        ", jtb)
        self.jtb = jtb

    def draw(self, n):
        '''draw random numbers
        ----------------------
        parameters:
            n: number of random numbers to draw
        '''
        xs = self.xs
        ys = self.ys
        f_cum = np.cumsum(self.f)
        p = np.random.rand(n)
        x = np.empty([2, p.shape[0]])
        if len(f_cum)
            lx = len(xs)-1
            ly = len(ys)-1
        for i in range(lf):
            x[0, p < f_cum[lf-1-i]] = xs[lx]
            x[1, p < f_cum[lf-1-i]] = ys[ly]
            if ly == 0:
                lx -= 1
                ly = len(ys)-1
            else:
                ly -= 1
        self.x = x
        self.n = n

    def marg_dist(self):
        '''marginal distribution'''
        x = self.x
        xs = self.xs
        ys = self.ys
        n = self.n
        xmp = [np.sum(x[0, :] == xs[i])/n for i in range(len(xs))]

(continues on next page)
Let's apply our code to some examples.

**Example 1**
# joint
d = discrete_bijoint(f, xs, ys)
d.joint_tb()

The joint probability distribution for x and y
+--------------------+-----+--------------------+--------------------+
| x_value/y_value     | 10  | 20                 | marginal sum for x |
+--------------------+-----+--------------------+--------------------+
0	0.3	0.2	0.5
1	0.1	0.4	0.5
marginal_sum for y	0.4	0.6000000000000001	1.0
+--------------------+-----+--------------------+--------------------+

# sample marginal
d.draw(1_000_000)
d.marg_dist()

marginal distribution for x
+-------------+----------+
| x_value     | x_prob   |
+-------------+----------+
0	0.499452
1	0.500548
sum	1.0
+-------------+----------+

marginal distribution for y
+-------------+----------+
| y_value     | y_prob   |
+-------------+----------+
10	0.399664
20	0.600336
sum	1.0
+-------------+----------+

# sample conditional
d.cond_dist()

conditional distribution for x
+-------------------+-------------+-------------+-----+
| x_value | 0     | 1     | sum       |
+-------------------+-------------+-------------+-----+
| 10      | 0.7497973297569959 | 0.25020267024300413 | 1.0 |
| 20      | 0.332788638362517 | 0.667211361637483 | 1.0 |
+-------------------+-------------+-------------+-----+

conditional distribution for y
+-------------------+-------------+-------------+-----+
| y_value | 10     | 20     | sum       |
+-------------------+-------------+-------------+-----+
| 0       | 0.5999915907834987 | 0.40000840921650127 | 1.0 |
| 1       | 0.19977504654898232 | 0.8002249534510177 | 1.0 |
+-------------------+-------------+-------------+-----+
Example 2

```python
xs_new = np.array([10, 20, 30])
ys_new = np.array([1, 2])
f_new = np.array([[0.2, 0.1], [0.1, 0.3], [0.15, 0.15]])
d_new = discrete_bijoint(f_new, xs_new, ys_new)
d_new.joint_tb()
```

The joint probability distribution for x and y

| x_value/y_value | 1  | 2  | marginal sum for x | |
|-----------------+----------------+-----------------+-----------------|
10	0.2	0.1	0.3	
20	0.1	0.3	0.4	
30	0.15	0.15	0.3	
marginal_sum for y	0.45	0.55	1.0	

```
d_new.draw(1_000_000)
d_new.marg_dist()
```

 marginal distribution for x

<table>
<thead>
<tr>
<th>x_value</th>
<th>x_prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.300173</td>
</tr>
<tr>
<td>20</td>
<td>0.399959</td>
</tr>
<tr>
<td>30</td>
<td>0.299868</td>
</tr>
<tr>
<td>sum</td>
<td>1.0</td>
</tr>
</tbody>
</table>

 marginal distribution for y

<table>
<thead>
<tr>
<th>y_value</th>
<th>y_prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.449528</td>
</tr>
<tr>
<td>2</td>
<td>0.550472</td>
</tr>
<tr>
<td>sum</td>
<td>1.0</td>
</tr>
</tbody>
</table>

```
d_new.cond_dist()
```

 conditional distribution for x

<table>
<thead>
<tr>
<th>x_value</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.44489553487213257</td>
<td>0.22229983449306828</td>
<td>0.33280463063479915</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>0.18198927465883824</td>
<td>0.5450395297126829</td>
<td>0.2729711956284788</td>
<td>1.0</td>
</tr>
</tbody>
</table>

conditional distribution for y

<table>
<thead>
<tr>
<th>y_value</th>
<th>1</th>
<th>2</th>
<th>sum</th>
</tr>
</thead>
</table>

(continues on next page)
<table>
<thead>
<tr>
<th></th>
<th>0.6662591239052147</th>
<th>0.33374087609478537</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.24985060968749298</td>
<td>0.750149390312507</td>
<td>1.0</td>
</tr>
<tr>
<td>20</td>
<td>0.4989028505875919</td>
<td>0.5010971494124081</td>
<td>1.0</td>
</tr>
</tbody>
</table>

### 9.16 A Continuous Bivariate Random Vector

A two-dimensional Gaussian distribution has joint density

\[
f(x, y) = \left(2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}\right)^{-1} \exp\left[-\frac{1}{2(1 - \rho^2)} \left(\frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x - \mu_1)(y - \mu_2)}{\sigma_1\sigma_2} + \frac{(y - \mu_2)^2}{\sigma_2^2}\right)\right] \]

\[
= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \exp\left[-\frac{1}{2(1 - \rho^2)} \left(\frac{(x - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x - \mu_1)(y - \mu_2)}{\sigma_1\sigma_2} + \frac{(y - \mu_2)^2}{\sigma_2^2}\right)\right]
\]

We start with a bivariate normal distribution pinned down by

\[
\mu = \begin{bmatrix} 0 \\ 5 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 5 & .2 \\ .2 & 1 \end{bmatrix}
\]

```python
define the joint probability density function
def func(x, y, mu1=0, mu2=5, sigma1=np.sqrt(5), sigma2=np.sqrt(1), rho=0.2 / np.sqrt(5*1)):
 A = (2 * np.pi * sigma1 * sigma2 * np.sqrt(1 - rho**2))**(-1)
 B = -1 / 2 / (1 - rho**2)
 C1 = (x - mu1)**2 / sigma1**2
 C2 = 2 * rho * (x - mu1) * (y - mu2) / sigma1 / sigma2
 C3 = (y - mu2)**2 / sigma2**2
 return A * np.exp(B * (C1 - C2 + C3))
```

\[
\mu_1 = 0
\mu_2 = 5
\sigma_1 = \text{np.sqrt}(5)
\sigma_2 = \text{np.sqrt}(1)
\rho = .2 / \text{np.sqrt}(5 * 1)
\]

\[
x = \text{np.linspace}(-10, 10, 1_000)
y = \text{np.linspace}(-10, 10, 1_000)
x_mesh, y_mesh = \text{np.meshgrid}(x, y, indexing="ij")
```

Joint Distribution

Let's plot the population joint density.

```python
# %matplotlib notebook
fig = plt.figure()
ax = plt.axes(projection='3d')

surf = ax.plot_surface(x_mesh, y_mesh, func(x_mesh, y_mesh), cmap='viridis')
plt.show()
```
%matplotlib notebook

fig = plt.figure()
ax = plt.axes(projection='3d')

curve = ax.contour(x_mesh, y_mesh, func(x_mesh, y_mesh), zdir='x')
plt.ylabel('y')
ax.set_zlabel('f')
ax.set_xticks([])
plt.show()
Next we can simulate from a built-in `numpy` function and calculate a sample marginal distribution from the sample mean and variance.

```python
μ = np.array([0, 5])
σ = np.array([[5, .2], [.2, 1]])
n = 1_000_000
data = np.random.multivariate_normal(μ, σ, n)
x = data[:, 0]
y = data[:, 1]

Marginal distribution

```python
plt.hist(x, bins=1_000, alpha=0.6)
μx_hat, σx_hat = np.mean(x), np.std(x)
print(μx_hat, σx_hat)
x_sim = np.random.normal(μx_hat, σx_hat, 1_000_000)
plt.hist(x_sim, bins=1_000, alpha=0.4, histtype="step")
plt.show()
```

9.08707467869901e-05 2.235332201002647
μ\_y\_hat, σ\_y\_hat = np.mean(y), np.std(y)

print(μ\_y\_hat, σ\_y\_hat)
y\_sim = np.random.normal(μ\_y\_hat, σ\_y\_hat, 1\_000\_000)

plt.hist(y\_sim, bins=1\_000, density=True, alpha=0.4, histtype="step")
plt.show()
Conditional distribution

The population conditional distribution is

\[ [X|Y = y] \sim N\left( \mu_X + \rho \sigma_X \frac{y - \mu_Y}{\sigma_Y}, \sigma_X^2 (1 - \rho^2) \right) \]

\[ [Y|X = x] \sim N\left( \mu_Y + \rho \sigma_Y \frac{x - \mu_X}{\sigma_X}, \sigma_Y^2 (1 - \rho^2) \right) \]

Let’s approximate the joint density by discretizing and mapping the approximating joint density into a matrix.

We can compute the discretized marginal density by just using matrix algebra and noting that

\[
\text{Prob}\{X = i|Y = j\} = \frac{f_{ij}}{\sum_i f_{ij}}
\]

Fix \( y = 0 \).

```python
discretized marginal density
x = np.linspace(-10, 10, 1_000_000)
z = func(x, y=0) / np.sum(func(x, y=0))
plt.plot(x, z)
plt.show()
```
The mean and variance are computed by

\[
E[X|Y = j] = \sum_i i \cdot \text{Prob}(X = i|Y = j) = \sum_i i \cdot \frac{f_{ij}}{\sum_i f_{ij}}
\]

\[
D[X|Y = j] = \sum_i (i - \mu_{X|Y = j})^2 \cdot \frac{f_{ij}}{\sum_i f_{ij}}
\]

Let’s draw from a normal distribution with above mean and variance and check how accurate our approximation is.

```python
discretized mean
ux = np.dot(x, z)

discretized standard deviation
sx = np.sqrt(np.dot((x - ux)**2, z))

sample
zz = np.random.normal(ux, sx, 1_000_000)
plt.hist(zz, bins=300, density=True, alpha=0.3, range=[-10, 10])
plt.show()
```
Fix $x = 1$.

```python
y = np.linspace(0, 10, 1_000_000)
z = func(x=1, y=y) / np.sum(func(x=1, y=y))
plt.plot(y, z)
plt.show()
```
# discretized mean and standard deviation

\[ \mu_y = \text{np.dot}(y, z) \]
\[ \sigma_y = \text{np.sqrt(np.dot((y - \mu_y)^2, z))} \]

# sample

\[ zz = \text{np.random.normal} (\mu_y, \sigma_y, 1_000_000) \]

plt.hist(zz, bins=100, density=True, alpha=0.3)
plt.show()
We compare with the analytically computed parameters and note that they are close.

```python
print(μx, σx)
print(μ1 + ρ * σ1 * (0 - μ2) / σ2, np.sqrt(σ1**2 * (1 - ρ**2)))

print(μy, σy)
print(μ2 + ρ * σ2 * (1 - μ1) / σ1, np.sqrt(σ2**2 * (1 - ρ**2)))
```

```
-0.997518414498433 2.2265841331697698
-1.0 2.227105745132009
5.039999456960766 0.9959851265795596
5.04 0.9959919678390986
```

### 9.17 Sum of Two Independently Distributed Random Variables

Let $X, Y$ be two independent discrete random variables that take values in $\bar{X}, \bar{Y}$, respectively.

Define a new random variable $Z = X + Y$.

Evidently, $Z$ takes values from $\bar{Z}$ defined as follows:

- $\bar{X} = \{0, 1, \ldots, I - 1\}$; $f_i = \text{Prob}\{X = i\}$
- $\bar{Y} = \{0, 1, \ldots, J - 1\}$; $g_j = \text{Prob}\{Y = j\}$
- $\bar{Z} = \{0, 1, \ldots, I + J - 2\}$; $h_k = \text{Prob}\{X + Y = k\}$
Independence of $X$ and $Y$ implies that

$$h_k = \text{Prob}\{X = 0, Y = k\} + \text{Prob}\{X = 1, Y = k - 1\} + \ldots + \text{Prob}\{X = k, Y = 0\}$$

Thus, we have:

$$h_k = \sum_{i=0}^{k} f_i g_{k-i} \equiv f \ast g$$

where $f \ast g$ denotes the convolution of the $f$ and $g$ sequences.

Similarly, for two random variables $X, Y$ with densities $f_X, g_Y$, the density of $Z = X + Y$ is

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx \equiv f_X \ast g_Y$$

where $f_X \ast g_Y$ denotes the convolution of the $f_X$ and $g_Y$ functions.

### 9.18 Transition Probability Matrix

Consider the following joint probability distribution of two random variables.

Let $X, Y$ be discrete random variables with joint distribution

$$\text{Prob}\{X = i, Y = j\} = \rho_{ij}$$

where $i = 0, \ldots, I-1; j = 0, \ldots, J-1$ and

$$\sum_i \sum_j \rho_{ij} = 1, \quad \rho_{ij} \geq 0.$$  

An associated conditional distribution is

$$\text{Prob}\{Y = i|X = j\} = \frac{\rho_{ij}}{\sum_i \rho_{ij}} \equiv \frac{\text{Prob}\{Y = j, X = i\}}{\text{Prob}\{X = i\}}$$

We can define a transition probability matrix

$$p_{ij} = \text{Prob}\{Y = j|X = i\} = \frac{\rho_{ij}}{\sum_j \rho_{ij}}$$

where

$$\begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}$$

The first row is the probability of $Y = j, j = 0, 1$ conditional on $X = 0$. The second row is the probability of $Y = j, j = 0, 1$ conditional on $X = 1$.

Note that

- $\sum_j \rho_{ij} = \sum_j \frac{\rho_{ij}}{\sum_j \rho_{ij}} = 1$, so each row of $\rho$ is a probability distribution (not so for each column).
9.19 Coupling

Start with a joint distribution

\[ f_{ij} = \text{Prob}\{X = i, Y = j\} \]

\[ i = 0, \ldots, I - 1 \]

\[ j = 0, \ldots, J - 1 \]

stacked to an \( I \times J \) matrix

\[ e.g. \ I = 1, J = 1 \]

where

\[
\begin{bmatrix}
  f_{11} & f_{12} \\
  f_{21} & f_{22}
\end{bmatrix}
\]

From the joint distribution, we have shown above that we obtain unique marginal distributions.

Now we’ll try to go in a reverse direction.

We’ll find that from two marginal distributions, can we usually construct more than one joint distribution that verifies these marginals.

Each of these joint distributions is called a coupling of the two martingal distributions.

Let’s start with marginal distributions

\[
\text{Prob}\{X = i\} = \sum_j f_{ij} = \mu_i, i = 0, \ldots, I - 1
\]

\[
\text{Prob}\{Y = j\} = \sum_j f_{ij} = \nu_j, j = 0, \ldots, J - 1
\]

Given two marginal distribution, \( \mu \) for \( X \) and \( \nu \) for \( Y \), a joint distribution \( f_{ij} \) is said to be a coupling of \( \mu \) and \( \nu \).

**Example:**

Consider the following bivariate example.

\[
\text{Prob}\{X = 0\} = 1 - q = \mu_0
\]

\[
\text{Prob}\{X = 1\} = q = \mu_1
\]

\[
\text{Prob}\{Y = 0\} = 1 - r = \nu_0
\]

\[
\text{Prob}\{Y = 1\} = r = \nu_1
\]

where \( 0 \leq q < r \leq 1 \)

We construct two couplings.

The first coupling if our two marginal distributions is the joint distribution

\[
f_{ij} = \begin{bmatrix}
  (1 - q)(1 - r) & (1 - q)r \\
  q(1 - r) & qr
\end{bmatrix}
\]

To verify that it is a coupling, we check that

\[
(1 - q)(1 - r) + (1 - q)r + q(1 - r) + qr = 1
\]

\[
\mu_0 = (1 - q)(1 - r) + (1 - q)r = 1 - q
\]

\[
\mu_1 = q(1 - r) + qr = q
\]

\[
\nu_0 = (1 - q)(1 - r) + (1 - r)q = 1 - r
\]

\[
\nu_1 = r(1 - q) + qr = r
\]
A second coupling of our two marginal distributions is the joint distribution
\[
    f_{ij} = \begin{bmatrix}
        (1 - r) & r - q \\
        0 & q
    \end{bmatrix}
\]

The verify that this is a coupling, note that
\[
    1 - r + r - q + q = 1
\]
\[
    \mu_0 = 1 - q \\
    \mu_1 = q \\
    \nu_0 = 1 - r \\
    \nu_1 = r
\]

Thus, our two proposed joint distributions have the same marginal distributions.

But the joint distributions differ.

Thus, multiple joint distributions \([f_{ij}]\) can have the same marginals.

**Remark:**

- Couplings are important in optimal transport problems and in Markov processes.

### 9.20 Copula Functions

Suppose that \(X_1, X_2, \ldots, X_n\) are \(N\) random variables and that

- their marginal distributions are \(F_1(x_1), F_2(x_2), \ldots, F_N(x_N)\), and
- their joint distribution is \(H(x_1, x_2, \ldots, x_N)\)

Then there exists a **copula function** \(C(\cdot)\) that verifies
\[
    H(x_1, x_2, \ldots, x_N) = C(F_1(x_1), F_2(x_2), \ldots, F_N(x_N)).
\]

We can obtain
\[
    C(u_1, u_2, \ldots, u_n) = H[F_1^{-1}(u_1), F_2^{-1}(u_2), \ldots, F_N^{-1}(u_N)]
\]

In a reverse direction of logic, given univariate marginal distributions \(F_1(x_1), F_2(x_2), \ldots, F_N(x_N)\) and a copula function \(C(\cdot)\), the function \(H(x_1, x_2, \ldots, x_N) = C(F_1(x_1), F_2(x_2), \ldots, F_N(x_N))\) is a **coupling** of \(F_1(x_1), F_2(x_2), \ldots, F_N(x_N)\).

Thus, for given marginal distributions, we can use a copula function to determine a joint distribution when the associated univariate random variables are not independent.

Copula functions are often used to characterize **dependence** of random variables.

#### Discrete marginal distribution

As mentioned above, for two given marginal distributions there can be more than one coupling.

For example, consider two random variables \(X, Y\) with distributions

\[
\begin{align*}
    \text{Prob}(X = 0) &= 0.6, \\
    \text{Prob}(X = 1) &= 0.4, \\
    \text{Prob}(Y = 0) &= 0.3, \\
    \text{Prob}(Y = 1) &= 0.7,
\end{align*}
\]

For these two random variables there can be more than one coupling.

Let’s first generate \(X\) and \(Y\).
# define parameters
mu = np.array([0.6, 0.4])
nu = np.array([0.3, 0.7])

# number of draws
draws = 1_000_000

# generate draws from uniform distribution
p = np.random.rand(draws)

# generate draws of X and Y via uniform distribution
x = np.ones(draws)
y = np.ones(draws)
x[p <= mu[0]] = 0
x[p > mu[0]] = 1
y[p <= nu[0]] = 0
y[p > nu[0]] = 1

# calculate parameters from draws
q_hat = sum(x[x == 1])/draws
r_hat = sum(y[y == 1])/draws

# print output
print("distribution for x")
xmtb = pt.PrettyTable()
xmtb.field_names = ['x_value', 'x_prob']
xmtb.add_row([0, 1-q_hat])
xmtb.add_row([1, q_hat])
print(xmtb)

print("distribution for y")
ymtb = pt.PrettyTable()
ymtb.field_names = ['y_value', 'y_prob']
ymtb.add_row([0, 1-r_hat])
ymtb.add_row([1, r_hat])
print(ymtb)

<table>
<thead>
<tr>
<th>x_value</th>
<th>x_prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.599396</td>
</tr>
<tr>
<td>1</td>
<td>0.400604</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y_value</th>
<th>y_prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.30001500000000003</td>
</tr>
<tr>
<td>1</td>
<td>0.699985</td>
</tr>
</tbody>
</table>

Let's now take our two marginal distributions, one for \(X\), the other for \(Y\), and construct two distinct couplings.

For the first joint distribution:

\[
\text{Prob}(X = i, Y = j) = f_{ij}
\]
where

\[
[f_{ij}] = \begin{bmatrix}
0.18 & 0.42 \\
0.12 & 0.28
\end{bmatrix}
\]

Let's use Python to construct this joint distribution and then verify that its marginal distributions are what we want.

```python
define parameters
f1 = np.array([[0.18, 0.42], [0.12, 0.28]])
f1_cum = np.cumsum(f1)

number of draws
draws1 = 1_000_000

generate draws from uniform distribution
p = np.random.rand(draws1)

generate draws of first copuling via uniform distribution
c1 = np.vstack([np.ones(draws1), np.ones(draws1)])

X=0, Y=0
f1[0, p < f1_cum[0]] = 0
f1[1, p < f1_cum[0]] = 0

X=0, Y=1
f1[0, (p > f1_cum[0]) * (p <= f1_cum[1])] = 0
f1[1, (p > f1_cum[0]) * (p <= f1_cum[1])] = 1

X=1, Y=0
f1[0, (p > f1_cum[1]) * (p <= f1_cum[2])] = 1
f1[1, (p > f1_cum[1]) * (p <= f1_cum[2])] = 0

X=1, Y=1
f1[0, (p > f1_cum[2]) * (p <= f1_cum[3])] = 1
f1[1, (p > f1_cum[2]) * (p <= f1_cum[3])] = 1

calculate parameters from draws
f1_00 = sum((c1[0, :] == 0) * (c1[1, :] == 0)) / draws1
f1_01 = sum((c1[0, :] == 0) * (c1[1, :] == 1)) / draws1
f1_10 = sum((c1[0, :] == 1) * (c1[1, :] == 0)) / draws1
f1_11 = sum((c1[0, :] == 1) * (c1[1, :] == 1)) / draws1

print output of first joint distribution
print("first joint distribution for c1")
c1_mtb = pt.PrettyTable()
c1_mtb.field_names = ['c1_x_value', 'c1_y_value', 'c1_prob']
c1_mtb.add_row([0, 0, f1_00])
c1_mtb.add_row([0, 1, f1_01])
c1_mtb.add_row([1, 0, f1_10])
c1_mtb.add_row([1, 1, f1_11])
print(c1_mtb)
```

<table>
<thead>
<tr>
<th>first joint distribution for c1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1_x_value</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
## calculate parameters from draws

c1_q_hat = sum(c1[0, :] == 1)/draws1
c1_r_hat = sum(c1[1, :] == 1)/draws1

## print output

print("marginal distribution for x")
c1_x_mtb = pt.PrettyTable()
c1_x_mtb.field_names = ['c1_x_value', 'c1_x_prob']
c1_x_mtb.add_row([0, 1-c1_q_hat])
c1_x_mtb.add_row([1, c1_q_hat])
print(c1_x_mtb)

print("marginal distribution for y")
c1_y_mtb = pt.PrettyTable()
c1_y_mtb.field_names = ['c1_y_value', 'c1_y_prob']
c1_y_mtb.add_row([0, 1-c1_r_hat])
c1_y_mtb.add_row([1, c1_r_hat])
print(c1_y_mtb)

Marginal distribution for x
+------------+-----------+
| c1_x_value | c1_x_prob |
+------------+-----------+
| 0          | 0.600304  |
| 1          | 0.399696  |
+------------+-----------+

Marginal distribution for y
+------------+-----------+
| c1_y_value | c1_y_prob |
+------------+-----------+
| 0          | 0.301068  |
| 1          | 0.698932  |
+------------+-----------+

Now, let's construct another joint distribution that is also a coupling of $X$ and $Y$

\[
    [f_{ij}] = \begin{bmatrix}
        0.3 & 0.3 \\
        0 & 0.4
    \end{bmatrix}
\]

## define parameters

f2 = np.array([[0.3, 0.3], [0, 0.4]])
f2_cum = np.cumsum(f2)

## number of draws

draws2 = 1_000_000

## generate draws from uniform distribution

p = np.random.rand(draws2)

## generate draws of first coupling via uniform distribution

c2 = np.vstack([np.ones(draws2), np.ones(draws2)])

# X=0, Y=0

c2[0, p <= f2_cum[0]] = 0

c2[1, p <= f2_cum[0]] = 0

# X=0, Y=1

c2[0, (p > f2_cum[0])*(p <= f2_cum[1])] = 0

(continues on next page)
c2[1, (p > f2_cum[0])*(p <= f2_cum[1])] = 1
# X=1, Y=0
c2[1, (p > f2_cum[1])*(p <= f2_cum[2])] = 1
c2[1, (p > f2_cum[1])*(p <= f2_cum[2])] = 0
# X=1, Y=1
c2[0, (p > f2_cum[2])*(p <= f2_cum[3])] = 1
c2[1, (p > f2_cum[2])*(p <= f2_cum[3])] = 1

# calculate parameters from draws
f2_00 = sum((c2[0, :] == 0)*(c2[1, :] == 0))/draws2
f2_01 = sum((c2[0, :] == 0)*(c2[1, :] == 1))/draws2
f2_10 = sum((c2[0, :] == 1)*(c2[1, :] == 0))/draws2
f2_11 = sum((c2[0, :] == 1)*(c2[1, :] == 1))/draws2

# print output of second joint distribution
print("first joint distribution for c2")
c2_mtb = pt.PrettyTable()
c2_mtb.field_names = ['c2_x_value', 'c2_y_value', 'c2_prob']
c2_mtb.add_row([0, 0, f2_00])
c2_mtb.add_row([0, 1, f2_01])
c2_mtb.add_row([1, 0, f2_10])
c2_mtb.add_row([1, 1, f2_11])
print(c2_mtb)

first joint distribution for c2
+-----------------+-----------------+----------+
| c2_x_value | c2_y_value | c2_prob |
+-----------------+-----------------+----------+
0	0	0.299389
0	1	0.29995
1	0	0.0
1	1	0.400661
+-----------------+-----------------+----------+

# calculate parameters from draws

c2_q_hat = sum(c2[0, :] == 1)/draws2
c2_r_hat = sum(c2[1, :] == 1)/draws2

# print output
print("marginal distribution for x")
c2_x_mtb = pt.PrettyTable()
c2_x_mtb.field_names = ['c2_x_value', 'c2_x_prob']
c2_x_mtb.add_row([0, 1-c2_q_hat])
c2_x_mtb.add_row([1, c2_q_hat])
print(c2_x_mtb)

print("marginal distribution for y")
c2_y_mtb = pt.PrettyTable()
c2_y_mtb.field_names = ['c2_y_value', 'c2_y_prob']
c2_y_mtb.add_row([0, 1-c2_r_hat])
c2_y_mtb.add_row([1, c2_r_hat])
print(c2_y_mtb)
We have verified that both joint distributions, $c_1$ and $c_2$, have identical marginal distributions of $X$ and $Y$, respectively. So they are both couplings of $X$ and $Y$.

### 9.21 Time Series

Suppose that there are two time periods.
- $t = 0$ “today”
- $t = 1$ “tomorrow”

Let $X(0)$ be a random variable to be realized at $t = 0$, $X(1)$ be a random variable to be realized at $t = 1$.

Suppose that

$$
\text{Prob}\{X(0) = i, X(1) = j\} = f_{ij} \geq 0 \quad i = 0, \cdots, I - 1
$$

$$
\sum_i \sum_j f_{ij} = 1
$$

$f_{ij}$ is a joint distribution over $[X(0), X(1)]$.

A conditional distribution is

$$
\text{Prob}\{X(1) = j | X(0) = i\} = \frac{f_{ij}}{\sum_j f_{ij}}
$$

**Remark:**
- This is a key formula for a theory of optimally predicting a time series.
10.1 Overview

This lecture uses matrices to solve some linear difference equations.

As a running example, we’ll study a second-order linear difference equation that was the key technical tool in Paul Samuelson’s 1939 article [Sam39] that introduced the multiplier-accelerator model.

This model became the workhorse that powered early econometric versions of Keynesian macroeconomic models in the United States.

You can read about the details of that model in this QuantEcon lecture.

(That lecture also describes some technicalities about second-order linear difference equations.)

In this lecture, we’ll also learn about an autoregressive representation and a moving average representation of a non-stationary univariate time series \( \{y_t\}_{t=0}^\infty \).

We’ll also study a “perfect foresight” model of stock prices that involves solving a “forward-looking” linear difference equation.

We will use the following imports:

```python
import numpy as np
#matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import cm
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
```
10.2 Samuelson’s model

Let \( t = 0, \pm 1, \pm 2, \ldots \) index time.

For \( t = 1, 2, 3, \ldots, T \) suppose that

\[
y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2}
\]

(10.1)

where we assume that \( y_0 \) and \( y_{-1} \) are given numbers that we take as initial conditions.

In Samuelson’s model, \( y_t \) stood for national income or perhaps a different measure of aggregate activity called gross domestic product (GDP) at time \( t \).

Equation (10.1) is called a second-order linear difference equation.

But actually, it is a collection of \( T \) simultaneous linear equations in the \( T \) variables \( y_1, y_2, \ldots, y_T \).

Note: To be able to solve a second-order linear difference equation, we require two boundary conditions that can take the form either of two initial conditions or two terminal conditions or possibly one of each.

Let’s write our equations as a stacked system

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-\alpha_1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-\alpha_2 & -\alpha_1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -\alpha_2 & -\alpha_1 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -\alpha_2 & -\alpha_1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\vdots \\
y_T \\
\end{bmatrix}
= 
\begin{bmatrix}
\alpha_0 + \alpha_1 y_0 + \alpha_2 y_{-1} \\
\alpha_0 + \alpha_2 y_0 \\
\alpha_0 \\
\vdots \\
\alpha_0 \\
\end{bmatrix}
\]

or

\[
Ay = b
\]

where

\[
y = \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_T \\
\end{bmatrix}
\]

Evidently \( y \) can be computed from

\[
y = A^{-1}b
\]

The vector \( y \) is a complete time path \( \{y_t\}_{t=1}^T \).

Let’s put Python to work on an example that captures the flavor of Samuelson’s multiplier-accelerator model.

We’ll set parameters equal to the same values we used in this QuantEcon lecture.

```python
T = 80
parameters
b0 = 10.0
b1 = 1.53
b2 = -0.9
y_1 = 28. # y_{-1}
y0 = 24.
```
Now we construct $A$ and $b$.

$$A = \text{np.identity}(T) \quad \# \text{The } T \times T \text{ identity matrix}$$

```python
for i in range(T):
 if i-1 >= 0:
 A[i, i-1] = -1
 if i-2 >= 0:
 A[i, i-2] = -2

b = np.full(T, 0)
b[0] = 0 + 1 * y0 + 2 * y_1
b[1] = 0 + 2 * y0
```

Let’s look at the matrix $A$ and the vector $b$ for our example.

$$A, b$$

```
(array([[1. , 0. , 0. , ..., 0. , 0. , 0.],
 [-1.53, 1. , 0. , ..., 0. , 0. , 0.],
 [0.9 , -1.53, 1. , ..., 0. , 0. , 0.],
 ...,
 [0. , 0. , 0. , ..., 1. , 0. , 0.],
 [0. , 0. , 0. , ..., -1.53, 1. , 0.],
 [0. , 0. , 0. , ..., 0.9 , -1.53, 1.]]),
array([[21.52, -11.6 , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10.],
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10. ,
 10. , 10. , 10. , 10. , 10. , 10. , 10. , 10.]]))
```

Now let’s solve for the path of $y$.

If $y_t$ is GNP at time $t$, then we have a version of Samuelson’s model of the dynamics for GNP.

To solve $y = A^{-1}b$ we can either invert $A$ directly, as in

```python
A_inv = np.linalg.inv(A)
y = A_inv @ b
```

or we can use `np.linalg.solve`:

```python
y_second_method = np.linalg.solve(A, b)
```

Here make sure the two methods give the same result, at least up to floating point precision:

```python
np.allclose(y, y_second_method)
```
Note: In general, \texttt{np.linalg.solve} is more numerically stable than using \texttt{np.linalg.inv} directly. However, stability is not an issue for this small example. Moreover, we will repeatedly use \texttt{A_inv} in what follows, so there is added value in computing it directly.

Now we can plot.

```python
plt.plot(np.arange(T)+1, y)
plt.xlabel('t')
plt.ylabel('y')
plt.show()
```

The steady state value $y^*$ of $y_t$ is obtained by setting $y_t = y_{t-1} = y_{t-2} = y^*$ in (10.1), which yields

$$y^* = \frac{\alpha_0}{1 - \alpha_1 - \alpha_2}$$

If we set the initial values to $y_0 = y_{-1} = y^*$, then $y_t$ will be constant:

```python
y_star = \alpha_0 / (1 - \alpha_1 - \alpha_2)
y_1_steady = y_star # y_{-1}
y0_steady = y_star

b_steady = np.full(T, y0_steady)
b_steady[0] = y0_steady + \alpha_1 * y0_steady + \alpha_2 * y_1_steady
b_steady[1] = y0_steady + \alpha_2 * y0_steady

y_steady = A_inv @ b_steady

plt.plot(np.arange(T)+1, y_steady)
plt.xlabel('t')
```

(continues on next page)
10.3 Adding a Random Term

To generate some excitement, we’ll follow in the spirit of the great economists Eugen Slutsky and Ragnar Frisch and replace our original second-order difference equation with the following second-order stochastic linear difference equation:

\[ y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + u_t \]  

(10.2)

where \( u_t \sim N (0, \sigma_u^2) \) and is IID, meaning independent and identically distributed.

We’ll stack these \( T \) equations into a system cast in terms of matrix algebra.

Let’s define the random vector

\[ u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_T \end{bmatrix} \]

Where \( A, b, y \) are defined as above, now assume that \( y \) is governed by the system

\[ Ay = b + u \]  

(10.3)

The solution for \( y \) becomes

\[ y = A^{-1} (b + u) \]  

(10.4)

Let’s try it out in Python.
$$u = 2.$$ 

```python
u = np.random.normal(0, 2, size=T)
y = A_inv @ (b + u)
```

```python
plt.plot(np.arange(T)+1, y)
plt.xlabel('t')
plt.ylabel('y')
```

```python
plt.show()
```

The above time series looks a lot like (detrended) GDP series for a number of advanced countries in recent decades. We can simulate $N$ paths.

```python
N = 100
for i in range(N):
 col = cm.viridis(np.random.rand()) # Choose a random color from viridis
 u = np.random.normal(0, 2, size=T)
y = A_inv @ (b + u)
 plt.plot(np.arange(T)+1, y, lw=0.5, color=col)
```

```python
plt.xlabel('t')
plt.ylabel('y')
```

```python
plt.show()
```
Also consider the case when $y_0$ and $y_{-1}$ are at steady state.

```python
N = 100

for i in range(N):
 col = cm.viridis(np.random.rand()) # Choose a random color from viridis
 u = np.random.normal(0, s, size=T)
 y_steady = A_inv @ (b_steady + u)
 plt.plot(np.arange(T) + i, y_steady, lw=0.5, color=col)

plt.xlabel('t')
plt.ylabel('y')

plt.show()
```
10.4 Computing Population Moments

We can apply standard formulas for multivariate normal distributions to compute the mean vector and covariance matrix for our time series model

\[ y = A^{-1}(b + u). \]

You can read about multivariate normal distributions in this lecture *Multivariate Normal Distribution.*

Let's write our model as

\[ y = \tilde{A}(b + u) \]

where \( \tilde{A} = A^{-1} \).

Because linear combinations of normal random variables are normal, we know that

\[ y \sim \mathcal{N}(\mu_y, \Sigma_y) \]

where

\[ \mu_y = \tilde{A}b \]

and

\[ \Sigma_y = \tilde{A}(\sigma_u^2 I_{T \times T})\tilde{A}^T \]

Let's write a Python class that computes the mean vector \( \mu_y \) and covariance matrix \( \Sigma_y \).

```python
class population_moments:
 """Compute population moments mu_y, Sigma_y.
 ""
 Parameters:
 alpha0, alpha1, alpha2, T, y_1, y0
 ""
 def __init__(self, alpha0, alpha1, alpha2, T, y_1, y0, sigma_u):
 # compute A
 A = np.identity(T)
 for i in range(T):
 if i-1 >= 0:
 A[i, i-1] = -alpha1
 if i-2 >= 0:
 A[i, i-2] = -alpha2

 # compute b
 b = np.full(T, alpha0)
 b[0] = alpha0 + alpha1 * y0 + alpha2 * y_1
 b[1] = alpha0 + alpha2 * y0

 # compute A inverse
 A_inv = np.linalg.inv(A)
```

(continues on next page)
self.A, self.b, self.A_inv, self.sigma_u, self.T = A, b, A_inv, sigma_u, T

```python
def sample_y(self, n):
 """
 Give a sample of size n of y.
 """
 A_inv, sigma_u, b, T = self.A_inv, self.sigma_u, self.b, self.T
 us = np.random.normal(0, sigma_u, size=[n, T])
 ys = np.vstack([A_inv @ (b + u) for u in us])
 return ys

def get_moments(self):
 """
 Compute the population moments of y.
 """
 A_inv, sigma_u, b = self.A_inv, self.sigma_u, self.b

 # compute mu_y
 self.mu_y = A_inv @ b
 self.Sigma_y = sigma_u**2 * (A_inv @ A_inv.T)

 return self.mu_y, self.Sigma_y
```

my_process = population_moments(
    alpha0=10.0, alpha1=1.53, alpha2=-.9, T=80, y_1=28., y_0=24., sigma_u=1)

mu_y, Sigma_y = my_process.get_moments()
A_inv = my_process.A_inv

It is enlightening to study the $\mu_y, \Sigma_y$ implied by various parameter values.

Among other things, we can use the class to exhibit how statistical stationarity of $y$ prevails only for very special initial conditions.

Let’s begin by generating $N$ time realizations of $y$ plotting them together with population mean $\mu_y$.

```python
plot mean
N = 100

for i in range(N):
 col = cm.viridis(np.random.rand()) # Choose a random color from viridis
 ys = my_process.sample_y(N)
 plt.plot(ys[i, :], lw=0.5, color=col)
 plt.plot(mu_y, color='red')

plt.xlabel('t')
plt.ylabel('y')

plt.show()
```
Visually, notice how the variance across realizations of $y_t$ decreases as $t$ increases.

Let's plot the population variance of $y_t$ against $t$.

```python
plot variance
plt.plot(Sigma_y.diagonal())
plt.show()
```

Notice how the population variance increases and asymptotes.

Let's print out the covariance matrix $\Sigma_y$ for a time series $y$

```python
my_process = population_moments(alpha0=0, alpha1=.8, alpha2=0, T=6, y_1=0., y0=0.,
 sigma_u=1)

mu_y, Sigma_y = my_process.get_moments()
print("mu_y = ", mu_y)
print("Sigma_y = ", Sigma_y)
```
mu_y = [0. 0. 0. 0. 0. 0.]
Sigma_y = 
[[1. 0.8 0.64 0.512 0.4096 0.32768]
[0.8 1.64 1.312 1.0496 0.83968 0.671744]
[0.64 1.312 2.0496 1.63968 1.311744 1.0493952]
[0.512 1.0496 1.63968 2.311744 1.8493952 1.47951616]
[0.4096 0.83968 1.311744 1.8493952 2.47951616 1.98361293]
[0.32768 0.671744 1.0493952 1.47951616 1.98361293 2.58689034]]

Notice that the covariance between $y_t$ and $y_{t-1}$ – the elements on the superdiagonal – are not identical.

This is an indication that the time series represented by our $y$ vector is not stationary.

To make it stationary, we’d have to alter our system so that our initial conditions $(y_1, y_0)$ are not fixed numbers but instead a jointly normally distributed random vector with a particular mean and covariance matrix.

We describe how to do that in another lecture in this lecture Linear State Space Models.

But just to set the stage for that analysis, let’s print out the bottom right corner of $\Sigma_y$.

```
mu_y, Sigma_y = my_process.get_moments()
print("bottom right corner of Sigma_y =
", Sigma_y[72:, 72:]
```

```
bottom right corner of Sigma_y = []
```

Please notice how the sub diagonal and super diagonal elements seem to have converged.

This is an indication that our process is asymptotically stationary.

You can read about stationarity of more general linear time series models in this lecture Linear State Space Models.

There is a lot to be learned about the process by staring at the off diagonal elements of $\Sigma_y$ corresponding to different time periods $t$, but we resist the temptation to do so here.

### 10.5 Moving Average Representation

Let’s print out $A^{-1}$ and stare at its structure

- is it triangular or almost triangular or ... ?

To study the structure of $A^{-1}$, we shall print just up to 3 decimals.

Let’s begin by printing out just the upper left hand corner of $A^{-1}$.

```
with np.printoptions(precision=3, suppress=True):
 print(A_inv[0:7, 0:7])
```

```
[[1. -0. -0. -0. -0. -0. -0.]
 [1.53 1. -0. -0. -0. -0. -0.]
 [1.441 1.53 1. 0. -0. 0. 0.]
 [0.828 1.441 1.53 1. 0. 0. 0.]
 [-0.031 0.828 1.441 1.53 1. -0. -0.]
 [-0.792 -0.031 0.828 1.441 1.53 1. 0.]
 [-1.184 -0.792 -0.031 0.828 1.441 1.53 1.]]]
```
Evidently, $A^{-1}$ is a lower triangular matrix.

Let’s print out the lower right hand corner of $A^{-1}$ and stare at it.

```python
with np.printoptions(precision=3, suppress=True):
 print(A_inv[72:, 72:]
```

Notice how every row ends with the previous row’s pre-diagonal entries.

Since $A^{-1}$ is lower triangular, each row represents $y_t$ for a particular $t$ as the sum of

- a time-dependent function $A^{-1}b$ of the initial conditions incorporated in $b$, and
- a weighted sum of current and past values of the IID shocks $\{u_t\}$

Thus, let $\tilde{A} = A^{-1}$.

Evidently, for $t \geq 0$,  
\[
y_{t+1} = \sum_{i=1}^{t+1} \tilde{A}_{t+1,i} b_i + \sum_{i=1}^{t} \tilde{A}_{t+1,i} u_i + u_{t+1}
\]

This is a moving average representation with time-varying coefficients.

Just as system (10.4) constitutes a moving average representation for $y$, system (10.3) constitutes an autoregressive representation for $y$.

### 10.6 A Forward Looking Model

Samuelson’s model is backwards looking in the sense that we give it initial conditions and let it run.

Let’s now turn to model that is forward looking.

We apply similar linear algebra machinery to study a perfect foresight model widely used as a benchmark in macroeconomics and finance.

As an example, we suppose that $p_t$ is the price of a stock and that $y_t$ is its dividend.

We assume that $y_t$ is determined by second-order difference equation that we analyzed just above, so that
\[
y = A^{-1} (b + u)
\]

Our perfect foresight model of stock prices is
\[
p_t = \sum_{j=0}^{T-t} \beta^j y_{t+j}, \quad \beta \in (0, 1)
\]

where $\beta$ is a discount factor.
The model asserts that the price of the stock at $t$ equals the discounted present values of the (perfectly foreseen) future dividends.

Form

\[
\begin{bmatrix}
    p_1 \\
    p_2 \\
    \vdots \\
    p_T
\end{bmatrix} =
\begin{bmatrix}
    1 & \beta & \beta^2 & \ldots & \beta^{T-1} \\
    0 & 1 & \beta & \ldots & \beta^{T-2} \\
    \vdots & \vdots & \vdots & \ddots & \vdots \\
    0 & 0 & 0 & \ldots & 1
\end{bmatrix}
\begin{bmatrix}
    y_1 \\
    y_2 \\
    \vdots \\
    y_T
\end{bmatrix}
\]

\[
\equiv \begin{bmatrix}
p_1 \\
p_2 \\
\vdots \\
p_T
\end{bmatrix}
\equiv \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_T
\end{bmatrix}
\]

\[
\beta = 0.96
\]

# construct B
B = np.zeros((T, T))

for i in range(T):
    B[i, i:] = \beta ** np.arange(0, T-i)

B

array([[1.    , 0.96  , 0.9216, ..., 0.04314048, 0.04141486, 0.03975826],
       [0.    , 1.    , 0.96  , ..., 0.044938   , 0.04314048, 0.04141486],
       [0.    , 0.    , 1.    , ..., 0.04681041, 0.044938   , 0.04314048],
       ..., 
       [0.    , 0.    , 0.    , ..., 1.    , 0.96   , 0.9216 ],
       [0.    , 0.    , 0.    , ..., 0.    , 1.    , 0.96   ],
       [0.    , 0.    , 0.    , ..., 0.    , 0.    , 1.    ]])

\mu = 0.

u = np.random.normal(0, \mu, size=T)
y = A_inv @ (b + u)
y_steady = A_inv @ (b_steady + u)

p = B @ y

plt.plot(np.arange(0, T+1), y, label='y')
plt.plot(np.arange(0, T+1), p, label='p')
plt.xlabel('t')
plt.ylabel('y/p')
plt.legend()
plt.show()
Can you explain why the trend of the price is downward over time?

Also consider the case when $y_0$ and $y_{-1}$ are at the steady state.

```python
p_steady = B @ y_steady
plt.plot(np.arange(0, T)+1, y_steady, label='y')
plt.plot(np.arange(0, T)+1, p_steady, label='p')
plt.xlabel('t')
plt.ylabel('y/p')
plt.legend()
plt.show()
```
CHAPTER
ELEVEN

LLN AND CLT

Contents

• LLN and CLT
  – Overview
  – Relationships
  – LLN
  – CLT
  – Exercises

11.1 Overview

This lecture illustrates two of the most important theorems of probability and statistics: The law of large numbers (LLN) and the central limit theorem (CLT).

These beautiful theorems lie behind many of the most fundamental results in econometrics and quantitative economic modeling.

The lecture is based around simulations that show the LLN and CLT in action.

We also demonstrate how the LLN and CLT break down when the assumptions they are based on do not hold.

In addition, we examine several useful extensions of the classical theorems, such as

• The delta method, for smooth functions of random variables, and
• the multivariate case.

Some of these extensions are presented as exercises.

We’ll need the following imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import random
import numpy as np
from scipy.stats import t, beta, lognorm, expon, gamma, uniform, cauchy
from scipy.stats import gaussian_kde, poisson, binom, norm, chi2
from mpl_toolkits.mplot3d import Axes3D
```
### 11.2 Relationships

The CLT refines the LLN.

The LLN gives conditions under which sample moments converge to population moments as sample size increases.

The CLT provides information about the rate at which sample moments converge to population moments as sample size increases.

### 11.3 LLN

We begin with the law of large numbers, which tells us when sample averages will converge to their population means.

#### 11.3.1 The Classical LLN

The classical law of large numbers concerns independent and identically distributed (IID) random variables.

Here is the strongest version of the classical LLN, known as *Kolmogorov's strong law*.

Let $X_1, \ldots, X_n$ be independent and identically distributed scalar random variables, with common distribution $F$.

When it exists, let $\mu$ denote the common mean of this sample:

$$
\mu := \mathbb{E}X = \int xF(dx)
$$

In addition, let

$$
\bar{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i
$$

Kolmogorov's strong law states that, if $\mathbb{E}|X|$ is finite, then

$$
\mathbb{P} \left\{ \bar{X}_n \to \mu \text{ as } n \to \infty \right\} = 1 \quad (11.1)
$$

What does this last expression mean?

Let's think about it from a simulation perspective, imagining for a moment that our computer can generate perfect random samples (which of course it can't).

Let's also imagine that we can generate infinite sequences so that the statement $\bar{X}_n \to \mu$ can be evaluated.

In this setting, (11.1) should be interpreted as meaning that the probability of the computer producing a sequence where $\bar{X}_n \to \mu$ fails to occur is zero.
11.3.2 Proof

The proof of Kolmogorov’s strong law is nontrivial – see, for example, theorem 8.3.5 of [Dud02].

On the other hand, we can prove a weaker version of the LLN very easily and still get most of the intuition.

The version we prove is as follows: If \( X_1, \ldots, X_n \) is IID with \( \mathbb{E}X^2 < \infty \), then, for any \( \epsilon > 0 \), we have

\[
P \{|\bar{X}_n - \mu| \geq \epsilon\} \to 0 \quad \text{as} \quad n \to \infty \quad (11.2)
\]

(This version is weaker because we claim only convergence in probability rather than almost sure convergence, and assume a finite second moment)

To see that this is so, fix \( \epsilon > 0 \), and let \( \sigma^2 \) be the variance of each \( X_i \).

Recall the Chebyshev inequality, which tells us that

\[
P \{|\bar{X}_n - \mu| \geq \epsilon\} \leq \frac{\mathbb{E}(\bar{X}_n - \mu)^2}{\epsilon^2} \quad (11.3)
\]

Now observe that

\[
\mathbb{E}(\bar{X}_n - \mu)^2 = \mathbb{E}\left\{\left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)\right]^2\right\}
\]

\[
= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}(X_i - \mu)(X_j - \mu)
\]

\[
= \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}(X_i - \mu)^2
\]

\[
= \frac{\sigma^2}{n}
\]

Here the crucial step is at the third equality, which follows from independence.

Independence means that if \( i \neq j \), then the covariance term \( \mathbb{E}(X_i - \mu)(X_j - \mu) \) drops out.

As a result, \( n^2 - n \) terms vanish, leading us to a final expression that goes to zero in \( n \).

Combining our last result with (11.3), we come to the estimate

\[
P \{|\bar{X}_n - \mu| \geq \epsilon\} \leq \frac{\sigma^2}{n\epsilon^2} \quad (11.4)
\]

The claim in (11.2) is now clear.

Of course, if the sequence \( X_1, \ldots, X_n \) is correlated, then the cross-product terms \( \mathbb{E}(X_i - \mu)(X_j - \mu) \) are not necessarily zero.

While this doesn’t mean that the same line of argument is impossible, it does mean that if we want a similar result then the covariances should be “almost zero” for “most” of these terms.

In a long sequence, this would be true if, for example, \( \mathbb{E}(X_i - \mu)(X_j - \mu) \) approached zero when the difference between \( i \) and \( j \) became large.

In other words, the LLN can still work if the sequence \( X_1, \ldots, X_n \) has a kind of “asymptotic independence”, in the sense that correlation falls to zero as variables become further apart in the sequence.

This idea is very important in time series analysis, and we’ll come across it again soon enough.
11.3.3 Illustration

Let’s now illustrate the classical IID law of large numbers using simulation.

In particular, we aim to generate some sequences of IID random variables and plot the evolution of \( \bar{X}_n \) as \( n \) increases.

Below is a figure that does just this (as usual, you can click on it to expand it).

It shows IID observations from three different distributions and plots \( \bar{X}_n \) against \( n \) in each case.

The dots represent the underlying observations \( X_i \) for \( i = 1, \ldots, 100 \).

In each of the three cases, convergence of \( \bar{X}_n \) to \( \mu \) occurs as predicted

```python
n = 100

Arbitrary collection of distributions
distributions = {
 "student's t with 10 degrees of freedom": t(10),
 "beta(2, 2)": beta(2, 2),
 "lognormal LN(0, 1/2)": lognorm(0.5),
 "gamma(5, 1/2)": gamma(5, scale=2),
 "poisson(4)": poisson(4),
 "exponential with \(\lambda = 1 \)": expon(1)
}

Create a figure and some axes
num_plots = 3
fig, axes = plt.subplots(num_plots, 1, figsize=(10, 20))

Set some plotting parameters to improve layout
bbox = (0., 1.02, 1., .102)
legend_args = {'ncol': 2,
 'bbox_to_anchor': bbox,
 'loc': 3,
 'mode': 'expand'}
plt.subplots_adjust(hspace=0.5)

for ax in axes:
 # Choose a randomly selected distribution
 name = random.choice(list(distributions.keys()))
distribution = distributions.pop(name)

 # Generate n draws from the distribution
 data = distribution.rvs(n)

 # Compute sample mean at each n
 sample_mean = np.empty(n)
 for i in range(n):
 sample_mean[i] = np.mean(data[:i+1])

 # Plot
 ax.plot(list(range(n)), data, 'o', color='grey', alpha=0.5)
 axlabel = '\bar{X}_n for $X_i \sim' + name
 ax.plot(list(range(n)), sample_mean, 'g-', lw=3, alpha=0.6, label=axlabel)
m = distribution.mean()
 ax.plot(list(range(n)), [m] * n, 'k--', lw=1.5, label='μ')
 ax.vlines(list(range(n)), [m] * n, 'k--', lw=0.2)
ax.legend(**legend_args, fontsize=12)

plt.show()
```
11.3. LLN
The three distributions are chosen at random from a selection stored in the dictionary `distributions`.

### 11.4 CLT

Next, we turn to the central limit theorem, which tells us about the distribution of the deviation between sample averages and population means.

#### 11.4.1 Statement of the Theorem

The central limit theorem is one of the most remarkable results in all of mathematics.

In the classical IID setting, it tells us the following:

If the sequence $X_1, \ldots, X_n$ is IID, with common mean $\mu$ and common variance $\sigma^2 \in (0, \infty)$, then

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2) \quad \text{as} \quad n \to \infty$$

(11.5)

Here $\xrightarrow{d} N(0, \sigma^2)$ indicates convergence in distribution to a centered (i.e., zero mean) normal with standard deviation $\sigma$.

#### 11.4.2 Intuition

The striking implication of the CLT is that for any distribution with finite second moment, the simple operation of adding independent copies always leads to a Gaussian curve.

A relatively simple proof of the central limit theorem can be obtained by working with characteristic functions (see, e.g., theorem 9.5.6 of [Dud02]).

The proof is elegant but almost anticlimactic, and it provides surprisingly little intuition.

In fact, all of the proofs of the CLT that we know are similar in this respect.

Why does adding independent copies produce a bell-shaped distribution?

Part of the answer can be obtained by investigating the addition of independent Bernoulli random variables.

In particular, let $X_i$ be binary, with $\mathbb{P}\{X_i = 0\} = \mathbb{P}\{X_i = 1\} = 0.5$, and let $X_1, \ldots, X_n$ be independent.

Think of $X_i = 1$ as a “success”, so that $Y_n = \sum_{i=1}^n X_i$ is the number of successes in $n$ trials.

The next figure plots the probability mass function of $Y_n$ for $n = 1, 2, 4, 8$

```python
fig, axes = plt.subplots(2, 2, figsize=(10, 6))
plt.subplots_adjust(hspace=0.4)
axes = axes.flatten()
ns = [1, 2, 4, 8]
dom = list(range(9))

for ax, n in zip(axes, ns):
 b = binom(n, 0.5)
 ax.bar(dom, b.pmf(dom), alpha=0.6, align='center')
 ax.set(xlim=(-0.5, 8.5), ylim=(0, 0.55),
 xticks=list(range(9)), yticks=(0, 0.2, 0.4),
 title=f'$n = {n}$')
plt.show()
```
When $n = 1$, the distribution is flat — one success or no successes have the same probability.

When $n = 2$ we can either have 0, 1 or 2 successes.

Notice the peak in probability mass at the mid-point $k = 1$.

The reason is that there are more ways to get 1 success (“fail then succeed” or “succeed then fail”) than to get zero or two successes.

Moreover, the two trials are independent, so the outcomes “fail then succeed” and “succeed then fail” are just as likely as the outcomes “fail then fail” and “succeed then succeed”.

(If there was positive correlation, say, then “succeed then fail” would be less likely than “succeed then succeed”)

Here, already we have the essence of the CLT: addition under independence leads probability mass to pile up in the middle and thin out at the tails.

For $n = 4$ and $n = 8$ we again get a peak at the “middle” value (halfway between the minimum and the maximum possible value).

The intuition is the same — there are simply more ways to get these middle outcomes.

If we continue, the bell-shaped curve becomes even more pronounced.

We are witnessing the binomial approximation of the normal distribution.
11.4.3 Simulation 1

Since the CLT seems almost magical, running simulations that verify its implications is one good way to build intuition.

To this end, we now perform the following simulation

1. Choose an arbitrary distribution $F$ for the underlying observations $X_i$.
2. Generate independent draws of $Y_n := \sqrt{n}(\bar{X}_n - \mu)$.
3. Use these draws to compute some measure of their distribution — such as a histogram.
4. Compare the latter to $N(0, \sigma^2)$.

Here’s some code that does exactly this for the exponential distribution $F(x) = 1 - e^{-\lambda x}$.

( Please experiment with other choices of $F$, but remember that, to conform with the conditions of the CLT, the distribution must have a finite second moment.)

```python
Set parameters
n = 250 # Choice of n
k = 100000 # Number of draws of Y_n
distribution = expon(2) # Exponential distribution, \lambda = 1/2
μ, s = distribution.mean(), distribution.std()

Draw underlying RVs. Each row contains a draw of X_1,..,X_n
data = distribution.rvs((k, n))
Compute mean of each row, producing k draws of \bar{X}_n
sample_means = data.mean(axis=1)
Generate observations of Y_n
Y = np.sqrt(n) * (sample_means - μ)

Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmin, xmax = -3 * s, 3 * s
ax.set_xlim(xmin, xmax)
ax.hist(Y, bins=60, alpha=0.5, density=True)
xgrid = np.linspace(xmin, xmax, 200)
ax.plot(xgrid, norm.pdf(xgrid, scale=s), 'k-', lw=2, label='$N(0, \sigma^2)$')
ax.legend()
plt.show()```
Notice the absence of for loops — every operation is vectorized, meaning that the major calculations are all shifted to highly optimized C code.

The fit to the normal density is already tight and can be further improved by increasing n.

You can also experiment with other specifications of F.

11.4.4 Simulation 2

Our next simulation is somewhat like the first, except that we aim to track the distribution of $Y_n := \sqrt{n}(\bar{X}_n - \mu)$ as n increases.

In the simulation, we’ll be working with random variables having $\mu = 0$.

Thus, when $n = 1$, we have $Y_1 = X_1$, so the first distribution is just the distribution of the underlying random variable. For $n = 2$, the distribution of Y_2 is that of $(X_1 + X_2)/\sqrt{2}$, and so on.

What we expect is that, regardless of the distribution of the underlying random variable, the distribution of Y_n will smooth out into a bell-shaped curve.

The next figure shows this process for $X_i \sim f$, where f was specified as the convex combination of three different beta densities.

(Taking a convex combination is an easy way to produce an irregular shape for f.)

In the figure, the closest density is that of Y_1, while the furthest is that of Y_5.

```python
beta_dist = beta(2, 2)

def gen_x_draws(k):
    ":"""Returns a flat array containing k independent draws from the distribution of X, the underlying random variable. This distribution
    (continues on next page)"
```
Quantitative Economics with Python

```
is itself a convex combination of three beta distributions.

bdraws = beta_dist.rvs((3, k))
# Transform rows, so each represents a different distribution
bdraws[0, :] -= 0.5
bdraws[1, :] += 0.6
bdraws[2, :] -= 1.1
# Set X[i] = bdraws[j, i], where j is a random draw from {0, 1, 2}
js = np.random.randint(0, 2, size=k)
X = bdraws[js, np.arange(k)]
# Rescale, so that the random variable is zero mean
m, sigma = X.mean(), X.std()
return (X - m) / sigma
```

nmax = 5
reps = 100000
ns = list(range(1, nmax + 1))

Form a matrix Z such that each column is reps independent draws of X
Z = np.empty((reps, nmax))
for i in range(nmax):
 Z[:, i] = gen_x_draws(reps)
Take cumulative sum across columns
S = Z.cumsum(axis=1)
Multiply j-th column by sqrt j
Y = (1 / np.sqrt(ns)) * S

Plot
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
a, b = -3, 3
gs = 100
xs = np.linspace(a, b, gs)

Build verts
greys = np.linspace(0.3, 0.7, nmax)
verts = []
for n in ns:
 density = gaussian_kde(Y[:, n-1])
 ys = density(xs)
 verts.append(list(zip(xs, ys)))

poly = PolyCollection(verts, facecolors=[str(g) for g in greys])
poly.set_alpha(0.85)
a.set_collection3d(poly, zs=ns, zdir='x')
a.set_xlim3d(1, nmax), xticks=(ns), yticklabel='Y_n', zticklabel='p(y_n)',
xlabel='n', yticks=(-3, 0, 3), ylim3d=(a, b),
zlim3d=(0, 0.4), zticks=(0.2, 0.4))
a.invert_xaxis()
Rotates the plot 30 deg on z axis and 45 deg on x axis
ax.view_init(30, 45)
plt.show()
As expected, the distribution smooths out into a bell curve as n increases.

We leave you to investigate its contents if you wish to know more.

If you run the file from the ordinary IPython shell, the figure should pop up in a window that you can rotate with your mouse, giving different views on the density sequence.
11.4.5 The Multivariate Case

The law of large numbers and central limit theorem work just as nicely in multidimensional settings.

To state the results, let’s recall some elementary facts about random vectors.

A random vector \mathbf{X} is just a sequence of k random variables (X_1, \ldots, X_k).

Each realization of \mathbf{X} is an element of \mathbb{R}^k.

A collection of random vectors $\mathbf{X}_1, \ldots, \mathbf{X}_n$ is called independent if, given any vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ in \mathbb{R}^k, we have

$$
\mathbb{P}\{\mathbf{X}_1 \leq \mathbf{x}_1, \ldots, \mathbf{X}_n \leq \mathbf{x}_n\} = \mathbb{P}\{\mathbf{X}_1 \leq \mathbf{x}_1\} \times \cdots \times \mathbb{P}\{\mathbf{X}_n \leq \mathbf{x}_n\}
$$

(The vector inequality $\mathbf{X} \leq \mathbf{x}$ means that $X_j \leq x_j$ for $j = 1, \ldots, k$)

Let $\mu_j := \mathbb{E}[X_j]$ for all $j = 1, \ldots, k$.

The expectation $\mathbb{E}[\mathbf{X}]$ of \mathbf{X} is defined to be the vector of expectations:

$$
\mathbb{E}[\mathbf{X}] := \left(\begin{array}{c}
\mathbb{E}[X_1] \\
\mathbb{E}[X_2] \\
\vdots \\
\mathbb{E}[X_k]
\end{array}\right) = \left(\begin{array}{c}
\mu_1 \\
\mu_2 \\
\vdots \\
\mu_k
\end{array}\right) =: \mu
$$

The variance-covariance matrix of random vector \mathbf{X} is defined as

$$
\text{Var}[\mathbf{X}] := \mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)']
$$

Expanding this out, we get

$$
\text{Var}[\mathbf{X}] = \left(\begin{array}{cccc}
\mathbb{E}[(X_1 - \mu_1)(X_1 - \mu_1)] & \cdots & \mathbb{E}[(X_1 - \mu_1)(X_k - \mu_k)] \\
\mathbb{E}[(X_2 - \mu_2)(X_1 - \mu_1)] & \cdots & \mathbb{E}[(X_2 - \mu_2)(X_k - \mu_k)] \\
\vdots & \cdots & \vdots \\
\mathbb{E}[(X_k - \mu_k)(X_1 - \mu_1)] & \cdots & \mathbb{E}[(X_k - \mu_k)(X_k - \mu_k)]
\end{array}\right)
$$

The j, k-th term is the scalar covariance between X_j and X_k.

With this notation, we can proceed to the multivariate LLN and CLT.

Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be a sequence of independent and identically distributed random vectors, each one taking values in \mathbb{R}^k.

Let μ be the vector $\mathbb{E}[\mathbf{X}_i]$, and let Σ be the variance-covariance matrix of \mathbf{X}_i.

Interpreting vector addition and scalar multiplication in the usual way (i.e., pointwise), let

$$
\mathbf{X}_n := \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_i
$$

In this setting, the LLN tells us that

$$
\mathbb{P}\{\mathbf{X}_n \to \mu \text{ as } n \to \infty\} = 1 \quad (11.6)
$$

Here $\mathbf{X}_n \to \mu$ means that $\|\mathbf{X}_n - \mu\| \to 0$, where $\| \cdot \|$ is the standard Euclidean norm.

The CLT tells us that, provided Σ is finite,

$$
\sqrt{n}(\mathbf{X}_n - \mu) \xrightarrow{d} N(0, \Sigma) \quad \text{as } n \to \infty \quad (11.7)
$$
11.5 Exercises

Exercise 11.5.1

One very useful consequence of the central limit theorem is as follows.

Assume the conditions of the CLT as stated above.

If \(g : \mathbb{R} \to \mathbb{R} \) is differentiable at \(\mu \) and \(g'(\mu) \neq 0 \), then

\[
\sqrt{n} \{ g(\bar{X}_n) - g(\mu) \} \xrightarrow{d} N(0, g'(\mu)^2 \sigma^2) \quad \text{as} \quad n \to \infty
\]

(11.8)

This theorem is used frequently in statistics to obtain the asymptotic distribution of estimators — many of which can be expressed as functions of sample means.

(These kinds of results are often said to use the “delta method”.)

The proof is based on a Taylor expansion of \(g \) around the point \(\mu \).

Taking the result as given, let the distribution \(F \) of each \(X_i \) be uniform on \([0, \pi/2]\) and let \(g(x) = \sin(x) \).

Derive the asymptotic distribution of \(\sqrt{n} \{ g(\bar{X}_n) - g(\mu) \} \) and illustrate convergence in the same spirit as the program discussed above.

What happens when you replace \([0, \pi/2]\) with \([0, \pi]\)?

What is the source of the problem?

Solution to Exercise 11.5.1

Here is one solution

```python
# Set parameters
n = 250
replications = 100000
distribution = uniform(loc=0, scale=(np.pi / 2))
μ, s = distribution.mean(), distribution.std()

g = np.sin
g_prime = np.cos

# Generate obs of sqrt{n} (g(X_n) - g(μ))
data = distribution.rvs((replications, n))
sample_means = data.mean(axis=1)  # Compute mean of each row
error_obs = np.sqrt(n) * (g(sample_means) - g(μ))

# Plot
asymptotic_sd = g_prime(μ) * s
fig, ax = plt.subplots(figsize=(10, 6))
xmin = -3 * g_prime(μ) * s
xmax = -xmin
ax.set_xlim(xmin, xmax)
ax.hist(error_obs, bins=60, alpha=0.5, density=True)
```

(continues on next page)
What happens when you replace $[0, \pi/2]$ with $[0, \pi]$?

In this case, the mean μ of this distribution is $\pi/2$, and since $g' = \cos$, we have $g'(\mu) = 0$.

Hence the conditions of the delta theorem are not satisfied.

Exercise 11.5.2

Here’s a result that’s often used in developing statistical tests, and is connected to the multivariate central limit theorem.

If you study econometric theory, you will see this result used again and again.

Assume the setting of the multivariate CLT *discussed above*, so that

1. X_1, \ldots, X_n is a sequence of IID random vectors, each taking values in \mathbb{R}^k.
2. $\mu := \mathbb{E}[X_i]$, and Σ is the variance-covariance matrix of X_i.
3. The convergence

$$\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \Sigma)$$

(11.9)

is valid.

In a statistical setting, one often wants the right-hand side to be **standard** normal so that confidence intervals are easily computed.

This normalization can be achieved on the basis of three observations.
First, if \(\mathbf{X} \) is a random vector in \(\mathbb{R}^k \) and \(\mathbf{A} \) is constant and \(k \times k \), then
\[
\text{Var}[\mathbf{AX}] = \mathbf{A} \text{Var}[\mathbf{X}] \mathbf{A}'
\]

Second, by the continuous mapping theorem, if \(\mathbf{Z}_n \xrightarrow{d} \mathbf{Z} \) in \(\mathbb{R}^k \) and \(\mathbf{A} \) is constant and \(k \times k \), then
\[
\mathbf{AZ}_n \xrightarrow{d} \mathbf{AZ}
\]

Third, if \(\mathbf{S} \) is a \(k \times k \) symmetric positive definite matrix, then there exists a symmetric positive definite matrix \(\mathbf{Q} \), called the inverse square root of \(\mathbf{S} \), such that
\[
\mathbf{QSQ}' = \mathbf{I}
\]

Here \(\mathbf{I} \) is the \(k \times k \) identity matrix.

Putting these things together, your first exercise is to show that if \(\mathbf{Q} \) is the inverse square root of \(\mathbf{S} \), then
\[
\mathbf{Z}_n := \sqrt{n} \mathbf{Q}(\overline{\mathbf{X}}_n - \mathbf{\mu}) \xrightarrow{d} \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
\]

Applying the continuous mapping theorem one more time tells us that
\[
\|\mathbf{Z}_n\|^2 \xrightarrow{d} \|\mathbf{Z}\|^2
\]

Given the distribution of \(\mathbf{Z} \), we conclude that
\[
n\|\mathbf{Q}(\overline{\mathbf{X}}_n - \mathbf{\mu})\|^2 \xrightarrow{d} \chi^2(k)
\]

where \(\chi^2(k) \) is the chi-squared distribution with \(k \) degrees of freedom.

(Recall that \(k \) is the dimension of \(\mathbf{X}_i \), the underlying random vectors.)

Your second exercise is to illustrate the convergence in (11.10) with a simulation.

In doing so, let
\[
\mathbf{X}_i := \begin{pmatrix} \mathbf{W}_i \\ U_i + \mathbf{W}_i \end{pmatrix}
\]

where
- each \(\mathbf{W}_i \) is an IID draw from the uniform distribution on \([-1, 1]\).
- each \(U_i \) is an IID draw from the uniform distribution on \([-2, 2]\).
- \(U_i \) and \(\mathbf{W}_i \) are independent of each other.

Hint:
1. `scipy.linalg.sqrtm(A)` computes the square root of \(\mathbf{A} \). You still need to invert it.
2. You should be able to work out \(\Sigma \) from the preceding information.

Solution to Exercise 11.5.2

First we want to verify the claim that
\[
\sqrt{n} \mathbf{Q}(\overline{\mathbf{X}}_n - \mathbf{\mu}) \xrightarrow{d} \mathcal{N}(\mathbf{0}, \mathbf{I})
\]

11.5. Exercises
This is straightforward given the facts presented in the exercise.

Let
\[Y_n := \sqrt{n}(\bar{X}_n - \mu) \quad \text{and} \quad Y \sim N(0, \Sigma) \]

By the multivariate CLT and the continuous mapping theorem, we have
\[QY \xrightarrow{d} QY \]

Since linear combinations of normal random variables are normal, the vector \(QY \) is also normal.

Its mean is clearly 0, and its variance-covariance matrix is
\[\text{Var}[QY] = Q\text{Var}[Y]Q' = Q\Sigma Q' = I \]

In conclusion, \(QY \xrightarrow{d} QY \sim N(0, I) \), which is what we aimed to show.

Now we turn to the simulation exercise.

Our solution is as follows

```python
# Set parameters
n = 250
replications = 50000
dw = uniform(loc=-1, scale=2)  # Uniform(-1, 1)
du = uniform(loc=-2, scale=4)  # Uniform(-2, 2)
sw, su = dw.std(), du.std()
vw, vu = sw**2, su**2
\Sigma = ((vw, vw), (vw, vw + vu))
\Sigma = np.array(Sigma)

# Compute \( \Sigma^{-1/2} \)
Q = inv(sqrtm(Sigma))

# Generate observations of the normalized sample mean
error_obs = np.empty((2, replications))
for i in range(replications):
    # Generate one sequence of bivariate shocks
    X = np.empty((2, n))
    W = dw.rvs(n)
    U = du.rvs(n)
    # Construct the n observations of the random vector
    X[:, :] = W
    X[1, :] = W + U
    # Construct the i-th observation of \( Y_n \)
    error_obs[:, i] = np.sqrt(n) * X.mean(axis=1)

# Premultiply by \( Q \) and then take the squared norm
temp = Q @ error_obs
chisq_obs = np.sum(temp**2, axis=0)

# Plot
fig, ax = plt.subplots(figsize=(10, 6))
xmax = 8
ax.set_xlim(0, xmax)
xgrid = np.linspace(0, xmax, 200)
lb = "Chi-squared with 2 degrees of freedom"
```

(continues on next page)
ax.plot(xgrid, chi2.pdf(xgrid, 2), 'k-', lw=2, label=lb)
ax.legend()
ax.hist(chisq_obs, bins=50, density=True)
plt.show()
12.1 Overview

This lecture illustrates two distinct interpretations of a probability distribution

- A frequentist interpretation as relative frequencies anticipated to occur in a large i.i.d. sample
- A Bayesian interpretation as a personal opinion (about a parameter or list of parameters) after seeing a collection of observations

We recommend watching this video about hypothesis testing within the frequentist approach

https://youtu.be/8JIe_cz6qGA

After you watch that video, please watch the following video on the Bayesian approach to constructing coverage intervals

https://youtu.be/Pahv9i_X2k

After you are familiar with the material in these videos, this lecture uses the Socratic method to help consolidate your understanding of the different questions that are answered by

- a frequentist confidence interval
- a Bayesian coverage interval

We do this by inviting you to write some Python code.

It would be especially useful if you tried doing this after each question that we pose for you, before proceeding to read the rest of the lecture.

We provide our own answers as the lecture unfolds, but you'll learn more if you try writing your own code before reading and running ours.

Code for answering questions:

In addition to what's in Anaconda, this lecture will deploy the following library:

`pip install prettytable`

To answer our coding questions, we'll start with some imports

```python
import numpy as np
import pandas as pd
import prettytable as pt
import matplotlib.pyplot as plt
from scipy.stats import binom
```

(continues on next page)
Empowered with these Python tools, we’ll now explore the two meanings described above.

12.2 Frequentist Interpretation

Consider the following classic example.

The random variable X takes on possible values $k = 0, 1, 2, \ldots, n$ with probabilities

$$
\text{Prob}(X = k|\theta) = \binom{n}{k} \frac{n!}{k!(n-k)!} \theta^k (1 - \theta)^{n-k}
$$

where the fixed parameter $\theta \in (0, 1)$.

This is called the binomial distribution.

Here

- θ is the probability that one toss of a coin will be a head, an outcome that we encode as $Y = 1$.
- $1 - \theta$ is the probability that one toss of the coin will be a tail, an outcome that we denote $Y = 0$.
- X is the total number of heads that came up after flipping the coin n times.

Consider the following experiment:

Take I independent sequences of n independent flips of the coin.

Notice the repeated use of the adjective independent:

- we use it once to describe that we are drawing n independent times from a Bernoulli distribution with parameter θ to arrive at one draw from a Binomial distribution with parameters θ, n.
- we use it again to describe that we are then drawing I sequences of n coin draws.

Let $y_h^i \in \{0, 1\}$ be the realized value of Y on the hth flip during the ith sequence of flips.

Let $\sum_{h=1}^n y_h^i$ denote the total number of times heads come up during the ith sequence of n independent coin flips.

Let f_k^I record the fraction of samples of length n for which $\sum_{h=1}^n y_h^i = k$:

$$
f_k^I = \frac{\text{number of samples of length } n \text{ for which } \sum_{h=1}^n y_h^i = k}{I}
$$

The probability $\text{Prob}(X = k|\theta)$ answers the following question:

- As I becomes large, in what fraction of I independent draws of n coin flips should we anticipate k heads to occur?

As usual, a law of large numbers justifies this answer.

Exercise 12.2.1

1. Please write a Python class to compute f_k^I.
2. Please use your code to compute f_k^I, $k = 0, \ldots, n$ and compare them to $\text{Prob}(X = k|\theta)$ for various values of θ, n and I.
3. With the Law of Large numbers in mind, use your code to say something...
Solution to Exercise 12.2.1

Here is one solution:

class frequentist:
 def __init__(self, θ, n, I):
 '''
 initialization

 parameters:
 θ : probability that one toss of a coin will be a head with Y = 1
 n : number of independent flips in each independent sequence of draws
 I : number of independent sequence of draws
 '''
 self.θ, self.n, self.I = θ, n, I

def binomial(self, k):
 '''compute the theoretical probability for specific input k'"

 θ, n = self.θ, self.n
 self.k = k
 self.P = binom.pmf(k, n, θ)

def draw(self):
 '''draw n independent flips for I independent sequences'"

 θ, n, I = self.θ, self.n, self.I
 sample = np.random.rand(I, n)
 Y = (sample <= θ) * 1
 self.Y = Y

def compute_fk(self, kk):
 '''compute f_{k}^I for specific input k'"

 Y, I = self.Y, self.I
 K = np.sum(Y, i)
 f_kI = np.sum(K == kk) / I
 self.f_kI = f_kI
 self.kk = kk

def compare(self):
 '''compute and print the comparison'"

 n = self.n
 comp = pt.PrettyTable()
 comp.field_names = ['k', 'Theoretical', 'Frequentist']
 self.draw()
for i in range(n):
 self.binomial(i+1)
 self.compute_fk(i+1)
 comp.add_row([i+1, self.P, self.f_kI])
print(comp)

θ, n, k, I = 0.7, 20, 10, 1_000_000
freq = frequentist(θ, n, I)
freq.compare()

<table>
<thead>
<tr>
<th>k</th>
<th>Theoretical</th>
<th>Frequentist</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6271660538000033e-09</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>3.606847525899999e-08</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>5.0496385362601e-07</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>5.007558331512455e-06</td>
<td>2e-06</td>
</tr>
<tr>
<td>5</td>
<td>3.7389768875293014e-05</td>
<td>3.8e-05</td>
</tr>
<tr>
<td>6</td>
<td>0.00021810698510587546</td>
<td>0.000223</td>
</tr>
<tr>
<td>7</td>
<td>0.001017832597160754</td>
<td>0.000973</td>
</tr>
<tr>
<td>8</td>
<td>0.003859281930901185</td>
<td>0.003806</td>
</tr>
<tr>
<td>9</td>
<td>0.012006654896137007</td>
<td>0.012054</td>
</tr>
<tr>
<td>10</td>
<td>0.030817080900085007</td>
<td>0.030699</td>
</tr>
<tr>
<td>11</td>
<td>0.065369565545635</td>
<td>0.065476</td>
</tr>
<tr>
<td>12</td>
<td>0.11439673970486108</td>
<td>0.114263</td>
</tr>
<tr>
<td>13</td>
<td>0.1642619852172365</td>
<td>0.164436</td>
</tr>
<tr>
<td>14</td>
<td>0.1916389275344246</td>
<td>0.191862</td>
</tr>
<tr>
<td>15</td>
<td>0.1780305056987967</td>
<td>0.178999</td>
</tr>
<tr>
<td>16</td>
<td>0.1304209743738704</td>
<td>0.130415</td>
</tr>
<tr>
<td>17</td>
<td>0.07160367220526209</td>
<td>0.071504</td>
</tr>
<tr>
<td>18</td>
<td>0.027845872524268643</td>
<td>0.027668</td>
</tr>
<tr>
<td>19</td>
<td>0.006839337111223871</td>
<td>0.006797</td>
</tr>
<tr>
<td>20</td>
<td>0.0007979226629761189</td>
<td>0.000785</td>
</tr>
</tbody>
</table>

From the table above, can you see the law of large numbers at work?

Let's do some more calculations.

Comparison with different θ

Now we fix

\[n = 20, k = 10, I = 1,000,000 \]

We'll vary \(\theta \) from 0.01 to 0.99 and plot outcomes against \(\theta \).
Comparison with different θ

Now we fix $\theta = 0.7$, $k = 10$, $I = 1,000,000$ and vary n from 1 to 100.

Then we'll plot outcomes.
Quantitative Economics with Python

```
import numpy as np
n_low, n_high, nn = 1, 100, 50
ns = np.linspace(n_low, n_high, nn, dtype='int')
P = []
f_kI = []
for i in range(nn):
    freq = frequentist(θ, ns[i], I)
    freq.binomial(k)
    freq.draw()
    freq.compute_fk(k)
    P.append(freq.P)
    f_kI.append(freq.f_kI)
```

```
fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()
a.plot(ns, P, 'k--', label='Theoretical')
a.plot(ns, f_kI, 'r--', label='Frequentist')
plt.title(r'Comparison with different $n$', fontsize=16)
plt.xlabel(r'$n$', fontsize=15)
plt.ylabel('Fraction', fontsize=15)
plt.tick_params(labelsize=13)
plt.legend()
plt.show()
```

Comparison with different n

Comparison with different I
Now we fix $\theta = 0.7$, $n = 20$, $k = 10$ and vary $\log(I)$ from 2 to 7.

```python
I_log_low, I_log_high, nI = 2, 6, 200
glog_Is = np.linspace(I_log_low, I_log_high, nI)
Is = np.power(10, log_Is).astype(int)
P = []
f_kI = []
for i in range(nI):
    freq = frequentist(\theta, n, Is[i])
    freq.binomial(k)
    freq.draw()
    freq.compute_fk(k)
    P.append(freq.P)
    f_kI.append(freq.f_kI)

fig, ax = plt.subplots(figsize=(8, 6))
ax.grid()
ax.plot(Is, P, 'k-.
', label='Theoretical')
ax.plot(Is, f_kI, 'r--', label='Fraction')
plt.title(r'Comparison with different $I$', fontsize=16)
plt.xlabel(r'$I$', fontsize=15)
plt.ylabel('Fraction', fontsize=15)
plt.tick_params(labelsize=13)
plt.legend()
plt.show()
```

12.2. Frequentist Interpretation 221
From the above graphs, we can see that I, the number of independent sequences, plays an important role.

When I becomes larger, the difference between theoretical probability and frequentist estimate becomes smaller.

Also, as long as I is large enough, changing θ or n does not substantially change the accuracy of the observed fraction as an approximation of θ.

The Law of Large Numbers is at work here.

For each draw of an independent sequence, $\text{Prob}(X_i = k|\theta)$ is the same, so aggregating all draws forms an i.i.d sequence of a binary random variable $\rho_{k,i}, i = 1, 2, ... I$, with a mean of $\text{Prob}(X = k|\theta)$ and a variance of

$$n \cdot \text{Prob}(X = k|\theta) \cdot (1 - \text{Prob}(X = k|\theta)).$$

So, by the LLN, the average of $P_{k,i}$ converges to:

$$E[\rho_{k,i}] = \text{Prob}(X = k|\theta) = \left(\frac{n!}{k!(n-k)!}\right) \theta^k (1 - \theta)^{n-k}$$

as I goes to infinity.
12.3 Bayesian Interpretation

We again use a binomial distribution.

But now we don’t regard θ as being a fixed number.

Instead, we think of it as a random variable.

θ is described by a probability distribution.

But now this probability distribution means something different than a relative frequency that we can anticipate to occur in a large i.i.d. sample.

Instead, the probability distribution of θ is now a summary of our views about likely values of θ either

- before we have seen any data at all, or
- before we have seen more data, after we have seen some data

Thus, suppose that, before seeing any data, you have a personal prior probability distribution saying that

$$P(\theta) = \frac{\theta^{\alpha-1} (1 - \theta)^{\beta-1}}{B(\alpha, \beta)}$$

where $B(\alpha, \beta)$ is a beta function, so that $P(\theta)$ is a beta distribution with parameters α, β.

Exercise 12.3.1

a) Please write down the likelihood function for a sample of length n from a binomial distribution with parameter θ.

b) Please write down the posterior distribution for θ after observing one flip of the coin.

c) Now pretend that the true value of $\theta = .4$ and that someone who doesn’t know this has a beta prior distribution with parameters with $\beta = \alpha = .5$. Please write a Python class to simulate this person’s personal posterior distribution for θ for a single sequence of n draws.

d) Please plot the posterior distribution for θ as a function of θ as n grows as 1, 2,

e) For various n’s, please describe and compute a Bayesian coverage interval for the interval $[.45, .55]$.

f) Please tell what question a Bayesian coverage interval answers.

g) Please compute the Posterior probability that $\theta \in [.45, .55]$ for various values of sample size n.

h) Please use your Python class to study what happens to the posterior distribution as $n \rightarrow +\infty$, again assuming that the true value of $\theta = .4$, though it is unknown to the person doing the updating via Bayes’ Law.

Solution to Exercise 12.3.1

a) Please write down the likelihood function and the posterior distribution for θ after observing one flip of our coin.

Suppose the outcome is Y.

The likelihood function is:

$$L(Y|\theta) = \text{Prob}(X = Y|\theta) = \theta^Y (1 - \theta)^{1-Y}$$

b) Please write the posterior distribution for θ after observing one flip of our coin.

The prior distribution is

$$\text{Prob}(\theta) = \frac{\theta^{\alpha-1} (1 - \theta)^{\beta-1}}{B(\alpha, \beta)}$$
We can derive the posterior distribution for \(\theta \) via

\[
\text{Prob}(\theta|Y) = \frac{\text{Prob}(Y|\theta)\text{Prob}(\theta)}{\text{Prob}(Y)} = \frac{\int_0^1 \text{Prob}(Y|\theta)\text{Prob}(\theta)d\theta}{\int_0^1 \text{Prob}(Y|\theta)\text{Prob}(\theta)d\theta}
\]

\[
= \int_0^1 \theta^Y(1-\theta)^{1-Y}\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}d\theta
\]

\[
= \frac{\theta^{Y+\alpha-1}(1-\theta)^{1-Y+\beta-1}}{B(\alpha,\beta)}
\]

which means that

\[
\text{Prob}(\theta|Y) \sim \text{Beta}(\alpha + Y, \beta + (1 - Y))
\]

Now please pretend that the true value of \(\theta = .4 \) and that someone who doesn’t know this has a beta prior with \(\beta = \alpha = .5 \).

c) Now pretend that the true value of \(\theta = .4 \) and that someone who doesn’t know this has a beta prior distribution with parameters with \(\beta = \alpha = .5 \). Please write a Python class to simulate this person’s personal posterior distribution for \(\theta \) for a single sequence of \(n \) draws.

```python
class Bayesian:
    def __init__(self, \( \theta = 0.4 \), \( n = 1_000_000 \), \( \alpha = 0.5 \), \( \beta = 0.5 \)):
        Parameters:
        ----------
        \( \theta \) : float, ranging from [0,1].
        probability that one toss of a coin will be a head with \( Y = 1 \)

        \( n \) : int.
        number of independent flips in an independent sequence of draws

        \( \alpha, \beta \) : int or float.
        parameters of the prior distribution on \( \theta \)

        self.\( \theta \), self.\( n \), self.\( \alpha \), self.\( \beta \) = \( \theta \), \( n \), \( \alpha \), \( \beta \)
        self.prior = st.beta(\( \alpha \), \( \beta \))

    def draw(self):
        simulate a single sequence of draws of length \( n \), given probability \( \theta \)

        array = np.random.rand(self.\( n \))
        self.draws = (array < self.\( \theta \)).astype(int)

    def form_single_posterior(self, \( step_num \)):
        form a posterior distribution after observing the first \( step_num \) elements of...
        the draws
        Parameters
        ----------
```

(continues on next page)
def form_posterior_series(self, num_obs_list):
 ""
 form a series of posterior distributions that form after observing different
 number of draws.
 Parameters

 num_obs_list: a list of int.
 a list of the number of observations used to form a series of
 posterior distributions.
 ""
 self.posterior_list = []
 for num in num_obs_list:
 self.posterior_list.append(self.form_single_posterior(num))

Bay_stat = Bayesian()
Bay_stat.draw()

num_list = [1, 2, 3, 4, 5, 10, 20, 30, 50, 70, 100, 300, 500, 1000, # this line for
 finite n
 5000, 10_000, 50_000, 100_000, 200_000, 300_000] # this line for
 approximately infinite n

Bay_stat.form_posterior_series(num_list)

θ_values = np.linspace(0.01, 1, 100)
fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(θ_values, Bay_stat.prior.pdf(θ_values), label='Prior Distribution', color='k',
 linestyle='--')

for ii, num in enumerate(num_list[:14]):
 ax.plot(θ_values, Bay_stat.posterior_list[ii].pdf(θ_values), label='
P.D.F of Posterior Distributions', fontsize=15)
ax.legend(fontsize=11)

(continues on next page)
e) For various n’s, please describe and compute .05 and .95 quantiles for posterior probabilities.

```python
upper_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list[:14]]
lower_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list[:14]]

interval_df = pd.DataFrame()
interval_df['upper'] = upper_bound
interval_df['lower'] = lower_bound
interval_df.index = num_list[:14]
interval_df = interval_df.T
interval_df

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upper</td>
<td>0.228520</td>
<td>0.097308</td>
<td>0.062413</td>
<td>0.16528</td>
<td>0.127776</td>
<td>0.347322</td>
<td>0.324234</td>
</tr>
<tr>
<td>lower</td>
<td>0.998457</td>
<td>0.902692</td>
<td>0.764466</td>
<td>0.83472</td>
<td>0.739366</td>
<td>0.814884</td>
<td>0.675766</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>100</td>
<td>300</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>upper</td>
<td>0.323600</td>
<td>0.310582</td>
<td>0.361765</td>
<td>0.360361</td>
<td>0.367325</td>
<td>0.368379</td>
<td>0.364887</td>
</tr>
<tr>
<td>lower</td>
<td>0.614290</td>
<td>0.536089</td>
<td>0.555092</td>
<td>0.522172</td>
<td>0.460571</td>
<td>0.440440</td>
<td>0.415582</td>
</tr>
</tbody>
</table>
```

As n increases, we can see that Bayesian coverage intervals narrow and move toward 0.4.

f) Please tell what question a Bayesian coverage interval answers.

The Bayesian coverage interval tells the range of θ that corresponds to the $[p_1, p_2]$ quantiles of the cumulative probability distribution (CDF) of the posterior distribution.
To construct the coverage interval we first compute a posterior distribution of the unknown parameter θ.

If the CDF is $F(\theta)$, then the Bayesian coverage interval $[a, b]$ for the interval $[p_1, p_2]$ is described by

$$F(a) = p_1, F(b) = p_2$$

g) Please compute the Posterior probability that $\theta \in [.45, .55]$ for various values of sample size n.

```python
left_value, right_value = 0.45, 0.55
posterior_prob_list = [ii.cdf(right_value) - ii.cdf(left_value) for ii in Bay_stat]

fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(posterior_prob_list)
ax.set_title('Posterior Probability that $\theta$ Ranges from $%.2f$ to $%.2f$' % (left_value, right_value), fontsize=13)
ax.set_xticks(np.arange(0, len(posterior_prob_list), 3))
ax.set_xticklabels(num_list[::3])
ax.set_xlabel('Number of Observations', fontsize=11)
plt.show()
```

Notice that in the graph above the posterior probability that $\theta \in [.45, .55]$ typically exhibits a hump shape as n increases. Two opposing forces are at work.

The first force is that the individual adjusts his belief as he observes new outcomes, so his posterior probability distribution becomes more and more realistic, which explains the rise of the posterior probability.

12.3. Bayesian Interpretation
Quantitative Economics with Python

However, \([.45, .55]\) actually excludes the true \(\theta = .4\) that generates the data.

As a result, the posterior probability drops as larger and larger samples refine his posterior probability distribution of \(\theta\). The descent seems precipitous only because of the scale of the graph that has the number of observations increasing disproportionately.

When the number of observations becomes large enough, our Bayesian becomes so confident about \(\theta\) that he considers \(\theta \in [.45, .55]\) very unlikely.

That is why we see a nearly horizontal line when the number of observations exceeds 500.

\(\textbf{h)}\) Please use your Python class to study what happens to the posterior distribution as \(n \to +\infty\), again assuming that the true value of \(\theta = .4\), though it is unknown to the person doing the updating via Bayes’ Law.

Using the Python class we made above, we can see the evolution of posterior distributions as \(n\) approaches infinity.

```python
fig, ax = plt.subplots(figsize=(10, 6))
for ii, num in enumerate(num_list[14:]):
    ii += 14
    ax.plot(θ_values, Bay_stat.posterior_list[ii].pdf(θ_values),
            label='Posterior with n=%d thousand' % (num/1000))
ax.set_title('P.D.F of Posterior Distributions', fontsize=15)
ax.set_xlabel(r'$\theta$', fontsize=15)
ax.set_xlim(0.3, 0.5)
ax.legend(fontsize=11)
plt.show()
```

P.D.F of Posterior Distributions

As \(n\) increases, we can see that the probability density functions concentrate on 0.4, the true value of \(\theta\).
Here the posterior means converges to 0.4 while the posterior standard deviations converges to 0 from above.

To show this, we compute the means and variances statistics of the posterior distributions.

```python
mean_list = [ii.mean() for ii in Bay_stat.posterior_list]
std_list = [ii.std() for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(1, 2, figsize=(14, 5))
ax[0].plot(mean_list)
ax[0].set_title('Mean Values of Posterior Distribution', fontsize=13)
ax[0].set_xticks(np.arange(0, len(mean_list), 3))
ax[0].set_xticklabels(num_list[::3])
ax[0].set_xlabel('Number of Observations', fontsize=11)

ax[1].plot(std_list)
ax[1].set_title('Standard Deviations of Posterior Distribution', fontsize=13)
ax[1].set_xticks(np.arange(0, len(std_list), 3))
ax[1].set_xticklabels(num_list[::3])
ax[1].set_xlabel('Number of Observations', fontsize=11)
plt.show()
```

How shall we interpret the patterns above?

The answer is encoded in the Bayesian updating formulas.

It is natural to extend the one-step Bayesian update to an \(n \)-step Bayesian update.

\[
\text{Prob}(\theta|k) = \frac{\text{Prob}(\theta, k)}{\text{Prob}(k)} = \frac{\text{Prob}(k|\theta) \ast \text{Prob}(\theta)}{\text{Prob}(k)} = \frac{\int_0^1 \text{Prob}(k|\theta) \ast \text{Prob}(\theta) d\theta}{\text{Prob}(k)}
\]

\[
= \frac{\int_0^1 \binom{N}{k} (1 - \theta)^{N-k} \theta^k \ast \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)} d\theta}{\int_0^1 \binom{N}{k} (1 - \theta)^{N-k} \theta^k \ast \frac{\theta^{a-1}(1-\theta)^{b-1}}{B(a,b)} d\theta}
\]

\[
= \frac{(1 - \theta)^{\beta + N - k - 1} \ast \theta^{\alpha + k - 1}}{\int_0^1 (1 - \theta)^{\beta + N - k - 1} \ast \theta^{\alpha + k - 1} d\theta}
\]

\[
= \text{Beta}(\alpha + k, \beta + N - k)
\]
A beta distribution with α and β has the following mean and variance.

The mean is \[\frac{\alpha}{\alpha+\beta} \]

The variance is \[\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)} \]

- α can be viewed as the number of successes
- β can be viewed as the number of failures

The random variables k and $N - k$ are governed by Binomial Distribution with $\theta = 0.4$.

Call this the true data generating process.

According to the Law of Large Numbers, for a large number of observations, observed frequencies of k and $N - k$ will be described by the true data generating process, i.e., the population probability distribution that we assumed when generating the observations on the computer. (See Exercise 12.2.1).

Consequently, the mean of the posterior distribution converges to 0.4 and the variance withers to zero.

```python
upper_bound = [ii.ppf(0.95) for ii in Bay_stat.posterior_list]
lower_bound = [ii.ppf(0.05) for ii in Bay_stat.posterior_list]

fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(np.arange(len(upper_bound)), upper_bound, label='95 th Quantile')
ax.scatter(np.arange(len(lower_bound)), lower_bound, label='05 th Quantile')

ax.set_xticks(np.arange(0, len(upper_bound), 2))
ax.set_xlabel('Number of Observations', fontsize=12)
ax.set_title('Bayesian Coverage Intervals of Posterior Distributions', fontsize=15)
ax.legend(fontsize=11)
plt.show()
```
After observing a large number of outcomes, the posterior distribution collapses around 0.4.

Thus, the Bayesian statistician comes to believe that θ is near .4.

As shown in the figure above, as the number of observations grows, the Bayesian coverage intervals (BCIs) become narrower and narrower around 0.4.

However, if you take a closer look, you will find that the centers of the BCIs are not exactly 0.4, due to the persistent influence of the prior distribution and the randomness of the simulation path.
13.1 Overview

This lecture describes how an administrator deployed a multivariate hypergeometric distribution in order to access the fairness of a procedure for awarding research grants.

In the lecture we’ll learn about

- properties of the multivariate hypergeometric distribution
- first and second moments of a multivariate hypergeometric distribution
- using a Monte Carlo simulation of a multivariate normal distribution to evaluate the quality of a normal approximation
- the administrator’s problem and why the multivariate hypergeometric distribution is the right tool

13.2 The Administrator’s Problem

An administrator in charge of allocating research grants is in the following situation.

To help us forget details that are none of our business here and to protect the anonymity of the administrator and the subjects, we call research proposals balls and continents of residence of authors of a proposal a color.

There are K_i balls (proposals) of color i.

There are c distinct colors (continents of residence).

Thus, $i = 1, 2, \ldots, c$

So there is a total of $N = \sum_{i=1}^{c} K_i$ balls.

All N of these balls are placed in an urn.
Then \(n \) balls are drawn randomly.

The selection procedure is supposed to be \textbf{color blind} meaning that \textbf{ball quality}, a random variable that is supposed to be independent of \textbf{ball color}, governs whether a ball is drawn.

Thus, the selection procedure is supposed randomly to draw \(n \) balls from the urn.

The \(n \) balls drawn represent successful proposals and are awarded research funds.

The remaining \(N - n \) balls receive no research funds.

13.2.1 Details of the Awards Procedure Under Study

Let \(k_i \) be the number of balls of color \(i \) that are drawn.

Things have to add up so \(\sum_{i=1}^{c} k_i = n \).

Under the hypothesis that the selection process judges proposals on their quality and that quality is independent of continent of the author's continent of residence, the administrator views the outcome of the selection procedure as a random vector

\[
X = \begin{pmatrix}
k_1 \\
k_2 \\
\vdots \\
k_c
\end{pmatrix}.
\]

To evaluate whether the selection procedure is \textbf{color blind} the administrator wants to study whether the particular realization of \(X \) drawn can plausibly be said to be a random draw from the probability distribution that is implied by the \textbf{color blind} hypothesis.

The appropriate probability distribution is the one described here.

Let’s now instantiate the administrator’s problem, while continuing to use the colored balls metaphor.

The administrator has an urn with \(N = 238 \) balls.

157 balls are blue, 11 balls are green, 46 balls are yellow, and 24 balls are black.

So \((K_1, K_2, K_3, K_4) = (157, 11, 46, 24) \) and \(c = 4 \).

15 balls are drawn without replacement.

So \(n = 15 \).

The administrator wants to know the probability distribution of outcomes

\[
X = \begin{pmatrix}
k_1 \\
k_2 \\
\vdots \\
k_c
\end{pmatrix}.
\]

In particular, he wants to know whether a particular outcome - in the form of a \(4 \times 1 \) vector of integers recording the numbers of blue, green, yellow, and black balls, respectively, - contains evidence against the hypothesis that the selection process is \textit{fair}, which here means \textbf{color blind} and truly are random draws without replacement from the population of \(N \) balls.

The right tool for the administrator’s job is the \textbf{multivariate hypergeometric distribution}.
13.2.2 Multivariate Hypergeometric Distribution

Let’s start with some imports.

```python
@matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import matplotlib.cm as cm
import numpy as np
from scipy.special import comb
from scipy.stats import normaltest
from numba import njit, prange
```

To recapitulate, we assume there are in total c types of objects in an urn.

If there are K_i type i object in the urn and we take n draws at random without replacement, then the numbers of type i objects in the sample $(k_1, k_2, ..., k_c)$ has the multivariate hypergeometric distribution.

Note again that $N = \sum_{i=1}^c K_i$ is the total number of objects in the urn and $n = \sum_{i=1}^c k_i$.

Notation

We use the following notation for binomial coefficients: $\binom{m}{q} = \frac{m!}{(m-q)!}$.

The multivariate hypergeometric distribution has the following properties:

Probability mass function:

$$
\Pr\{X_i = k_i \ \forall i\} = \frac{\prod_{i=1}^c \binom{K_i}{k_i}}{\binom{N}{n}}
$$

Mean:

$$
E(X_i) = n \frac{K_i}{N}
$$

Variances and covariances:

$$
\text{Var}(X_i) = n \frac{N-n}{N-1} \frac{K_i}{N} \left(1 - \frac{K_i}{N}\right)
$$

$$
\text{Cov}(X_i, X_j) = -n \frac{N-n}{N-1} \frac{K_i}{N} \frac{K_j}{N}
$$

To do our work for us, we’ll write an `Urn` class.

```python
class Urn:
    def __init__(self, K_arr):
        
        Initialization given the number of each type $i$ object in the urn.

        Parameters
        ----------
        K_arr: ndarray(int)
            number of each type $i$ object.

        self.K_arr = np.array(K_arr)
        self.N = np.sum(K_arr)
```

(continues on next page)
self.c = len(K_arr)

def pmf(self, k_arr):

 Probability mass function.

 Parameters

 k_arr: ndarray(int)
 number of observed successes of each object.

 K_arr, N = self.K_arr, self.N

 k_arr = np.atleast_2d(k_arr)
 n = np.sum(k_arr, 1)

 num = np.prod(comb(K_arr, k_arr), 1)
 denom = comb(N, n)

 pr = num / denom
 return pr

def moments(self, n):

 Compute the mean and variance-covariance matrix for
 multivariate hypergeometric distribution.

 Parameters

 n: int
 number of draws.

 K_arr, N, c = self.K_arr, self.N, self.c

 # mean
 μ = n * K_arr / N

 # variance-covariance matrix
 Σ = np.full((c, c), n * (N - n) / (N - 1) / N ** 2)
 for i in range(c-1):
 Σ[i, i] *= K_arr[i] * (N - K_arr[i])
 for j in range(i+1, c):
 Σ[i, j] *= -K_arr[i] * K_arr[j]
 Σ[j, i] = Σ[i, j]

 Σ[-1, -1] *= K_arr[-1] * (N - K_arr[-1])

 return μ, Σ

def simulate(self, n, size=1, seed=None):

 Simulate a sample from multivariate hypergeometric
distribution where at each draw we take n objects
from the urn without replacement.

Parameters

- `n`: int
 - number of objects for each draw.
- `size`: int (optional)
 - sample size.
- `seed`: int (optional)
 - random seed.

K_arr = self.K_arr

gen = np.random.Generator(np.random.PCG64(seed))
sample = gen.multivariate_hypergeometric(K_arr, n, size=size)

return sample

13.3 Usage

13.3.1 First example

Apply this to an example from wiki:
Suppose there are 5 black, 10 white, and 15 red marbles in an urn. If six marbles are chosen without replacement, the probability that exactly two of each color are chosen is

\[
P(2 \text{ black}, 2 \text{ white}, 2 \text{ red}) = \binom{5}{2} \binom{10}{2} \binom{15}{2} \binom{30}{6} = 0.079575596816976
\]

construct the urn
K_arr = [5, 10, 15]
urn = Urn(K_arr)

Now use the Urn Class method `pmf` to compute the probability of the outcome \(X = (2, 2, 2) \)

k_arr = [2, 2, 2] # array of number of observed successes
urn.pmf(k_arr)

array([0.0795756])

We can use the code to compute probabilities of a list of possible outcomes by constructing a 2-dimensional array `k_arr` and `pmf` will return an array of probabilities for observing each case.

k_arr = [[2, 2, 2], [1, 3, 2]]
urn.pmf(k_arr)

array([0.0795756, 0.1061008])

Now let's compute the mean vector and variance-covariance matrix.
Quantitative Economics with Python

\(n = 6 \)
\[\mu, \Sigma = \text{urn.moments}(n) \]

\(\mu \)
\[\text{array([1., 2., 3.])} \]

\(\Sigma \)
\[\text{array([[0.68965517, -0.27586207, -0.4137931],}
\[-0.27586207, 1.10344828, -0.82758621],
\[-0.4137931 , -0.82758621, 1.24137931]]) \]

13.3.2 Back to The Administrator’s Problem

Now let’s turn to the grant administrator’s problem.

Here the array of numbers of \(i \) objects in the urn is \((157, 11, 46, 24)\).

\[K_{\text{arr}} = [157, 11, 46, 24] \]
\[\text{urn} = \text{Urn}(K_{\text{arr}}) \]

Let’s compute the probability of the outcome \((10, 1, 4, 0)\).

\[k_{\text{arr}} = [10, 1, 4, 0] \]
\[\text{urn.pmf}(k_{\text{arr}}) \]

\[\text{array([0.01547738])} \]

We can compute probabilities of three possible outcomes by constructing a 3-dimensional arrays \(k_{\text{arr}} \) and utilizing the method \(\text{pmf} \) of the \(\text{Urn} \) class.

\[k_{\text{arr}} = [[5, 5, 4, 1], [10, 1, 2, 2], [13, 0, 2, 0]] \]
\[\text{urn.pmf}(k_{\text{arr}}) \]

\[\text{array([6.21412534e-06, 2.70935969e-02, 1.61839976e-02])} \]

Now let’s compute the mean and variance-covariance matrix of \(X \) when \(n = 6 \).

\[n = 6 \# \text{ number of draws} \]
\[\mu, \Sigma = \text{urn.moments}(n) \]

\# mean
\[\mu \]
\[\text{array([3.95798319, 0.27731092, 1.15966387, 0.60504202])} \]
We can simulate a large sample and verify that sample means and covariances closely approximate the population means and covariances.

```python
size = 10_000_000
sample = urn.simulate(n, size=size)

# mean
np.mean(sample, 0)

array([3.9578503, 0.2774902, 1.1597118, 0.6049477])

# variance-covariance matrix
np.cov(sample.T)

array([[ 1.31947023, -0.17915369, -0.74953457, -0.39078198],
        [-0.17915369, 0.25915181, -0.05244306, -0.02755506],
        [-0.74953457, -0.05244306, 0.91612903, -0.11415143],
        [-0.39078198, -0.02755506, -0.11415143, 0.53248843]])
```

Evidently, the sample means and covariances approximate their population counterparts well.

13.3.3 Quality of Normal Approximation

To judge the quality of a multivariate normal approximation to the multivariate hypergeometric distribution, we draw a large sample from a multivariate normal distribution with the mean vector and covariance matrix for the corresponding multivariate hypergeometric distribution and compare the simulated distribution with the population multivariate hypergeometric distribution.

```
sample_normal = np.random.multivariate_normal(μ, Σ, size=size)

def bivariate_normal(x, y, μ, Σ, i, j):
    μ_x, μ_y = μ[i], μ[j]
    σ_x, σ_y = np.sqrt(Σ[i, i]), np.sqrt(Σ[j, j])
    σ_xy = Σ[i, j]
    x_μ = x - μ_x
    y_μ = y - μ_y
    ρ = σ_xy / (σ_x * σ_y)
    z = x_μ**2 / σ_x**2 + y_μ**2 / σ_y**2 - 2 * ρ * x_μ * y_μ / (σ_x * σ_y)
    denom = 2 * np.pi * σ_x * σ_y * np.sqrt(1 - ρ**2)
```

(continues on next page)
return np.exp(-z / (2 * (1 - p**2))) / denom

@njit
def count(vec1, vec2, n):
 size = sample.shape[0]

 count_mat = np.zeros((n+1, n+1))
 for i in prange(size):
 count_mat[vec1[i], vec2[i]] += 1
 return count_mat

c = urn.c
fig, axs = plt.subplots(c, c, figsize=(14, 14))

grids for plotting the bivariate Gaussian
x_grid = np.linspace(-2, n+1, 100)
y_grid = np.linspace(-2, n+1, 100)
X, Y = np.meshgrid(x_grid, y_grid)

for i in range(c):
 axs[i, i].hist(sample[:, i], bins=np.arange(0, n, 1), alpha=0.5, density=True,
 label='hypergeom')
 axs[i, i].hist(sample_normal[:, i], bins=np.arange(0, n, 1), alpha=0.5,
 density=True, label='normal')
 axs[i, i].legend()
 axs[i, i].set_title('$k_{\{' + str(i+1) + '}$')
for j in range(c):
 if i == j:
 continue

 # bivariate Gaussian density function
 Z = bivariate_normal(X, Y, μ, Σ, i, j)
 cs = axs[i, j].contour(X, Y, Z, 4, colors='black', alpha=0.6)
 axs[i, j].clabel(cs, inline=1, fontsize=10)

 # empirical multivariate hypergeometric distribution
 count_mat = count(sample[:, i], sample[:, j], n)
 axs[i, j].pcolor(count_mat.T/size, cmap='Blues')
 axs[i, j].set_title('$<k_{\{' + str(i+1) + '}$, k_{\{' + str(j+1) + '}$>$')

plt.show()
The diagonal graphs plot the marginal distributions of \(k_i \) for each \(i \) using histograms.

Note the substantial differences between hypergeometric distribution and the approximating normal distribution.

The off-diagonal graphs plot the empirical joint distribution of \(k_i \) and \(k_j \) for each pair \((i, j)\).

The darker the blue, the more data points are contained in the corresponding cell. (Note that \(k_i \) is on the x-axis and \(k_j \) is on the y-axis).

The contour maps plot the bivariate Gaussian density function of \((k_i, k_j)\) with the population mean and covariance given by slices of \(\mu \) and \(\Sigma \) that we computed above.

Let’s also test the normality for each \(k_i \) using \texttt{scipy.stats.normaltest} that implements D’Agostino and Pearson’s test that combines skew and kurtosis to form an omnibus test of normality.

The null hypothesis is that the sample follows normal distribution.

\texttt{normaltest} returns an array of p-values associated with tests for each \(k_i \) sample.
As we can see, all the p-values are almost 0 and the null hypothesis is soundly rejected.

By contrast, the sample from normal distribution does not reject the null hypothesis.

The lesson to take away from this is that the normal approximation is imperfect.
CHAPTER FOURTEEN

MULTIVARIATE NORMAL DISTRIBUTION

Contents

- Multivariate Normal Distribution
 - Overview
 - The Multivariate Normal Distribution
 - Bivariate Example
 - Trivariate Example
 - One Dimensional Intelligence (IQ)
 - Information as Surprise
 - Cholesky Factor Magic
 - Math and Verbal Intelligence
 - Univariate Time Series Analysis
 - Stochastic Difference Equation
 - Application to Stock Price Model
 - Filtering Foundations
 - Classic Factor Analysis Model
 - PCA and Factor Analysis

14.1 Overview

This lecture describes a workhorse in probability theory, statistics, and economics, namely, the multivariate normal distribution.

In this lecture, you will learn formulas for

- the joint distribution of a random vector x of length N
- marginal distributions for all subvectors of x
- conditional distributions for subvectors of x conditional on other subvectors of x

We will use the multivariate normal distribution to formulate some useful models:
• a factor analytic model of an intelligence quotient, i.e., IQ
• a factor analytic model of two independent inherent abilities, say, mathematical and verbal.
• a more general factor analytic model
• Principal Components Analysis (PCA) as an approximation to a factor analytic model
• time series generated by linear stochastic difference equations
• optimal linear filtering theory

14.2 The Multivariate Normal Distribution

This lecture defines a Python class `MultivariateNormal` to be used to generate marginal and conditional distributions associated with a multivariate normal distribution.

For a multivariate normal distribution it is very convenient that

• conditional expectations equal linear least squares projections
• conditional distributions are characterized by multivariate linear regressions

We apply our Python class to some examples.

We use the following imports:

```python
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from numba import njit
import statsmodels.api as sm

Assume that an $N \times 1$ random vector $z$ has a multivariate normal probability density.

This means that the probability density takes the form

$$f(z; \mu, \Sigma) = (2\pi)^{-\frac{N}{2}} \det(\Sigma)^{-\frac{1}{2}} \exp\left(-\frac{1}{2} (z - \mu)' \Sigma^{-1} (z - \mu)\right)$$

where $\mu = E(z)$ is the mean of the random vector $z$ and $\Sigma = E(z - \mu)(z - \mu)'$ is the covariance matrix of $z$.

The covariance matrix $\Sigma$ is symmetric and positive definite.

```python
@njit
def f(z, mu, Sigma):
 """
 The density function of multivariate normal distribution.
 Parameters

z: ndarray(float, dim=2)
 random vector, N by 1
mu: ndarray(float, dim=1 or 2)
 the mean of z, N by 1
Sigma: ndarray(float, dim=2)
 the covariance matrix of z, N by 1
 """

(continues on next page)
```python
z = np.atleast_2d(z)
μ = np.atleast_2d(μ)
Σ = np.atleast_2d(Σ)

N = z.size

temp1 = np.linalg.det(Σ) ** (-1/2)
temp2 = np.exp(-.5 * (z - μ).T @ np.linalg.inv(Σ) @ (z - μ))

return (2 * np.pi) ** (-N/2) * temp1 * temp2
```

For some integer $k \in \{1, \ldots, N - 1\}$, partition z as

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix},$$

where z_1 is an $(N - k) \times 1$ vector and z_2 is a $k \times 1$ vector.

Let

$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix},$$

be corresponding partitions of μ and Σ.

The **marginal** distribution of z_1 is

- multivariate normal with mean μ_1 and covariance matrix Σ_{11}.

The **marginal** distribution of z_2 is

- multivariate normal with mean μ_2 and covariance matrix Σ_{22}.

The distribution of z_1 **conditional** on z_2 is

- multivariate normal with mean

$$\hat{\mu}_1 = \mu_1 + \beta (z_2 - \mu_2)$$

and covariance matrix

$$\hat{\Sigma}_{11} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} = \Sigma_{11} - \beta \Sigma_{22} \beta'$$

where

$$\beta = \Sigma_{12} \Sigma_{22}^{-1}$$

is an $(N - k) \times k$ matrix of **population regression coefficients** of the $(N - k) \times 1$ random vector $z_1 - \mu_1$ on the $k \times 1$ random vector $z_2 - \mu_2$.

The following class constructs a multivariate normal distribution instance with two methods.

- a method `partition` computes β, taking k as an input
- a method `cond_dist` computes either the distribution of z_1 conditional on z_2 or the distribution of z_2 conditional on z_1
class MultivariateNormal:
 ""
 Class of multivariate normal distribution.
 Parameters

 μ: ndarray(float, dim=1)
 the mean of z, N by 1
 Σ: ndarray(float, dim=2)
 the covariance matrix of z, N by 1
 Arguments

 μ, Σ:
 see parameters
 μs: list(ndarray(float, dim=1))
 list of mean vectors μ1 and μ2 in order
 Σs: list(list(ndarray(float, dim=2)))
 2 dimensional list of covariance matrices
 Σ11, Σ12, Σ21, Σ22 in order
 βs: list(ndarray(float, dim=1))
 list of regression coefficients β1 and β2 in order
 ""
 def __init__(self, μ, Σ):
 """initialization"
 self.μ = np.array(μ)
 self.Σ = np.atleast_2d(Σ)
 def partition(self, k):
 """Given k, partition the random vector z into a size k vector z1
 and a size N-k vector z2. Partition the mean vector μ into
 μ1 and μ2, and the covariance matrix Σ into Σ11, Σ12, Σ21, Σ22
 correspondingly. Compute the regression coefficients β1 and β2
 using the partitioned arrays.
 ""
 μ = self.μ
 Σ = self.Σ

 self.μs = [μ[:k], μ[k:]]
 self.Σs = [[Σ[:k, :k], Σ[:k, k:]],
 [Σ[k:, :k], Σ[k:, k:]]]

 self.βs = [self.Σs[0][1] @ np.linalg.inv(self.Σs[1][1]),
 self.Σs[1][0] @ np.linalg.inv(self.Σs[0][0])]
 def cond_dist(self, ind, z):
 """Compute the conditional distribution of z1 given z2, or reversely.
 Argument ind determines whether we compute the conditional
 distribution of z1 (ind=0) or z2 (ind=1).
 Returns

 μ_hat: ndarray(float, ndim=1)
 The conditional mean of z1 or z2.
 ""
 (continues on next page)
Quantitative Economics with Python

Σ_hat: ndarray(float, ndim=2)

The conditional covariance matrix of z1 or z2.

```
β = self.βs[ind]
μs = self.μs
Es = self.Es

μ_hat = μs[ind] + β @ (z - μs[1-ind])
Σ_hat = Es[ind][ind] - β @ Es[1-ind][1-ind] @ β.T

return μ_hat, Σ_hat
```

Let’s put this code to work on a suite of examples.

We begin with a simple bivariate example; after that we’ll turn to a trivariate example.

We’ll compute population moments of some conditional distributions using our MultivariateNormal class.

For fun we’ll also compute sample analogs of the associated population regressions by generating simulations and then computing linear least squares regressions.

We’ll compare those linear least squares regressions for the simulated data to their population counterparts.

14.3 Bivariate Example

We start with a bivariate normal distribution pinned down by

\[
\mu = \begin{bmatrix} .5 \\ 1.0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 1 & .5 \\ .5 & 1 \end{bmatrix}
\]

\[
\mu = \text{np.array([.5, 1.])}
\Sigma = \text{np.array([[1., .5], [.5, 1.]])}
\]

construction of the multivariate normal instance
multi_normal = MultivariateNormal(μ, Σ)

\[
k = 1 \quad \# \text{choose partition}
\]

partition and compute regression coefficients
multi_normal.partition(k)
multi_normal.βs[0], multi_normal.βs[1]

(\text{array([[0.5]])}, \text{array([[0.5]])})

Let’s illustrate the fact that you can regress anything on anything else.

We have computed everything we need to compute two regression lines, one of \(z_2 \) on \(z_1 \), the other of \(z_1 \) on \(z_2 \).

We’ll represent these regressions as

\[
z_1 = a_1 + b_1 z_2 + \epsilon_1
\]

and

\[
z_2 = a_2 + b_2 z_1 + \epsilon_2
\]

14.3. Bivariate Example
where we have the population least squares orthogonality conditions

\[E\epsilon_1 z_2 = 0 \]

and

\[E\epsilon_2 z_1 = 0 \]

Let’s compute \(a_1, a_2, b_1, b_2 \).

\[
\begin{align*}
\text{beta} &= \text{multi_normal.}\beta \\
\text{a1} &= \mu[0] - \text{beta}[0] \times \mu[1] \\
\text{b1} &= \text{beta}[0] \\
\text{a2} &= \mu[1] - \text{beta}[1] \times \mu[0] \\
\text{b2} &= \text{beta}[1]
\end{align*}
\]

Let’s print out the intercepts and slopes.

For the regression of \(z_1 \) on \(z_2 \) we have

\[
\begin{align*}
\text{print} ("a1 = ", \text{a1}) \\
\text{print} ("b1 = ", \text{b1})
\end{align*}
\]

\[
\begin{align*}
\text{a1} &= [[[0.]]] \\
\text{b1} &= [[[0.5]]]
\end{align*}
\]

For the regression of \(z_2 \) on \(z_1 \) we have

\[
\begin{align*}
\text{print} ("a2 = ", \text{a2}) \\
\text{print} ("b2 = ", \text{b2})
\end{align*}
\]

\[
\begin{align*}
\text{a2} &= [[[0.75]]] \\
\text{b2} &= [[[0.5]]]
\end{align*}
\]

Now let’s plot the two regression lines and stare at them.

\[
\begin{align*}
z2 &= \text{np.linspace(-4,4,100)} \\
\text{a1} &= \text{np.squeeze(a1)} \\
\text{b1} &= \text{np.squeeze(b1)} \\
\text{a2} &= \text{np.squeeze(a2)} \\
\text{b2} &= \text{np.squeeze(b2)} \\
\text{z1} &= \text{b1} \times z2 + \text{a1} \\
\text{z1h} &= z2/\text{b2} - \text{a2}/\text{b2}
\end{align*}
\]

\[
\text{fig} = \text{plt.figure(figsize=(12,12))} \\
\text{ax} = \text{fig.add_subplot(1,1,1)}
\]

(continues on next page)
ax.set(xlim=(-4, 4), ylim=(-4, 4))
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['right'].set_ticks_position('bottom')
ax.spines['bottom'].set_ticks_position('left')
plt.ylabel('z_1', loc='top')
plt.xlabel('z_2', loc='right')
plt.title('two regressions')
plt.plot(z2, z1, 'r', label='z_1 on z_2')
plt.plot(z2, z1h, 'b', label='z_2 on z_1')
plt.legend()
plt.show()
The red line is the expectation of z_1 conditional on z_2.

The intercept and slope of the red line are

```python
print("a1 = ", a1)
print("b1 = ", b1)
```

```
a1 = 0.0
b1 = 0.5
```

The blue line is the expectation of z_2 conditional on z_1.

The intercept and slope of the blue line are

```python
print("-a2/b2 = ", -a2/b2)
print("1/b2 = ", 1/b2)
```

```
-a2/b2 = -1.5
1/b2 = 2.0
```

We can use these regression lines or our code to compute conditional expectations.

Let's compute the mean and variance of the distribution of z_2 conditional on $z_1 = 5$.

After that we'll reverse what are on the left and right sides of the regression.

```python
# compute the cond. dist. of z1
ind = 1
z1 = np.array([5.]) # given z1
μ2_hat, Σ2_hat = multi_normal.cond_dist(ind, z1)
print('μ2_hat, Σ2_hat = ', μ2_hat, Σ2_hat)
```

```
μ2_hat, Σ2_hat = [3.25] [[0.75]]
```

Now let's compute the mean and variance of the distribution of z_1 conditional on $z_2 = 5$.

```python
# compute the cond. dist. of z1
ind = 0
z2 = np.array([5.]) # given z2
μ1_hat, Σ1_hat = multi_normal.cond_dist(ind, z2)
print('μ1_hat, Σ1_hat = ', μ1_hat, Σ1_hat)
```

```
μ1_hat, Σ1_hat = [2.5] [[0.75]]
```

Let's compare the preceding population mean and variance with outcomes from drawing a large sample and then regressing $z_1 - μ_1$ on $z_2 - μ_2$.

We know that

$$Ez_1|z_2 = (μ_1 - βμ_2) + βz_2$$

which can be arranged to

$$z_1 - μ_1 = β(z_2 - μ_2) + ε,$$
We anticipate that for larger and larger sample sizes, estimated OLS coefficients will converge to β and the estimated variance of ϵ will converge to $\hat{\Sigma}_1$.

```python
n = 1_000_000  # sample size

# simulate multivariate normal random vectors
data = np.random.multivariate_normal(\mu, \Sigma, size=n)
z1_data = data[:, 0]
z2_data = data[:, 1]

# OLS regression
\mu1, \mu2 = multi_normal.\mu's
results = sm.OLS(z1_data - \mu1, z2_data - \mu2).fit()
```

Let's compare the preceding population β with the OLS sample estimate on $z_2 - \mu_2$

```python
multi_normal.\beta's[0], results.params
```

Let's compare our population $\hat{\Sigma}_1$ with the degrees-of-freedom adjusted estimate of the variance of ϵ

```python
\Sigma1_hat, results.resid @ results.resid.T / (n - 1)
```

Lastly, let's compute the estimate of $Ez_1^2 | z_2$ and compare it with $\hat{\mu}_1$

```python
\mu1_hat, results.predict(z2 - \mu2) + \mu1
```

Thus, in each case, for our very large sample size, the sample analogues closely approximate their population counterparts. A Law of Large Numbers explains why sample analogues approximate population objects.

14.4 Trivariate Example

Let's apply our code to a trivariate example.

We'll specify the mean vector and the covariance matrix as follows.

```python
\mu = np.random.random(3)
C = np.random.random((3, 3))
\Sigma = C @ C.T  # positive semi-definite
multi_normal = MultivariateNormal(\mu, \Sigma)
```

μ, Σ
Let's compute the distribution of z_1 conditional on $z_2 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$.

```python
ind = 0
z2 = np.array([2., 5.])
μ1_hat, Σ1_hat = multi_normal.cond_dist(ind, z2)
```

```python
n = 1_000_000
data = np.random.multivariate_normal(μ, Σ, size=n)
z1_data = data[:, :k]
z2_data = data[:, k:]""
```

```python
μ1, μ2 = multi_normal.μs
results = sm.OLS(z1_data - μ1, z2_data - μ2).fit()
```

As above, we compare population and sample regression coefficients, the conditional covariance matrix, and the conditional mean vector in that order.

```python
multi_normal.βs[0], results.params
```

```
(array([[0.20308004, 0.60377016]]), array([[0.20382957, 0.60344941]]))
```

```python
Σ1_hat, results.resid @ results.resid.T / (n - 1)
```

```
(array([[0.28653313]]), 0.2862251780641284)
```

```python
μ1_hat, results.predict(z2 - μ2) + μ1
```

```
(array([3.19556465]), array([3.19492567]))
```

Once again, sample analogues do a good job of approximating their populations counterparts.
14.5 One Dimensional Intelligence (IQ)

Let’s move closer to a real-life example, namely, inferring a one-dimensional measure of intelligence called IQ from a list of test scores.

The ith test score y_i equals the sum of an unknown scalar IQ θ and a random variable w_i.

$$ y_i = \theta + \sigma_y w_i, \quad i = 1, \ldots, n $$

The distribution of IQ’s for a cross-section of people is a normal random variable described by

$$ \theta = \mu_\theta + \sigma_\theta w_{n+1}. $$

We assume that the noises $\{w_i\}_{i=1}^N$ in the test scores are IID and not correlated with IQ.

We also assume that $\{w_i\}_{i=1}^{n+1}$ are i.i.d. standard normal:

$$ w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ w_{n+1} \end{bmatrix} \sim N \left(0, I_{n+1} \right) $$

The following system describes the $(n + 1) \times 1$ random vector X that interests us:

$$ X = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \\ \theta \end{bmatrix} = \begin{bmatrix} \mu_\theta \\ \mu_\theta \\ \vdots \\ \mu_\theta \end{bmatrix} + \begin{bmatrix} \sigma_y & 0 & \cdots & 0 & \sigma_\theta \\ 0 & \sigma_y & \cdots & 0 & \sigma_\theta \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_y & \sigma_\theta \\ 0 & 0 & \cdots & 0 & \sigma_\theta \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ w_{n+1} \end{bmatrix}, $$

or equivalently,

$$ X = \mu_\theta I_{n+1} + Dw $$

where $X = \begin{bmatrix} y \\ \theta \end{bmatrix}$, I_{n+1} is a vector of 1s of size $n + 1$, and D is an $n + 1$ by $n + 1$ matrix.

Let’s define a Python function that constructs the mean μ and covariance matrix Σ of the random vector X that we know is governed by a multivariate normal distribution.

As arguments, the function takes the number of tests n, the mean μ_θ and the standard deviation σ_θ of the IQ distribution, and the standard deviation of the randomness in test scores σ_y.

```python
def construct_moments_IQ(n, mu_theta, sigma_theta, sigma_y):
    mu_IQ = np.full(n + 1, mu_theta)
    D_IQ = np.zeros((n + 1, n + 1))
    D_IQ[range(n), range(n)] = sigma_y
    D_IQ[:, n] = sigma_theta
    E_IQ = D_IQ @ D_IQ.T
    return mu_IQ, E_IQ, D_IQ
```
Now let's consider a specific instance of this model. Assume we have recorded 50 test scores and we know that \(\mu_\theta = 100, \sigma_\theta = 10, \) and \(\sigma_y = 10. \)

We can compute the mean vector and covariance matrix of \(X \) easily with our \texttt{construct_moments_IQ} function as follows.

```
import numpy as np

n = 50
mu, sigma, sigma_y = 100., 10., 10.
mu_IQ, Sigma_IQ, D_IQ = construct_moments_IQ(n, mu, sigma, sigma_y)
mu_IQ, Sigma_IQ, D_IQ
```

```
(array([100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
        100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
        100., 100., 100., 100., 100., 100., 100., 100., 100., 100.,
        100., 100., 100., 100., 100., 100., 100., 100., 100., 100.]),
array([[200., 100., 100., ..., 100., 100., 100.],
       [100., 200., 100., ..., 100., 100., 100.],
       [100., 100., 200., ..., 100., 100., 100.],
       ...,
       [100., 100., 100., ..., 200., 100., 100.],
       [100., 100., 100., ..., 200., 100., 100.],
       [100., 100., 100., ..., 100., 100., 100.]]),
array([[10., 0., 0., ..., 0., 0., 10.],
       [0., 10., 0., ..., 0., 0., 10.],
       [0., 0., 10., ..., 0., 0., 10.],
       ...,
       [0., 0., 0., ..., 10., 0., 10.],
       [0., 0., 0., ..., 10., 10.],
       [0., 0., 0., ..., 0., 0., 10.]]))
```

We can now use our \texttt{MultivariateNormal} class to construct an instance, then partition the mean vector and covariance matrix as we wish.

We want to regress IQ, the random variable \(\theta \) (what we don't know), on the vector \(y \) of test scores (what we do know).

We choose \(k = n \) so that \(z_1 = y \) and \(z_2 = \theta \).

```
multi_normal_IQ = MultivariateNormal(mu_IQ, Sigma_IQ)
k = n
multi_normal_IQ.partition(k)
```

Using the generator \texttt{multivariate_normal}, we can make one draw of the random vector from our distribution and then compute the distribution of \(\theta \) conditional on our test scores.

Let's do that and then print out some pertinent quantities.

```
x = np.random.multivariate_normal(mu_IQ, Sigma_IQ)
y = x[:-1]  # test scores
theta = x[-1]  # IQ

# the true value
theta
```
The method `cond_dist` takes test scores \(y \) as input and returns the conditional normal distribution of the IQ \(\theta \).

In the following code, \(\text{ind} \) sets the variables on the right side of the regression.

Given the way we have defined the vector \(X \), we want to set \(\text{ind}=1 \) in order to make \(\theta \) the left side variable in the population regression.

```python
ind = 1
multi_normal_IQ.cond_dist(ind, y)
```

The first number is the conditional mean \(\hat{\mu}_\theta \) and the second is the conditional variance \(\hat{\Sigma}_\theta \).

How do additional test scores affect our inferences?

To shed light on this, we compute a sequence of conditional distributions of \(\theta \) by varying the number of test scores in the conditioning set from 1 to \(n \).

We'll make a pretty graph showing how our judgment of the person's IQ change as more test results come in.

```python
# array for containing moments
μθ_hat_arr = np.empty(n)
Σθ_hat_arr = np.empty(n)

# loop over number of test scores
for i in range(1, n+1):
    # construction of multivariate normal distribution instance
    μ_IQ_i, Σ_IQ_i, D_IQ_i = construct_moments_IQ(i, μθ, σθ, σy)
    multi_normal_IQ_i = MultivariateNormal(μ_IQ_i, Σ_IQ_i)

    # partition and compute conditional distribution
    multi_normal_IQ_i.partition(i)
    scores_i = y[:i]
    μθ_hat_i, Σθ_hat_i = multi_normal_IQ_i.cond_dist(1, scores_i)

    # store the results
    μθ_hat_arr[i-1] = μθ_hat_i[0]
    Σθ_hat_arr[i-1] = Σθ_hat_i[0, 0]

# transform variance to standard deviation
σθ_hat_arr = np.sqrt(Σθ_hat_arr)
μθ_hat_lower = μθ_hat_arr - 1.96 * σθ_hat_arr
μθ_hat_higher = μθ_hat_arr + 1.96 * σθ_hat_arr

plt.hlines(θ, 1, n+1, ls='--', label='true \$\theta\$')
plt.plot(range(1, n+1), μθ_hat_arr, color='b', label='$\hat{\mu}_\theta$')
plt.plot(range(1, n+1), μθ_hat_lower, color='b', ls='--')
plt.plot(range(1, n+1), μθ_hat_higher, color='b', ls='--')
plt.fill_between(range(1, n+1), μθ_hat_lower, μθ_hat_lower, μθ_hat_higher,
                 color='b', alpha=0.2, label='95%')
plt.xlabel('number of test scores')
```

(continues on next page)
The solid blue line in the plot above shows $\hat{\mu}_\theta$ as a function of the number of test scores that we have recorded and conditioned on.

The blue area shows the span that comes from adding or deducing $1.96\hat{\sigma}_\theta$ from $\hat{\mu}_\theta$.

Therefore, 95% of the probability mass of the conditional distribution falls in this range.

The value of the random θ that we drew is shown by the black dotted line.

As more and more test scores come in, our estimate of the person’s θ become more and more reliable.

By staring at the changes in the conditional distributions, we see that adding more test scores makes $\hat{\theta}$ settle down and approach θ.

Thus, each y_i adds information about θ.

If we were to drive the number of tests $n \to +\infty$, the conditional standard deviation $\hat{\sigma}_\theta$ would converge to 0 at rate $\frac{1}{n^{0.5}}$.

14.6 Information as Surprise

By using a different representation, let’s look at things from a different perspective.

We can represent the random vector X defined above as

$$X = \mu_\theta 1_{n+1} + C\epsilon, \quad \epsilon \sim N(0, I)$$

where C is a lower triangular Cholesky factor of Σ so that

$$\Sigma \equiv DD' = CC'$$

and

$$E\epsilon\epsilon' = I.$$
It follows that

$$\epsilon \sim N(0, I).$$

Let $G = C^{-1}$

G is also lower triangular.

We can compute ϵ from the formula

$$\epsilon = G(X - \mu_{\theta}1_{n+1})$$

This formula confirms that the orthonormal vector ϵ contains the same information as the non-orthogonal vector $(X - \mu_{\theta}1_{n+1})$.

We can say that ϵ is an orthogonal basis for $(X - \mu_{\theta}1_{n+1})$.

Let c_i be the ith element in the last row of C.

Then we can write

$$\theta = \mu_{\theta} + c_1\epsilon_1 + c_2\epsilon_2 + \cdots + c_n\epsilon_n + c_{n+1}\epsilon_{n+1}$$

(14.1)

The mutual orthogonality of the ϵ_i’s provides us with an informative way to interpret them in light of equation (14.1).

Thus, relative to what is known from tests $i = 1, \ldots, n-1$, $c_i\epsilon_i$ is the amount of new information about θ brought by the test number i.

Here new information means surprise or what could not be predicted from earlier information.

Formula (14.1) also provides us with an enlightening way to express conditional means and conditional variances that we computed earlier.

In particular,

$$E[\theta \mid y_1, \ldots, y_k] = \mu_{\theta} + c_1\epsilon_1 + \cdots + c_k\epsilon_k$$

and

$$Var(\theta \mid y_1, \ldots, y_k) = c_{k+1}^2 + c_{k+2}^2 + \cdots + c_{n+1}^2.$$
conditional variance

np.max(np.abs(Σθ_hat_arr - Σθ_hat_arr_C)) < 1e-10

14.7 Cholesky Factor Magic

Evidently, the Cholesky factorizations automatically computes the population regression coefficients and associated statistics that are produced by our MultivariateNormal class. The Cholesky factorization computes these things recursively.

Indeed, in formula (14.1),

- the random variable \(c_i \epsilon_i \) is information about \(\theta \) that is not contained by the information in \(\epsilon_1, \epsilon_2, \ldots, \epsilon_{i-1} \)
- the coefficient \(c_i \) is the simple population regression coefficient of \(\theta - \mu_\theta \) on \(\epsilon_i \)

14.8 Math and Verbal Intelligence

We can alter the preceding example to be more realistic.

There is ample evidence that IQ is not a scalar.

Some people are good in math skills but poor in language skills.

Other people are good in language skills but poor in math skills.

So now we shall assume that there are two dimensions of IQ, \(\theta \) and \(\eta \).

These determine average performances in math and language tests, respectively.

We observe math scores \(\{y_i\}_{i=1}^n \) and language scores \(\{y_i\}_{i=n+1}^{2n} \).

When \(n = 2 \), we assume that outcomes are draws from a multivariate normal distribution with representation

\[
X = \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 \theta \\
 \eta
\end{bmatrix} = \begin{bmatrix}
 \mu_\theta \\
 \mu_\theta \\
 \mu_\theta \\
 \mu_\theta \\
 \mu_\eta \\
 \mu_\eta
\end{bmatrix} + \begin{bmatrix}
 \sigma_y & 0 & 0 & 0 & \sigma_\theta & 0 \\
 0 & \sigma_y & 0 & 0 & \sigma_\theta & 0 \\
 0 & 0 & \sigma_y & 0 & \sigma_\eta & 0 \\
 0 & 0 & 0 & \sigma_y & 0 & \sigma_\eta \\
 0 & 0 & 0 & 0 & \sigma_\theta & 0 \\
 0 & 0 & 0 & 0 & 0 & \sigma_\eta
\end{bmatrix} \begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3 \\
 w_4 \\
 w_5 \\
 w_6
\end{bmatrix}
\]

where \(w \) is a standard normal random vector.

We construct a Python function `construct_moments_IQ2d` to construct the mean vector and covariance matrix of the joint normal distribution.
def construct_moments_IQ2d(n, μθ, σθ, μη, ση, σy):
 μ_IQ2d = np.empty(2*(n+1))
 μ_IQ2d[:n] = μθ
 μ_IQ2d[2*n] = μθ
 μ_IQ2d[2*n+1] = μη
 μ_IQ2d[2*n+2*n] = μη

 D_IQ2d = np.zeros((2*(n+1), 2*(n+1)))
 D_IQ2d[range(2*n), range(2*n)] = σy
 D_IQ2d[:n, 2*n] = σθ
 D_IQ2d[2*n, 2*n] = σθ
 D_IQ2d[n:2*n+1] = ση
 D_IQ2d[2*n+1, 2*n+1] = ση

 Σ_IQ2d = D_IQ2d @ D_IQ2d.T
 return μ_IQ2d, Σ_IQ2d, D_IQ2d

Let's put the function to work.

n = 2
mean and variance of θ, η, and y
μθ, σθ, μη, ση, σy = 100., 10., 100., 10, 10
μ_IQ2d, E_IQ2d, D_IQ2d = construct_moments_IQ2d(n, μθ, σθ, μη, ση, σy)
μ_IQ2d, E_IQ2d, D_IQ2d

(array([[100., 100., 100., 100., 100., 100.],
 [100., 200., 0., 0., 100., 0.],
 [0., 0., 200., 100., 0., 100.],
 [0., 0., 100., 200., 0., 100.],
 [100., 100., 0., 0., 100., 0.],
 [0., 0., 100., 100., 0., 100.]]),
 array([[0., 0., 0., 0., 10., 0.],
 [0., 10., 0., 0., 10., 0.],
 [0., 0., 10., 0., 0., 10.],
 [0., 0., 10., 0., 0., 10.],
 [0., 0., 0., 0., 10., 0.],
 [0., 0., 0., 0., 0., 10.]]),
 array([[10., 0., 0., 0., 10., 0.],
 [0., 10., 0., 0., 10., 0.],
 [0., 0., 10., 0., 0., 10.],
 [0., 0., 10., 0., 0., 10.],
 [0., 0., 0., 0., 0., 10.],
 [0., 0., 0., 0., 0., 10.]]))

take one draw
x = np.random.multivariate_normal(μ_IQ2d, Σ_IQ2d)
y1 = x[:n]
y2 = x[n:2*n]
θ = x[2*n]
η = x[2*n+1]

the true values
θ, η

(107.11365325828653, 102.88186042710245)
We first compute the joint normal distribution of \((\theta, \eta)\).

```python
multi_normal_IQ2d = MultivariateNormal(μ_IQ2d, Σ_IQ2d)
k = 2*n  # the length of data vector
multi_normal_IQ2d.partition(k)
multi_normal_IQ2d.cond_dist(1, [*y1, *y2])
```

Now let’s compute distributions of \(\theta\) and \(\mu\) separately conditional on various subsets of test scores.

It will be fun to compare outcomes with the help of an auxiliary function `cond_dist_IQ2d` that we now construct.

```python
def cond_dist_IQ2d(μ, Σ, data):
    n = len(μ)
    multi_normal = MultivariateNormal(μ, Σ)
    multi_normal.partition(n-1)
    μ_hat, Σ_hat = multi_normal.cond_dist(1, data)
    return μ_hat, Σ_hat
```

Let’s see how things work for an example.

```python
for indices, IQ, conditions in [(\*range(2*n), 2*n], 'θ', 'y1, y2, y3, y4'),
                                (\*range(n), 2*n], 'θ', 'y1, y2'),
                                (\*range(n), 2*n], 'θ', 'y3, y4'),
                                (\*range(2*n), 2*n+1], 'η', 'y1, y2, y3, y4'),
                                (\*range(n), 2*n+1], 'η', 'y1, y2'),
                                (\*range(n, 2*n), 2*n+1], 'η', 'y3, y4')):
    μ_hat, Σ_hat = cond_dist_IQ2d(μ_IQ2d[indices], Σ_IQ2d[indices][:, indices],
                                  x[indices[:1]])
    print(f'The mean and variance of {IQ} conditional on {conditions} are '+
          f'{μ_hat[0]:1.2f} and {Σ_hat[0, 0]:1.2f} respectively')
```

The mean and variance of \(\theta\) conditional on \(y_1, y_2, y_3, y_4\) are 101.08 and 33.33 respectively.
The mean and variance of \(\theta\) conditional on \(y_1, y_2\) are 101.08 and 33.33 respectively.
The mean and variance of \(\theta\) conditional on \(y_3, y_4\) are 100.00 and 100.00 respectively.
The mean and variance of \(\eta\) conditional on \(y_1, y_2, y_3, y_4\) are 109.38 and 33.33 respectively.
The mean and variance of \(\eta\) conditional on \(y_1, y_2\) are 100.00 and 100.00 respectively.
The mean and variance of \(\eta\) conditional on \(y_3, y_4\) are 109.38 and 33.33 respectively.

Evidently, math tests provide no information about \(\mu\) and language tests provide no information about \(\eta\).
14.9 Univariate Time Series Analysis

We can use the multivariate normal distribution and a little matrix algebra to present foundations of univariate linear time series analysis.

Let \(x_t, y_t, v_t, w_{t+1} \) each be scalars for \(t \geq 0 \).

Consider the following model:

\[
\begin{align*}
x_0 & \sim N(0, \sigma_0^2) \\
x_{t+1} &= ax_t + bw_{t+1}, \quad w_{t+1} \sim N(0, 1), \ t \geq 0 \\
y_t &= cx_t + dv_t, \quad v_t \sim N(0, 1), \ t \geq 0
\end{align*}
\]

We can compute the moments of \(x_t \):

1. \(E x_{t+1}^2 = a^2 E x_t^2 + b^2, \ t \geq 0, \) where \(E x_0^2 = \sigma_0^2 \)
2. \(E x_{t+j} x_t = a^j E x_t^2, \ \forall t \ \forall j \)

Given some \(T \), we can formulate the sequence \(\{x_t\}_{t=0}^T \) as a random vector

\[
X = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_T \end{bmatrix}
\]

and the covariance matrix \(\Sigma_x \) can be constructed using the moments we have computed above.

Similarly, we can define

\[
Y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_T \end{bmatrix}, \quad v = \begin{bmatrix} v_0 \\ v_1 \\ \vdots \\ v_T \end{bmatrix}
\]

and therefore

\[
Y = CX + DV
\]

where \(C \) and \(D \) are both diagonal matrices with constant \(c \) and \(d \) as diagonal respectively.

Consequently, the covariance matrix of \(Y \) is

\[
\Sigma_y = EYY' = C \Sigma_x C' + DD'
\]

By stacking \(X \) and \(Y \), we can write

\[
Z = \begin{bmatrix} X \\ Y \end{bmatrix}
\]

and

\[
\Sigma_z = EZZ' = \begin{bmatrix} \Sigma_x & \Sigma_x C' \\ C \Sigma_x & \Sigma_y \end{bmatrix}
\]

Thus, the stacked sequences \(\{x_t\}_{t=0}^T \) and \(\{y_t\}_{t=0}^T \) jointly follow the multivariate normal distribution \(N(0, \Sigma_z) \).

as an example, consider the case where \(T = 3 \)
\(T = 3 \)
Quantitative Economics with Python

variance of the initial distribution x_0
\(\sigma_0 = 1. \)

parameters of the equation system
\(a = 0.9 \)
\(b = 1. \)
\(c = 1.0 \)
\(d = 0.05 \)

construct the covariance matrix of X
\(\Sigma_X = np.empty((T+1, T+1)) \)
\(\Sigma_X[0, 0] = \sigma_0 ** 2 \)
for i in range(T):
 \(\Sigma_X[i, i+1:] = \Sigma_X[i, i] * a ** np.arange(i, T+1-i) \)
 \(\Sigma_X[i+1:, i] = \Sigma_X[i, i+1:] \)
\(\Sigma_X[i+1, i+1] = a ** 2 * \Sigma_X[i, i] + b ** 2 \)

\(\Sigma_X \)

array([[1. , 0.9 , 0.81 , 0.729],
 [0.9 , 1.81 , 1.629 , 1.4661],
 [0.81 , 1.629 , 2.4661 , 2.21949],
 [0.729 , 1.4661 , 2.21949 , 2.997541]])

construct the covariance matrix of Y
\(C = np.eye(T+1) * c \)
\(D = np.eye(T+1) * d \)
\(\Sigma_Y = C @ \Sigma_X @ C.T + D @ D.T \)

construct the covariance matrix of Z
\(\Sigma_Z = np.empty((2*(T+1), 2*(T+1))) \)
\(\Sigma_Z[:T+1, :T+1] = \Sigma_X \)
\(\Sigma_Z[:T+1, T+1:] = \Sigma_X @ C.T \)
\(\Sigma_Z[T+1:, :T+1] = C @ \Sigma_X \)
\(\Sigma_Z[T+1:, T+1:] = \Sigma_Y \)

\(\Sigma_Z \)

array([[1. , 0.9 , 0.81 , 0.729 , 1. , 0.9 , 0.81 , 0.729],
 [0.9 , 1.81 , 1.629 , 1.4661 , 0.9 , 1.81 , 1.629 , 1.4661],
 [0.81 , 1.629 , 2.4661 , 2.21949 , 0.81 , 1.629 , 2.4661 , 2.21949],
 [0.729 , 1.4661 , 2.21949 , 2.997541, 0.729 , 1.4661 , 2.21949 , 2.997541],
 [1. , 0.9 , 0.81 , 0.729 , 1.0025 , 0.9 , 0.81 , 0.729],
 [0.81 , 0.729 ,]])

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

\[
\begin{bmatrix}
0.9 & 1.81 & 1.629 & 1.4661 & 0.9 & 1.8125 \\
1.629 & 1.4661 & \text{,} \\
0.81 & 1.629 & 2.4661 & 2.21949 & 0.81 & 1.629 \\
2.4686 & 2.21949 & \text{,} \\
0.729 & 1.4661 & 2.21949 & 2.997541 & 0.729 & 1.4661 \\
2.21949 & 3.000041 & \text{)}
\]

construct the mean vector of Z
\[\mu_z = \text{np.zeros}(2*(T+1))\]

The following Python code lets us sample random vectors \(X\) and \(Y\).
This is going to be very useful for doing the conditioning to be used in the fun exercises below.

\[z = \text{np.random.multivariate_normal(\mu_z, \Sigma_z)}\]
\[x = z[:T+1]\]
\[y = z[T+1::]\]

14.9.1 Smoothing Example

This is an instance of a classic smoothing calculation whose purpose is to compute \(EX | Y\).
An interpretation of this example is:
- \(X\) is a random sequence of hidden Markov state variables \(x_t\)
- \(Y\) is a sequence of observed signals \(y_t\) bearing information about the hidden state

\# construct a MultivariateNormal instance
\[\text{multi_normal_ex1 = MultivariateNormal(\mu_z, \Sigma_z)}\]
\[x = z[:T+1]\]
\[y = z[T+1::]\]

\# partition Z into X and Y
\[\text{multi_normal_ex1.partition(T+1)}\]

\# compute the conditional mean and covariance matrix of X given Y=y
\[\text{print("X = ", x)}\]
\[\text{print("Y = ", y)}\]
\[\text{print(" E [X | Y] = ",)}\]
\[\text{multi_normal_ex1.cond_dist(0, y)}\]

\[X = \begin{bmatrix}
0.76851495 & 0.64343161 & 0.18134444 & 0.07428591 \\
0.64343161 & 0.18134444 & 0.07428591 & \text{)}
\end{bmatrix}\]
\[Y = \begin{bmatrix}
0.72621839 & 0.54469209 & 0.19981315 & 0.15166748 \\
0.54469209 & 0.19981315 & 0.15166748 & \text{,} \\
0.19981315 & 0.15166748 & \text{,} \\
0.15166748 & \text{,} & \text{,} & \text{,} \\
0.18134444 & 0.07428591 & \text{,} & \text{,} \\
0.07428591 & \text{,} & \text{,} & \text{,} \\
0.07428591 & \text{,} & \text{,} & \text{,} \\
0.07428591 & \text{,} & \text{,} & \text{,} \\
\end{bmatrix}\]
\[E [X | Y] = \begin{bmatrix}
0.72416624 & 0.54430953 & 0.20047212 & 0.15173919 \\
0.54430953 & 0.20047212 & 0.15173919 & \text{,} \\
0.20047212 & 0.15173919 & \text{,} & \text{,} \\
0.15173919 & \text{,} & \text{,} & \text{,} \\
\end{bmatrix}\]

(continues on next page)
14.9.2 Filtering Exercise

Compute $E[x_t \mid y_{t-1}, y_{t-2}, \ldots, y_0]$.

To do so, we need to first construct the mean vector and the covariance matrix of the subvector $[x_t, y_0, \ldots, y_{t-2}, y_{t-1}]$.

For example, let's say that we want the conditional distribution of x_3.

```python
import numpy as np

# mean of the subvector
sub_μz = np.zeros(t+1)

# covariance matrix of the subvector
sub_Σz = np.empty((t+1, t+1))

sub_Σz[0, 0] = Σz[t, t]  # x_t
sub_Σz[0, 1:] = Σz[t, T+1:T+t+1]
sub_Σz[1:, 0] = Σz[T+1:T+t+1, t]
sub_Σz[1:, 1:] = Σz[T+1:T+t+1, T+1:T+t+1]

sub_Σz

multi_normal_ex2 = MultivariateNormal(sub_μz, sub_Σz)
multi_normal_ex2.partition(1)

sub_y = y[:t]
multi_normal_ex2.cond_dist(0, sub_y)

(array([0.18048286]), array([[1.00201996]]))
```
14.9.3 Prediction Exercise

Compute $E \left[y_t \mid y_{t-j}, \ldots, y_0 \right]$.

As what we did in exercise 2, we will construct the mean vector and covariance matrix of the subvector $[y_t, y_0, \ldots, y_{t-j-1}, y_{t-j}]$.

For example, we take a case in which $t = 3$ and $j = 2$.

```python
sub_μz = np.zeros(t-j+2)
sub_Σz = np.empty((t-j+2, t-j+2))
sub_Σz[0, 0] = Σz[T+t+1, T+t+1]
sub_Σz[0, 1:] = Σz[T+t+1, T+1:T+t-j+2]
sub_Σz[1:, 0] = Σz[T+1:T+t-j+2, T+t+1]
sub_Σz[1:, 1:] = Σz[T+1:T+t-j+2, T+1:T+t-j+2]
```

```python
sub_Σz
```

```
array([[3.000041, 0.729 , 1.4661 ],
       [0.729 , 1.0025 , 0.9   ],
       [1.4661 , 0.9   , 1.8125 ]])
```

```python
multi_normal_ex3 = MultivariateNormal(sub_μz, sub_Σz)
multi_normal_ex3.partition(1)
```

```python
sub_y = y[:t-j+1]
multi_normal_ex3.cond_dist(0, sub_y)
```

```
(array([0.44141685]), array([[1.81413617]]))
```

14.9.4 Constructing a Wold Representation

Now we’ll apply Cholesky decomposition to decompose $\Sigma_y = HH'$ and form

$$\epsilon = H^{-1}Y.$$

Then we can represent y_t as

$$y_t = h_{t,t}\epsilon_t + h_{t,t-1}\epsilon_{t-1} + \ldots + h_{t,0}\epsilon_0.$$

```python
H = np.linalg.cholesky(Σy)
```

```python
H
```
This example is an instance of what is known as a **Wold representation** in time series analysis.

14.10 Stochastic Difference Equation

Consider the stochastic second-order linear difference equation

\[y_t = \alpha_0 + \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + u_t \]

where \(u_t \sim N(0, \sigma_u^2) \) and

\[
\begin{bmatrix}
 y_{t-1} \\
 y_0
\end{bmatrix} \sim N(\mu_y, \Sigma_y)
\]

It can be written as a stacked system

\[
\begin{bmatrix}
 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
 -\alpha_1 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
 -\alpha_2 & -\alpha_1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
 0 & -\alpha_2 & -\alpha_1 & 1 & \cdots & 0 & 0 & 0 \\
 \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & 0 & \cdots & -\alpha_2 & -\alpha_1 & 1
\end{bmatrix}
= A
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 \vdots \\
 y_T
\end{bmatrix}
= \begin{bmatrix}
 \alpha_0 + \alpha_1 y_0 + \alpha_2 y_{-1} \\
 \alpha_0 + \alpha_2 y_0 \\
 \alpha_0 \\
 \alpha_0 \\
 \vdots \\
 \alpha_0
\end{bmatrix}
\]

We can compute \(y \) by solving the system

\[y = A^{-1}(b + u) \]

We have

\[\mu_y = A^{-1}\mu_b \]

\[\Sigma_y = A^{-1}E[(b - \mu_b + u)(b - \mu_b + u)'] (A^{-1})' \]

\[= A^{-1}(\Sigma_b + \Sigma_u) (A^{-1})' \]

where

\[\mu_b = \begin{bmatrix}
 \alpha_0 + \alpha_1 \mu_{y_0} + \alpha_2 \mu_{y_{-1}} \\
 \alpha_0 + \alpha_2 \mu_{y_0} \\
 \alpha_0 \\
 \vdots \\
 \alpha_0
\end{bmatrix} \]
\[\Sigma_b = \begin{bmatrix} C' \Sigma_y C' & 0_{N-2 \times N-2} \\ 0_{N-2 \times N-2} & 0_{N-2 \times N-2} \end{bmatrix}, \quad C = \begin{bmatrix} \alpha_2 \\ \alpha_1 \\ 0 \\ \alpha_2 \end{bmatrix} \]

\[\Sigma_u = \begin{bmatrix} \sigma_u^2 & 0 & \ldots & 0 \\ 0 & \sigma_u^2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \sigma_u^2 \end{bmatrix} \]

set parameters
T = 80
T = 160

coefficients of the second order difference equation
\[\beta_0 = 10 \]
\[\beta_1 = 1.53 \]
\[\beta_2 = -0.9 \]

variance of u
\[\sigma_u = 1. \]
\[\sigma_u = 10. \]

distribution of \(y_{-1} \) and \(y_0 \)
\[\mu_{y_tilde} = \text{np.array}([1., 0.5]) \]
\[\Sigma_{y_tilde} = \text{np.array}([[2., 1.], [1., 0.5]]) \]

construct A and A^prime
A = \text{np.zeros((T, T))}

for \(i \) in \text{range}(T):
 \begin{align*}
 A[i, i] &= 1 \\
 \text{if} \ i-1 \geq 0: \\
 A[i, i-1] &= -\beta_1 \\
 \text{if} \ i-2 \geq 0: \\
 A[i, i-2] &= -\beta_2 \\
 \end{align*}

A_inv = \text{np.linalg.inv(A)}

compute the mean vectors of b and y
\[\mu_b = \text{np.full}(T, \beta_0) \]
\[\mu_b[0] -= \beta_1 \times \mu_{y_tilde[1]} + \beta_2 \times \mu_{y_tilde[0]} \]
\[\mu_b[1] -= \beta_2 \times \mu_{y_tilde[1]} \]

\[\mu_y = \text{A_inv} \times \mu_b \]

compute the covariance matrices of b and y
\[\Sigma_u = \text{np.eye}(T) \times \sigma_u ** 2 \]
\[\Sigma_b = \text{np.zeros}((T, T)) \]
\[C = \text{np.array}([[\beta_2, \beta_1], [0, \beta_2]]) \]
\[\Sigma_b[2:] = C \times \Sigma_{y_tilde} \times C.T \]
\[\Sigma_y = \text{A_inv} \times (\Sigma_b + \Sigma_u) \times \text{A_inv}.T \]
14.11 Application to Stock Price Model

Let

\[p_t = \sum_{j=0}^{T-t} \beta^j y_{t+j} \]

Form

\[
\begin{bmatrix}
 p_1 \\
p_2 \\
p_3 \\
\vdots \\
p_T
\end{bmatrix}
\equiv p
\begin{bmatrix}
 1 & \beta & \beta^2 & \ldots & \beta^{T-1} \\
0 & 1 & \beta & \ldots & \beta^{T-2} \\
0 & 0 & 1 & \ldots & \beta^{T-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_T
\end{bmatrix}
\equiv B
\]

we have

\[
\mu_p = B \mu_y
\]
\[
\Sigma_p = B \Sigma_y B'
\]

\[\beta = .96 \]

\[\# \text{ construct } B \]
\[B = \text{np.zeros}((T, T)) \]
\[\text{for } i \text{ in range}(T): \]
\[B[i, i:] = \beta ** \text{np.arange}(0, T-i) \]

Denote

\[z = \begin{bmatrix}
y \\
p
\end{bmatrix} = \begin{bmatrix}
I \\
B
\end{bmatrix} y \equiv D y \]

Thus, \(\{y_t\}_{t=1}^T \) and \(\{p_t\}_{t=1}^T \) jointly follow the multivariate normal distribution \(N(\mu_z, \Sigma_z) \), where

\[\mu_z = D \mu_y \]
\[\Sigma_z = D \Sigma_y D' \]

\[D = \text{np.vstack([np.eye(T), B])} \]
\[\mu z = D \otimes \mu y \]
\[\Sigma z = D \otimes \Sigma y \otimes D.T \]

We can simulate paths of \(y_t \) and \(p_t \) and compute the conditional mean \(E[p_t \mid y_{t-1}, y_t] \) using the MultivariateNormal class.

\[z = \text{np.random.multivariate_normal}(\mu z, \Sigma z) \]
\[y, p = z[:T], z[T:] \]
In the above graph, the green line is what the price of the stock would be if people had perfect foresight about the path of dividends while the green line is the conditional expectation $E_p[t|y_t, y_{t-1}]$, which is what the price would be if people did not have perfect foresight but were optimally predicting future dividends on the basis of the information y_t, y_{t-1} at time t.
14.12 Filtering Foundations

Assume that x_0 is an $n \times 1$ random vector and that y_0 is a $p \times 1$ random vector determined by the observation equation

$$y_0 = Gx_0 + v_0, \quad x_0 \sim \mathcal{N}(\tilde{x}_0, \Sigma_0), \quad v_0 \sim \mathcal{N}(0, R)$$

where v_0 is orthogonal to x_0, G is a $p \times n$ matrix, and R is a $p \times p$ positive definite matrix.

We consider the problem of someone who

- observes y_0,
- does not observe x_0,
- knows $\tilde{x}_0, \Sigma_0, G, R$ and therefore the joint probability distribution of the vector $[x_0]^T y_0$,
- wants to infer x_0 from y_0 in light of what he knows about that joint probability distribution.

Therefore, the person wants to construct the probability distribution of x_0 conditional on the random vector y_0.

The joint distribution of $[x_0]^T y_0$ is multivariate normal $\mathcal{N}(\mu, \Sigma)$ with

$$\mu = \begin{bmatrix} \tilde{x}_0 \\ G\tilde{x}_0 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \Sigma_0 & \Sigma_0 G' \\ G\Sigma_0 & G\Sigma_0 G' + R \end{bmatrix}$$

By applying an appropriate instance of the above formulas for the mean vector $\tilde{\mu}_1$ and covariance matrix $\tilde{\Sigma}_{11}$ of z_1 conditional on z_2, we find that the probability distribution of x_0 conditional on y_0 is $\mathcal{N}(\tilde{x}_0, \tilde{\Sigma}_0)$ where

$$\begin{align*}
\beta_0 &= \Sigma_0 G' (G\Sigma_0 G' + R)^{-1} \\
\tilde{x}_0 &= \tilde{x}_0 + \beta_0 (y_0 - G\tilde{x}_0) \\
\tilde{\Sigma}_0 &= \Sigma_0 - \Sigma_0 G' (G\Sigma_0 G' + R)^{-1} G\Sigma_0
\end{align*}$$

We can express our finding that the probability distribution of x_0 conditional on y_0 is $\mathcal{N}(\tilde{x}_0, \tilde{\Sigma}_0)$ by representing x_0 as

$$x_0 = \tilde{x}_0 + \zeta_0 \quad \text{(14.2)}$$

where ζ_0 is a Gaussian random vector that is orthogonal to \tilde{x}_0 and y_0 and that has mean vector 0 and conditional covariance matrix $E[\zeta_0 \zeta_0'|y_0] = \tilde{\Sigma}_0$.

14.12.1 Step toward dynamics

Now suppose that we are in a time series setting and that we have the one-step state transition equation

$$x_1 = Ax_0 + Cw_1, \quad w_1 \sim \mathcal{N}(0, I)$$

where A is an $n \times n$ matrix and C is an $n \times m$ matrix.

Using equation (14.2), we can also represent x_1 as

$$x_1 = A(\tilde{x}_0 + \zeta_0) + Cw_1$$

It follows that

$$E[x_1 | y_0] = A\tilde{x}_0$$
and that the corresponding conditional covariance matrix \(\Sigma_1 \equiv \Sigma_1 \) is
\[
\Sigma_1 = A\Sigma_0 A' + CC'
\]
or
\[
\Sigma_1 = A\Sigma_0 A' - A\Sigma_0 G'(G\Sigma_0 G' + R)^{-1}G\Sigma_0 A'
\]

We can write the mean of \(x_1 \) conditional on \(y_0 \) as
\[
\hat{x}_1 = Ax_0 + A\Sigma_0 G'(G\Sigma_0 G' + R)^{-1}(y_0 - G\hat{x}_0)
\]
or
\[
\hat{x}_1 = Ax_0 + K_0(y_0 - G\hat{x}_0)
\]
where
\[
K_0 = A\Sigma_0 G'(G\Sigma_0 G' + R)^{-1}
\]

14.12.2 Dynamic version

Suppose now that for \(t \geq 0 \), \(\{x_{t+1}, y_t\}_{t=0}^{\infty} \) are governed by the equations
\[
\begin{align*}
x_{t+1} &= Ax_t + Cw_{t+1} \\
y_t &= Gx_t + v_t
\end{align*}
\]
where as before \(x_0 \sim N(\hat{x}_0, \Sigma_0) \), \(w_{t+1} \) is the \(t + 1 \)th component of an i.i.d. stochastic process distributed as \(w_{t+1} \sim N(0, I) \), and \(v_t \) is the \(t \)th component of an i.i.d. process distributed as \(v_t \sim N(0, R) \) and the \(\{w_{t+1}\}_{t=0}^{\infty} \) and \(\{v_t\}_{t=0}^{\infty} \) processes are orthogonal at all pairs of dates.

The logic and formulas that we applied above imply that the probability distribution of \(x_t \) conditional on \(y_0, y_1, \ldots, y_{t-1} = y^{t-1} \) is
\[
x_t | y^{t-1} \sim N(A\hat{x}_t, A\hat{\Sigma}_t A' + CC')
\]
where \(\{\hat{x}_t, \hat{\Sigma}_t\}_{t=0}^{\infty} \) can be computed by iterating on the following equations starting from \(t = 1 \) and initial conditions for \(\hat{x}_0, \hat{\Sigma}_0 \) computed as we have above:
\[
\begin{align*}
\Sigma_t &= A\hat{\Sigma}_{t-1} A' + CC' \\
\hat{x}_t &= A\hat{x}_{t-1} \\
\beta_t &= \Sigma_t G'(G\Sigma_t G' + R)^{-1} \\
\hat{\Sigma}_t &= \Sigma_t - \Sigma_t G'(G\Sigma_t G' + R)^{-1}G\Sigma_t
\end{align*}
\]
If we shift the first equation forward one period and then substitute the expression for \(\hat{\Sigma}_t \) on the right side of the fifth equation into it we obtain
\[
\Sigma_{t+1} = CC' + A\Sigma_t A' - A\Sigma_t G'(G\Sigma_t G' + R)^{-1}G\Sigma_t A'.
\]
This is a matrix Riccati difference equation that is closely related to another matrix Riccati difference equation that appears in a quant econ lecture on the basics of linear quadratic control theory.
That equation has the form
\[P_{t-1} = R + A'P_tA - A'P_tB(B'P_tB + Q)^{-1}B'P_tA. \]

Stare at the two preceding equations for a moment or two, the first being a matrix difference equation for a conditional covariance matrix, the second being a matrix difference equation in the matrix appearing in a quadratic form for an intertemporal cost of value function.

Although the two equations are not identical, they display striking family resemblances.

- the first equation tells dynamics that work \textbf{forward} in time
- the second equation tells dynamics that work \textbf{backward} in time
- while many of the terms are similar, one equation seems to apply matrix transformations to some matrices that play similar roles in the other equation

The family resemblances of these two equations reflects a transcendent \textbf{duality} between control theory and filtering theory.

14.12.3 An example

We can use the Python class \textit{MultivariateNormal} to construct examples.

Here is an example for a single period problem at time 0

```python
G = np.array([[1., 3.]])
R = np.array([[1.]])
x0_hat = np.array([0., 1.])
Σ0 = np.array([[1., .5], [.3, 2.]])
μ = np.hstack([x0_hat, G @ x0_hat])
Σ = np.block([[Σ0, Σ0 @ G.T], [G @ Σ0, G @ Σ0 @ G.T + R]])
```

```plaintext
# construction of the multivariate normal instance
multi_normal = MultivariateNormal(μ, Σ)
```

```plaintext
# the observation of y
y0 = 2.3
```

```plaintext
# conditional distribution of x0
μ1_hat, Σ11 = multi_normal.cond_dist(0, y0)
```

```plaintext
μ1_hat, Σ11
(array([-0.078125, 0.803125]),
 array([[0.72098214, -0.203125],
       [-0.403125, 0.228125]]))
```

```plaintext
A = np.array([[0.5, 0.2], [-0.1, 0.3]])
C = np.array([[2.1], [1.1]])
```

(continues on next page)
\[
x_{1\text{ cond}} = \mathbf{A} \hat{\mu}_{1\text{ hat}}
\]
\[
\Sigma_{1\text{ cond}} = \mathbf{C} \mathbf{C}^T + \mathbf{A} \hat{\Sigma}_{11} \mathbf{A}^T
\]
\[
x_{1\text{ cond}}, \Sigma_{1\text{ cond}}
\]

(continued from previous page)

\[
\begin{bmatrix}
0.1215625, 0.24875 \\
4.12874554, 1.95523214 \\
1.92123214, 1.04592857
\end{bmatrix}
\]

14.12.4 Code for Iterating

Here is code for solving a dynamic filtering problem by iterating on our equations, followed by an example.

```python
def iterate(x0_hat, Σ0, A, C, G, R, y_seq):
    p, n = G.shape
    T = len(y_seq)
    x_hat_seq = np.empty((T+1, n))
    Σ_hat_seq = np.empty((T+1, n, n))
    x_hat_seq[0] = x0_hat
    Σ_hat_seq[0] = Σ0
    for t in range(T):
        xt_hat = x_hat_seq[t]
        Σt = Σ_hat_seq[t]
        μ = np.hstack([xt_hat, G @ xt_hat])
        Σ = np.block([[Σt, Σt @ G.T], [G @ Σt, G @ Σt @ G.T + R]])
        # filtering
        multi_normal = MultivariateNormal(μ, Σ)
        multi_normal.partition(n)
        x_tilde, Σ_tilde = multi_normal.cond_dist(0, y_seq[t])
        # forecasting
        x_hat_seq[t+1] = A @ x_tilde
        Σ_hat_seq[t+1] = C @ C.T + A @ Σ_tilde @ A.T
    return x_hat_seq, Σ_hat_seq
```

iterate(x0_hat, Σ0, A, C, G, R, [2.3, 1.2, 3.2])

(continues on next page)
The iterative algorithm just described is a version of the celebrated Kalman filter. We describe the Kalman filter and some applications of it in *A First Look at the Kalman Filter*.

14.13 Classic Factor Analysis Model

The factor analysis model widely used in psychology and other fields can be represented as

\[Y = \Lambda f + U \]

where

1. \(Y \) is \(n \times 1 \) random vector, \(EUU' = D \) is a diagonal matrix,
2. \(\Lambda \) is \(n \times k \) coefficient matrix,
3. \(f \) is \(k \times 1 \) random vector, \(Eff' = I \),
4. \(U \) is \(n \times 1 \) random vector, and \(U \perp f \) (i.e., \(EUf' = 0 \))
5. It is presumed that \(k \) is small relative to \(n \); often \(k \) is only 1 or 2, as in our IQ examples.

This implies that

\[\Sigma_y = EYY' = \Lambda \Lambda' + D \]

\[EYf' = \Lambda \]

\[EfY' = \Lambda' \]

Thus, the covariance matrix \(\Sigma_Y \) is the sum of a diagonal matrix \(D \) and a positive semi-definite matrix \(\Lambda \Lambda' \) of rank \(k \).

This means that all covariances among the \(n \) components of the \(Y \) vector are intermediated by their common dependencies on the \(k < n \) factors.

Form

\[Z = \begin{pmatrix} f \\ Y \end{pmatrix} \]

the covariance matrix of the expanded random vector \(Z \) can be computed as

\[\Sigma_z = EZZ' = \begin{pmatrix} I & \Lambda' \\ \Lambda & \Lambda \Lambda' + D \end{pmatrix} \]

In the following, we first construct the mean vector and the covariance matrix for the case where \(N = 10 \) and \(k = 2 \).
We set the coefficient matrix Λ and the covariance matrix of U to be

$$
\Lambda = \begin{pmatrix}
1 & 0 \\
\vdots & \ddots \\
1 & 0 \\
0 & 1 \\
\vdots & \ddots \\
0 & 1 \\
\end{pmatrix}, \quad D = \begin{pmatrix}
\sigma_u^2 & 0 & \cdots & 0 \\
0 & \sigma_u^2 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_u^2 \\
\end{pmatrix}
$$

where the first half of the first column of Λ is filled with 1s and 0s for the rest half, and symmetrically for the second column.

D is a diagonal matrix with parameter σ_u^2 on the diagonal.

```python
Λ = np.zeros((N, k))
Λ[:N//2, 0] = 1
Λ[N//2:, 1] = 1
σu = .5
D = np.eye(N) * σu ** 2

# compute Σ_y
Σ_y = Λ @ Λ.T + D
```

We can now construct the mean vector and the covariance matrix for Z.

```python
μz = np.zeros(k+N)
Σz = np.empty((k+N, k+N))
Σz[:k, :k] = np.eye(k)
Σz[:k, k:] = Λ.T
Σz[k:, :k] = Λ
Σz[k:, k:] = Σ_y

z = np.random.multivariate_normal(μz, Σz)
f = z[:k]
y = z[k:]

multi_normal_factor = MultivariateNormal(μz, Σz)
multi_normal_factor.partition(k)

Let's compute the conditional distribution of the hidden factor $f$ on the observations $Y$, namely, $f \mid Y = y$.

```python
multi_normal_factor.cond_dist(0, y)
```

```python
(array([[0.79220711, 0.03048314]],
array([[0.04761905, 0.04761905])),
array([0.04761905]))
```

We can verify that the conditional mean $E[f \mid Y = y] = BY$ where $B = Λ'Σ_y^{-1}$.  

---

14.13. Classic Factor Analysis Model 275
\[
B = \Lambda T \odot \text{np.linalg.inv}(Zy)
\]
\[
B \odot y
\]

\[
\text{array([[0.79220711, 0.03048314]])}
\]

Similarly, we can compute the conditional distribution \( Y \mid f \).

\[
\text{multi_normal_factor.cond_dist}(1, f)
\]

\[
\begin{array}{ccccccccccc}
0.75620772 & 0.75620772 & 0.75620772 & 0.75620772 & 0.75620772 & -0.12168213 & -0.12168213 & -0.12168213 & -0.12168213 & -0.12168213 \\
0.25 & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. \\
0. & 0.25 & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. \\
0. & 0. & 0.25 & 0. & 0. & 0. & 0. & 0. & 0. & 0. \\
0. & 0. & 0. & 0.25 & 0. & 0. & 0. & 0. & 0. & 0. \\
0. & 0. & 0. & 0. & 0.25 & 0. & 0. & 0. & 0. & 0. \\
0. & 0. & 0. & 0. & 0. & 0.25 & 0. & 0. & 0. & 0. \\
0. & 0. & 0. & 0. & 0. & 0. & 0.25 & 0. & 0. & 0. \\
0. & 0. & 0. & 0. & 0. & 0. & 0. & 0.25 & 0. & 0. \\
0. & 0. & 0. & 0. & 0. & 0. & 0. & 0. & 0.25 & 0. \\
\end{array}
\]

It can be verified that the mean is \( \Lambda^{-1}f = \Lambda f \).

\[
\Lambda \odot f
\]

\[
\text{array([[0.75620772, 0.75620772, 0.75620772, 0.75620772, 0.75620772, -0.12168213, -0.12168213, -0.12168213, -0.12168213, -0.12168213 ]])}
\]

### 14.14 PCA and Factor Analysis

To learn about Principal Components Analysis (PCA), please see this lecture *Singular Value Decompositions.*

For fun, let’s apply a PCA decomposition to a covariance matrix \( \Sigma_y \) that in fact is governed by our factor-analytic model.

Technically, this means that the PCA model is misspecified. (Can you explain why?)

Nevertheless, this exercise will let us study how well the first two principal components from a PCA can approximate the conditional expectations \( E f_i \mid Y \) for our two factors \( f_i, i = 1, 2 \) for the factor analytic model that we have assumed truly governs the data on \( Y \) we have generated.

So we compute the PCA decomposition

\[
\Sigma_y = \bar{P} \bar{\Lambda} P' 
\]

where \( \bar{\Lambda} \) is a diagonal matrix.

We have

\[
Y = P\epsilon
\]
Note that we will arrange the eigenvectors in $P$ in the descending order of eigenvalues.

```python
arrange the eigenvectors by eigenvalues
ind = sorted(range(N), key=lambda x: _tilde[x], reverse=True)

P = P[:, ind]
_tilde = _tilde[ind]
Λ_tilde = np.diag(_tilde)
print('tilde = ', _tilde)

_tilde = [5.25 5.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25]

verify the orthogonality of eigenvectors
np.abs(P @ P.T - np.eye(N)).max()

4.440892098500626e-16

verify the eigenvalue decomposition is correct
P @ Λ_tilde @ P.T

array([[1.25, 1. , 1. , 1. , 0. , 0. , 0. , 0. , 0. , 0.],
 [1. , 1.25, 1. , 1. , 0. , 0. , 0. , 0. , 0. , 0.],
 [1. , 1. , 1.25, 1. , 0. , 0. , 0. , 0. , 0. , 0.],
 [1. , 1. , 1. , 1.25, 1. , 0. , 0. , 0. , 0. , 0.],
 [1. , 1. , 1. , 1. , 1.25, 0. , 0. , 0. , 0. , 0.],
 [0. , 0. , 0. , 0. , 0. , 1.25, 1. , 1. , 1. , 1.],
 [0. , 0. , 0. , 0. , 0. , 1. , 1.25, 1. , 1. , 1.],
 [0. , 0. , 0. , 0. , 0. , 1. , 1. , 1.25, 1. , 1.],
 [0. , 0. , 0. , 0. , 0. , 1. , 1. , 1. , 1.25, 1.]])

ε = P.T @ y
print("ε = ", ε)

ε = [1.86000039 0.07157049 -1.25121305 -0.25120826 -0.40056923 0.51782237
 0.2180312 0.34347942 0.79157143 -0.26752053]

print the values of the two factors
print('f = ', f)

f = [0.75620772 -0.12168213]
```

Below we’ll plot several things
• the $N$ values of $y$
• the $N$ values of the principal components $\epsilon$
• the value of the first factor $f_1$ plotted only for the first $N/2$ observations of $y$ for which it receives a non-zero loading in $\Lambda$
• the value of the second factor $f_2$ plotted only for the final $N/2$ observations for which it receives a non-zero loading in $\Lambda$

```python
plt.scatter(range(N), y, label='y')
plt.scatter(range(N), ϵ, label='\$epsilon\$')
plt.hlines($f[0]$, 0, N//2-1, ls='--', label='\$f_1\$')
plt.hlines($f[1]$, N//2, N-1, ls='-.', label='\$f_2\$')
plt.legend()
plt.show()
```

Consequently, the first two $\epsilon_j$ correspond to the largest two eigenvalues.

Let’s look at them, after which we’ll look at $Ef | y = By$

```python
$\epsilon[:,2]$
```

```python
array([1.86000039, 0.07157049])
```

# compare with Ef | y

```python
B @ y
```

```python
array([0.79220711, 0.03048314])
```

The fraction of variance in $y_t$ explained by the first two principal components can be computed as below.

```python
__tilde[:,2].sum() / __tilde.sum()"
Compute

\[\hat{Y} = P_j \epsilon_j + P_k \epsilon_k \]

where \(P_j \) and \(P_k \) correspond to the largest two eigenvalues.

\[y_{\text{hat}} = P[:, :2] \odot \epsilon[2:] \]

In this example, it turns out that the projection \(\hat{Y} \) of \(Y \) on the first two principal components does a good job of approximating \(Ef | y \).

We confirm this in the following plot of \(f, Ey | f, Ef | y \), and \(\hat{y} \) on the coordinate axis versus \(y \) on the ordinate axis.

```python
plt.scatter(range(N), Λ @ f, label='\$Ey|f\$')
plt.scatter(range(N), y_hat, label='\$\hat{y}\$')
plt.hlines(f[0], 0, N/2-1, ls='--', label='\$f_1\$')
plt.hlines(f[1], N/2, N-1, ls='--', label='\$f_2\$')
plt.hlines(Efy[0], 0, N/2-1, ls='--', color='b', label='\$Ef_1|y\$')
plt.hlines(Efy[1], N/2, N-1, ls='--', color='b', label='\$Ef_2|y\$')
plt.legend()
plt.show()
```

The covariance matrix of \(\hat{Y} \) can be computed by first constructing the covariance matrix of \(\epsilon \) and then use the upper left block for \(\epsilon_1 \) and \(\epsilon_2 \).

\[\Sigma_{\epsilon_{jk}} = (P.T @ \Sigma_y @ P)[2:, 2:] \]

\[P_{jk} = P[:, 2] \]

\[\Sigma_y_{\text{hat}} = P_{jk} @ \Sigma_{\epsilon_{jk}} @ P_{jk}.T \]

```python
print('\$\Sigma_{y_{\text{hat}} = \n}$', Σy_hat)
```
$\Sigma y_{\hat{}} =$

\[
\begin{bmatrix}
1.05 & 1.05 & 1.05 & 1.05 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.05 & 1.05 & 1.05 & 1.05 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.05 & 1.05 & 1.05 & 1.05 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.05 & 1.05 & 1.05 & 1.05 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 \\
0.0 & 0.0 & 0.0 & 0.0 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 & 1.05 \\
\end{bmatrix}
\]
Heavy-Tailed Distributions

Contents

- Heavy-Tailed Distributions
 - Overview
 - Visual Comparisons
 - Classifying Tail Properties
 - Failure of the LLN
 - Why Do Heavy Tails Matter?
 - Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
!pip install --upgrade yfinance
```

We run the following code to prepare for the lecture:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  # set default figure size
import numpy as np
import quantecon as qe
from scipy.stats import norm
import yfinance as yf
import pandas as pd
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
```
15.1 Overview

In this section we give some motivation for the lecture.

15.1.1 Introduction: Light Tails

Most commonly used probability distributions in classical statistics and the natural sciences have “light tails.”

To explain this concept, let’s look first at examples.

The classic example is the normal distribution, which has density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

on the real line $\mathbb{R} = (-\infty, \infty)$.

The two parameters μ and σ are the mean and standard deviation respectively.

As x deviates from μ, the value of $f(x)$ goes to zero extremely quickly.

We can see this when we plot the density and show a histogram of observations, as with the following code (which assumes $\mu = 0$ and $\sigma = 1$).

```python
fig, ax = plt.subplots()
X = norm.rvs(size=1_000_000)
ax.hist(X, bins=40, alpha=0.4, label='histogram', density=True)
x_grid = np.linspace(-4, 4, 400)
ax.plot(x_grid, norm.pdf(x_grid), label='density')
ax.legend()
plt.show()
```

Notice how

- the density’s tails converge quickly to zero in both directions and
- even with 1,000,000 draws, we get no very large or very small observations.

We can see the last point more clearly by executing
X.min(), X.max()

(-4.786399317960485, 5.040952596531533)

Here’s another view of draws from the same distribution:

```python
def norm_rvs(size=n):
    return norm.rvs(size=n)
```

We have plotted each individual draw X_i against i.

None are very large or very small.

In other words, extreme observations are rare and draws tend not to deviate too much from the mean.

As a result, many statisticians and econometricians use rules of thumb such as “outcomes more than four or five standard deviations from the mean can safely be ignored.”

15.1.2 When Are Light Tails Valid?

Distributions that rarely generate extreme values are called light-tailed.

For example, human height is light-tailed.

Yes, it’s true that we see some very tall people.

- For example, basketballer Sun Mingming is 2.32 meters tall

But have you ever heard of someone who is 20 meters tall? Or 200? Or 2000?
Have you ever wondered why not?
After all, there are 8 billion people in the world!
In essence, the reason we don’t see such draws is that the distribution of human height has very light tails.
In fact human height is approximately normally distributed.

15.1.3 Returns on Assets

But now we have to ask: does economic data always look like this?
Let’s look at some financial data first.

Our aim is to plot the daily change in the price of Amazon (AMZN) stock for the period from 1st January 2015 to 1st July 2022.

This equates to daily returns if we set dividends aside.

The code below produces the desired plot using Yahoo financial data via the yfinance library.

```python
s = yf.download('AMZN', '2015-1-1', '2022-7-1')['Adj Close']
r = s.pct_change()
fig, ax = plt.subplots()
ax.plot(r, linestyle='-', marker='o', alpha=0.5, ms=4)
ax.vlines(r.index, 0, r.values, lw=0.2)
ax.set_xlabel('date', fontsize=12)
ax.set_ylabel('returns', fontsize=12)
plt.show()
```

[********************100%********************] 1 of 1 completed
This data looks different to the draws from the normal distribution.
Several of observations are quite extreme.
We get a similar picture if we look at other assets, such as Bitcoin

```python
s = yf.download('BTC-USD', '2015-1-1', '2022-7-1')['Adj Close']
r = s.pct_change()
fig, ax = plt.subplots()
ax.plot(r, linestyle='-', marker='o', alpha=0.5, ms=4)
ax.vlines(r.index, 0, r.values, lw=0.2)
ax.set_ylabel('returns', fontsize=12)
ax.set_xlabel('date', fontsize=12)
plt.show()
```

The histogram also looks different to the histogram of the normal distribution:

```python
fig, ax = plt.subplots()
ax.hist(r, bins=60, alpha=0.4, label='bitcoin returns', density=True)
ax.set_xlabel('returns', fontsize=12)
plt.show()
```
If we look at higher frequency returns data (e.g., tick-by-tick), we often see even more extreme observations. See, for example, [Man63] or [Rac03].

15.1.4 Other Data

The data we have just seen is said to be “heavy-tailed”.

With heavy-tailed distributions, extreme outcomes occur relatively frequently. (A more careful definition is given below)

Importantly, there are many examples of heavy-tailed distributions observed in economic and financial settings include

- For example, the income and the wealth distributions are heavy-tailed (see, e.g., [Vil96], [BB18]).
 - You can imagine this: most people have low or modest wealth but some people are extremely rich.

- The firm size distribution is also heavy-tailed ([Axt01], [Gab16]).
 - You can imagine this too: most firms are small but some firms are enormous.

- The distribution of town and city sizes is heavy-tailed ([RRGM11], [Gab16]).
 - Most towns and cities are small but some are very large.

15.1.5 Why Should We Care?

Heavy tails are common in economic data but does that mean they are important? The answer to this question is affirmative!

When distributions are heavy-tailed, we need to think carefully about issues like

- diversification and risk
- forecasting
- taxation (across a heavy-tailed income distribution), etc.

We return to these points below.
15.2 Visual Comparisons

Let's do some more visual comparisons to help us build intuition on the difference between light and heavy tails.

The figure below shows a simulation. (You will be asked to replicate it in the exercises.)

The top two subfigures each show 120 independent draws from the normal distribution, which is light-tailed.

The bottom subfigure shows 120 independent draws from the Cauchy distribution, which is heavy-tailed.

In the top subfigure, the standard deviation of the normal distribution is 2, and the draws are clustered around the mean.

In the middle subfigure, the standard deviation is increased to 12 and, as expected, the amount of dispersion rises.

The bottom subfigure, with the Cauchy draws, shows a different pattern: tight clustering around the mean for the great majority of observations, combined with a few sudden large deviations from the mean.

This is typical of a heavy-tailed distribution.

15.3 Classifying Tail Properties

To keep our discussion precise, we need some definitions concerning tail properties.

We will focus our attention on the right hand tails of nonnegative random variables and their distributions.

The definitions for left hand tails are very similar and we omit them to simplify the exposition.

15.3.1 Light and Heavy Tails

A distribution F with density f on \mathbb{R}_+ is called heavy-tailed if

$$
\int_0^\infty \exp(tx)f(x)dx = \infty \text{ for all } t > 0.
$$

We say that a nonnegative random variable X is heavy-tailed if its density is heavy-tailed.

This is equivalent to stating that its moment generating function $m(t) := \mathbb{E} \exp(tX)$ is infinite for all $t > 0$.

For example, the log-normal distribution is heavy-tailed because its moment generating function is infinite everywhere on $(0, \infty)$.

A distribution F on \mathbb{R}_+ is called light-tailed if it is not heavy-tailed.

A nonnegative random variable X is light-tailed if its distribution F is light-tailed.

For example, every random variable with bounded support is light-tailed. (Why?)

As another example, if X has the exponential distribution, with cdf $F(x) = 1 - \exp(-\lambda x)$ for some $\lambda > 0$, then its moment generating function is

$$
m(t) = \frac{\lambda}{\lambda - t} \text{ when } t < \lambda
$$

In particular, $m(t)$ is finite whenever $t < \lambda$, so X is light-tailed.

One can show that if X is light-tailed, then all of its moments are finite.

Conversely, if some moment is infinite, then X is heavy-tailed.

The latter condition is not necessary, however.

For example, the lognormal distribution is heavy-tailed but every moment is finite.
Chapter 15. Heavy-Tailed Distributions
15.3.2 Pareto Tails

One specific class of heavy-tailed distributions has been found repeatedly in economic and social phenomena: the class of so-called power laws.

Specifically, given \(\alpha > 0 \), a nonnegative random variable \(X \) is said to have a Pareto tail with tail index \(\alpha \) if

\[
\lim_{x \to \infty} x^{\alpha} \mathbb{P}\{X > x\} = c.
\] (15.2)

The limit (15.2) implies the existence of positive constants \(b \) and \(\bar{x} \) such that \(\mathbb{P}\{X > x\} \geq bx^{-\alpha} \) whenever \(x \geq \bar{x} \).

The implication is that \(\mathbb{P}\{X > x\} \) converges to zero no faster than \(x^{-\alpha} \).

In some sources, a random variable obeying (15.2) is said to have a power law tail.

One example is the Pareto distribution.

If \(X \) has the Pareto distribution, then there are positive constants \(\bar{x} \) and \(\alpha \) such that

\[
\mathbb{P}\{X > x\} = \begin{cases}
(\bar{x}/x)^\alpha & \text{if } x \geq \bar{x} \\
1 & \text{if } x < \bar{x}
\end{cases}
\] (15.3)

It is easy to see that \(\mathbb{P}\{X > x\} \) satisfies (15.2).

Thus, in line with the terminology, Pareto distributed random variables have a Pareto tail.

15.3.3 Rank-Size Plots

One graphical technique for investigating Pareto tails and power laws is the so-called rank-size plot.

This kind of figure plots log size against log rank of the population (i.e., location in the population when sorted from smallest to largest).

Often just the largest 5% or 10% of observations are plotted.

For a sufficiently large number of draws from a Pareto distribution, the plot generates a straight line. For distributions with thinner tails, the data points are concave.

A discussion of why this occurs can be found in [NOM04].

The figure below provides one example, using simulated data.

The rank-size plots shows draws from three different distributions: folded normal, chi-squared with 1 degree of freedom and Pareto.

The Pareto sample produces a straight line, while the lines produced by the other samples are concave.

You are asked to reproduce this figure in the exercises.

15.4 Failure of the LLN

One impact of heavy tails is that sample averages can be poor estimators of the underlying mean of the distribution.

To understand this point better, recall our earlier discussion of the Law of Large Numbers, which considered IID \(X_1, \ldots, X_n \) with common distribution \(F \).

If \(\mathbb{E}|X_i| \) is finite, then the sample mean \(\bar{X}_n := \frac{1}{n} \sum_{i=1}^{n} X_i \) satisfies

\[
\mathbb{P}\{\bar{X}_n \to \mu \text{ as } n \to \infty\} = 1
\] (15.4)
Chapter 15. Heavy-Tailed Distributions
where $\mu := \mathbb{E}X_i = \int xF(dx)$ is the common mean of the sample.

The condition $\mathbb{E}|X_i| = \int |x|F(dx) < \infty$ holds in most cases but can fail if the distribution F is very heavy tailed. For example, it fails for the Cauchy distribution.

Let’s have a look at the behavior of the sample mean in this case, and see whether or not the LLN is still valid.

```python
from scipy.stats import cauchy
np.random.seed(1234)
N = 1_000
distribution = cauchy()

fig, ax = plt.subplots()
data = distribution.rvs(N)

# Compute sample mean at each n
sample_mean = np.empty(N)
for n in range(1, N):
sample_mean[n] = np.mean(data[:n])

# Plot
ax.plot(range(N), sample_mean, alpha=0.6, label='$\bar{X}_n$')
ax.plot(range(N), np.zeros(N), 'k--', lw=0.5)
ax.legend()
plt.show()
```

The sequence shows no sign of converging.

Will convergence occur if we take n even larger?

The answer is no.

To see this, recall that the characteristic function of the Cauchy distribution is

$$
\phi(t) = \mathbb{E}e^{itX} = \int e^{itx}f(x)dx = e^{-|t|}
$$

(15.5)

15.4. Failure of the LLN
Using independence, the characteristic function of the sample mean becomes

\[\mathbb{E} e^{it\bar{X}_n} = \mathbb{E} \exp \left\{ \frac{t}{n} \sum_{j=1}^{n} X_j \right\} \]
\[= \mathbb{E} \prod_{j=1}^{n} \exp \left\{ \frac{t}{n} X_j \right\} \]
\[= \prod_{j=1}^{n} \mathbb{E} \exp \left\{ \frac{t}{n} X_j \right\} = [\phi(t/n)]^n \]

In view of (15.5), this is just \(e^{-|t|} \).

Thus, in the case of the Cauchy distribution, the sample mean itself has the very same Cauchy distribution, regardless of \(n \! \)!

In particular, the sequence \(\bar{X}_n \) does not converge to any point.

15.5 Why Do Heavy Tails Matter?

We have now seen that

1. heavy tails are frequent in economics and
2. the Law of Large Numbers fails when tails are very heavy.

But what about in the real world? Do heavy tails matter?

Let’s briefly discuss why they do.

15.5.1 Diversification

One of the most important ideas in investing is using diversification to reduce risk.

This is a very old idea — consider, for example, the expression “don’t put all your eggs in one basket”.

To illustrate, consider an investor with one dollar of wealth and a choice over \(n \) assets with payoffs \(X_1, \ldots, X_n \).

Suppose that returns on distinct assets are independent and each return has mean \(\mu \) and variance \(\sigma^2 \).

If the investor puts all wealth in one asset, say, then the expected payoff of the portfolio is \(\mu \) and the variance is \(\sigma^2 \).

If instead the investor puts share \(1/n \) of her wealth in each asset, then the portfolio payoff is

\[Y_n = \sum_{i=1}^{n} \frac{X_i}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i. \]

Try computing the mean and variance.

You will find that

- The mean is unchanged at \(\mu \), while
- the variance of the portfolio has fallen to \(\sigma^2/n \).

Diversification reduces risk, as expected.

But there is a hidden assumption here: the variance of returns is finite.

If the distribution is heavy-tailed and the variance is infinite, then this logic is incorrect.
For example, we saw above that if every X_i is Cauchy, then so is Y_n.
This means that diversification doesn’t help at all!

15.5.2 Fiscal Policy

The heaviness of the tail in the wealth distribution matters for taxation and redistribution policies.
The same is true for the income distribution.
For example, the heaviness of the tail of the income distribution helps determine how much revenue a given tax policy will raise.

15.5.3 Other Implications

There are in fact many important implications for heavy tails.
For example, heavy tails in income and wealth affect productivity growth, business cycles, and political economy.
For further reading, see, for example, [AR02], [GSS03], [BEGS18] or [AKM+18].

15.6 Exercises

Exercise 15.6.1

Replicate the figure presented above that compares normal and Cauchy draws.
Use `np.random.seed(11)` to set the seed.

Solution to Exercise 15.6.1

Here is one solution:

```python
n = 120
np.random.seed(11)

fig, axes = plt.subplots(3, 1, figsize=(6, 12))

for ax in axes:
    ax.set_ylim((-120, 120))

s_vals = 2, 12

for ax, s in zip(axes[:2], s_vals):
    data = np.random.randn(n) * s
    ax.plot(list(range(n)), data, linestyle='-', marker='o', alpha=0.5, ms=4)
    ax.vlines(list(range(n)), 0, data, lw=0.2)
    ax.set_title(f'draws from $N(0, \sigma^2)$ with $\sigma = {s}$', fontsize=11)

ax = axes[2]
distribution = cauchy()
data = distribution.rvs(n)
ax.plot(list(range(n)), data, linestyle='-', marker='o', alpha=0.5, ms=4)
```

(continues on next page)
ax.vlines(list(range(n)), 0, data, lw=0.2)
ax.set_title(f"draws from the Cauchy distribution", fontsize=11)
plt.subplots_adjust(hspace=0.25)
plt.show()
draws from $N(0, \sigma^2)$ with $\sigma = 2$

draws from $N(0, \sigma^2)$ with $\sigma = 12$

draws from the Cauchy distribution
Exercise 15.6.2
Prove: If X has a Pareto tail with tail index α, then $\mathbb{E}[X^r] = \infty$ for all $r \geq \alpha$.

Solution to Exercise 15.6.2
Let X have a Pareto tail with tail index α and let F be its cdf.

Fix $r \geq \alpha$.

As discussed after (15.2), we can take positive constants b and \bar{x} such that

$$P\{X > x\} \geq bx^{-\alpha} \text{ whenever } x \geq \bar{x}$$

But then

$$\mathbb{E}X^r = r \int_{0}^{\infty} x^{r-1} P\{X > x\} x \geq r \int_{0}^{\bar{x}} x^{r-1} P\{X > x\} x + r \int_{\bar{x}}^{\infty} x^{r-1} bx^{-\alpha} x.$$

We know that $\int_{\bar{x}}^{\infty} x^{r-\alpha-1} x = \infty$ whenever $r - \alpha - 1 \geq -1$.

Since $r \geq \alpha$, we have $\mathbb{E}X^r = \infty$.

Exercise 15.6.3
Repeat exercise 1, but replace the three distributions (two normal, one Cauchy) with three Pareto distributions using different choices of α.

For α, try 1.15, 1.5 and 1.75.

Use np.random.seed(11) to set the seed.

Solution to Exercise 15.6.3
Here is one solution:

```python
from scipy.stats import pareto
np.random.seed(11)

n = 120
alphas = [1.15, 1.50, 1.75]
fig, axes = plt.subplots(3, 1, figsize=(6, 8))

for (a, ax) in zip(alphas, axes):
    ax.set_ylim((-5, 50))
    data = pareto.rvs(size=n, scale=1, b=a)
    ax.plot(list(range(n)), data, linestyle='-', marker='o', alpha=0.5, ms=4)
    ax.vlines(list(range(n)), data, lw=0.2)
    ax.set_title(f"Pareto draws with $\alpha = {a}$/", fontsize=11)
```

(continues on next page)
Exercise 15.6.4

Replicate the rank-size plot figure *presented above*. If you like you can use the function `qe.rank_size` from the `quantecon` library to generate the plots.
Quantitative Economics with Python

Use np.random.seed(13) to set the seed.

Solution to Exercise 15.6.4

First let's generate the data for the plots:

```python
sample_size = 1000
np.random.seed(13)
z = np.random.randn(sample_size)

data_1 = np.abs(z)
data_2 = np.exp(z)
data_3 = np.exp(np.random.exponential(scale=1.0, size=sample_size))
data_list = [data_1, data_2, data_3]

Now we plot the data:

```python
fig, axes = plt.subplots(3, 1, figsize=(6, 8))
axes = axes.flatten()
labels = ['$|z|$', '$\exp(z)$', 'Pareto with tail index 1.0']

for data, label, ax in zip(data_list, labels, axes):
 rank_data, size_data = qe.rank_size(data)
 ax.loglog(rank_data, size_data, 'o', markersize=3.0, alpha=0.5, label=label)
 ax.set_xlabel("log rank")
 ax.set_ylabel("log size")
 ax.legend()

fig.subplots_adjust(hspace=0.4)
plt.show()
```
Exercise 15.6.5

There is an ongoing argument about whether the firm size distribution should be modeled as a Pareto distribution or a lognormal distribution (see, e.g., [FDGA+04], [KLS18] or [ST19a]).

This sounds esoteric but has real implications for a variety of economic phenomena.

To illustrate this fact in a simple way, let us consider an economy with 100,000 firms, an interest rate of $r = 0.05$ and a corporate tax rate of 15%.

Your task is to estimate the present discounted value of projected corporate tax revenue over the next 10 years.

Because we are forecasting, we need a model.
We will suppose that

1. the number of firms and the firm size distribution (measured in profits) remain fixed and
2. the firm size distribution is either lognormal or Pareto.

Present discounted value of tax revenue will be estimated by

1. generating 100,000 draws of firm profit from the firm size distribution,
2. multiplying by the tax rate, and
3. summing the results with discounting to obtain present value.

The Pareto distribution is assumed to take the form (15.3) with $\bar{x} = 1$ and $\alpha = 1.05$.

(The value the tail index $\alpha$ is plausible given the data [Gab16].)

To make the lognormal option as similar as possible to the Pareto option, choose its parameters such that the mean and median of both distributions are the same.

Note that, for each distribution, your estimate of tax revenue will be random because it is based on a finite number of draws.

To take this into account, generate 100 replications (evaluations of tax revenue) for each of the two distributions and compare the two samples by

- producing a violin plot visualizing the two samples side-by-side and
- printing the mean and standard deviation of both samples.

For the seed use `np.random.seed(1234)`.

What differences do you observe?

Note: A better approach to this problem would be to model firm dynamics and try to track individual firms given the current distribution. We will discuss firm dynamics in later lectures.

---

Solution to Exercise 15.6.5

To do the exercise, we need to choose the parameters $\mu$ and $\sigma$ of the lognormal distribution to match the mean and median of the Pareto distribution.

Here we understand the lognormal distribution as that of the random variable $\exp(\mu + \sigma Z)$ when $Z$ is standard normal.

The mean and median of the Pareto distribution (15.3) with $\bar{x} = 1$ are

$$ \text{mean} = \frac{\alpha}{\alpha - 1} \quad \text{and} \quad \text{median} = 2^{1/\alpha} $$

Using the corresponding expressions for the lognormal distribution leads us to the equations

$$ \frac{\alpha}{\alpha - 1} = \exp(\mu + \sigma^2/2) \quad \text{and} \quad 2^{1/\alpha} = \exp(\mu) $$

which we solve for $\mu$ and $\sigma$ given $\alpha = 1.05$.

Here is code that generates the two samples, produces the violin plot and prints the mean and standard deviation of the two samples.
Number of firms: 100,000
Number of years: 10
Tax rate: 0.15
r = 0.05

\[ \beta = \frac{1}{1 + r} \quad \text{# discount factor} \]

x_bar = 1.0
α = 1.05

```python
def pareto_rvs(n):
 "Uses a standard method to generate Pareto draws."
 u = np.random.uniform(size=n)
 y = x_bar / (u**((1/α)))
 return y
```

Let's compute the lognormal parameters:

\[ \mu = \frac{\log(2)}{α} \]
\[ \sigma^2 = 2 \cdot \left( \frac{\log(α/(α - 1))}{α} - \frac{\log(2)}{α} \right) \]
\[ σ = np.sqrt(σ^2) \]

Here's a function to compute a single estimate of tax revenue for a particular choice of distribution dist.

```python
def tax_rev(dist):
 tax_raised = 0
 for t in range(num_years):
 if dist == 'pareto':
 π = pareto_rvs(num_firms)
 else:
 π = np.exp(μ + σ * np.random.randn(num_firms))
 tax_raised += β**t * np.sum(π * tax_rate)
 return tax_raised
```

Now let's generate the violin plot.

```python
num_reps = 100
np.random.seed(1234)

tax_rev_lognorm = np.empty(num_reps)
tax_rev_pareto = np.empty(num_reps)

for i in range(num_reps):
 tax_rev_pareto[i] = tax_rev('pareto')
tax_rev_lognorm[i] = tax_rev('lognorm')

fig, ax = plt.subplots()
data = tax_rev_pareto, tax_rev_lognorm
ax.violinplot(data)
plt.show()
```
Finally, let’s print the means and standard deviations.

```python
tax_rev_pareto.mean(), tax_rev_pareto.std()
```

```
(1458729.0546623734, 406089.3613661567)
```

```python
tax_rev_lognorm.mean(), tax_rev_lognorm.std()
```

```
(2556174.8615230713, 25586.44456513965)
```

Looking at the output of the code, our main conclusion is that the Pareto assumption leads to a lower mean and greater dispersion.
CHAPTER SIXTEEN

FAULT TREE UNCERTAINTIES

16.1 Overview

This lecture puts elementary tools to work to approximate probability distributions of the annual failure rates of a system consisting of a number of critical parts.

We'll use log normal distributions to approximate probability distributions of critical component parts.

To approximate the probability distribution of the sum of $n$ log normal probability distributions that describes the failure rate of the entire system, we'll compute the convolution of those $n$ log normal probability distributions.

We'll use the following concepts and tools:

- log normal distributions
- the convolution theorem that describes the probability distribution of the sum independent random variables
- fault tree analysis for approximating a failure rate of a multi-component system
- a hierarchical probability model for describing uncertain probabilities
- Fourier transforms and inverse Fourier transforms as efficient ways of computing convolutions of sequences

For more about Fourier transforms see this quant econ lecture Circulant Matrices as well as these lecture Covariance Stationary Processes and Estimation of Spectra.

El-Shanawany, Ardon, and Walker [ESAW18] and Greenfield and Sargent [GS93] used some of the methods described here to approximate probabilities of failures of safety systems in nuclear facilities.

These methods respond to some of the recommendations made by Apostolakis [Apo90] for constructing procedures for quantifying uncertainty about the reliability of a safety system.

We'll start by bringing in some Python machinery.

```bash
!pip install tabulate
```

Requirement already satisfied: tabulate in /__w/lecture-python.myst/lecture-python.
-myst/3/envs/quantecon/lib/python3.9/site-packages (0.8.10)

WARNING: Running pip as the 'root' user can result in broken permissions and...
- conflicting behaviour with the system package manager. It is recommended to use...
- a virtual environment instead: https://pip.pypa.io/warnings/venv
import numpy as np
from numpy import fft
import matplotlib.pyplot as plt
import scipy as sp
from scipy.signal import fftconvolve
from tabulate import tabulate
import time

%matplotlib inline

np.set_printoptions(precision=3, suppress=True)

16.2 Log normal distribution

If a random variable $x$ follows a normal distribution with mean $\mu$ and variance $\sigma^2$, then the natural logarithm of $x$, say $y = \log(x)$, follows a log normal distribution with parameters $\mu, \sigma^2$.

Notice that we said parameters and not mean and variance $\mu, \sigma^2$.

- $\mu$ and $\sigma^2$ are the mean and variance of $x = \exp(y)$
- they are not the mean and variance of $y$
- instead, the mean of $y$ is $e^{\mu + \frac{1}{2}\sigma^2}$ and the variance of $y$ is $(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$

A log normal random variable $y$ is nonnegative.

The density for a log normal random variate $y$ is

$$f(y) = \frac{1}{y\sigma\sqrt{2\pi}} \exp \left( \frac{-(\log{y} - \mu)^2}{2\sigma^2} \right)$$

for $y \geq 0$.

Important features of a log normal random variable are

- mean: $e^{\mu + \frac{1}{2}\sigma^2}$
- variance: $(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$
- median: $e^\mu$
- mode: $e^{\mu - \sigma^2}$
- .95 quantile: $e^{\mu + 1.645\sigma}$
- .95-.05 quantile ratio: $e^{1.645\sigma}$

Recall the following stability property of two independent normally distributed random variables:

If $x_1$ is normal with mean $\mu_1$ and variance $\sigma_1^2$ and $x_2$ is independent of $x_1$ and normal with mean $\mu_2$ and variance $\sigma_2^2$, then $x_1 + x_2$ is normally distributed with mean $\mu_1 + \mu_2$ and variance $\sigma_1^2 + \sigma_2^2$.

Independent log normal distributions have a different stability property.

The product of independent log normal random variables is also log normal.

In particular, if $y_1$ is log normal with parameters $(\mu_1, \sigma_1^2)$ and $y_2$ is log normal with parameters $(\mu_2, \sigma_2^2)$, then the product $y_1y_2$ is log normal with parameters $(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. 
Note: While the product of two log normal distributions is log normal, the sum of two log normal distributions is not log normal.

This observation sets the stage for challenge that confronts us in this lecture, namely, to approximate probability distributions of sums of independent log normal random variables.

To compute the probability distribution of the sum of two log normal distributions, we can use the following convolution property of a probability distribution that is a sum of independent random variables.

### 16.3 The Convolution Property

Let \( x \) be a random variable with probability density \( f(x) \), where \( x \in \mathbb{R} \).

Let \( y \) be a random variable with probability density \( g(y) \), where \( y \in \mathbb{R} \).

Let \( x \) and \( y \) be independent random variables and let \( z = x + y \in \mathbb{R} \).

Then the probability distribution of \( z \) is

\[
h(z) = (f \ast g)(z) \equiv \int_{-\infty}^{\infty} f(\tau)g(z - \tau)\,d\tau
\]

where \( (f \ast g) \) denotes the convolution of the two functions \( f \) and \( g \).

If the random variables are both nonnegative, then the above formula specializes to

\[
h(z) = (f \ast g)(z) \equiv \int_{0}^{\infty} f(\tau)g(z - \tau)\,d\tau
\]

Below, we’ll use a discretized version of the preceding formula.

In particular, we’ll replace both \( f \) and \( g \) with discretized counterparts, normalized to sum to 1 so that they are probability distributions.

- by discretized we mean an equally spaced sampled version

Then we’ll use the following version of the above formula

\[
h_n = (f \ast g)_n = \sum_{m=0}^{\infty} f_m g_{n-m}, \quad n \geq 0
\]

to compute a discretized version of the probability distribution of the sum of two random variables, one with probability mass function \( f \), the other with probability mass function \( g \).

Before applying the convolution property to sums of log normal distributions, let’s practice on some simple discrete distributions.

To take one example, let’s consider the following two probability distributions

\[
f_j = \text{Prob}(X = j), \quad j = 0, 1
\]

and

\[
g_j = \text{Prob}(Y = j), \quad j = 0, 1, 2, 3
\]

and

\[
h_j = \text{Prob}(Z = X + Y = j), \quad j = 0, 1, 2, 3, 4
\]
The convolution property tells us that

\[ h = f * g = g * f \]

Let's compute an example using the `numpy.convolve` and `scipy.signal.fftconvolve`

```python
f = [0.75, 0.25]
g = [0.0, 0.6, 0.0, 0.4]
h = np.convolve(f, g)
hf = fftconvolve(f, g)
```

A little later we’ll explain some advantages that come from using `scipy.signal.fftconvolve` rather than `numpy.convolve`.

They provide the same answers but `scipy.signal.fftconvolve` is much faster.

That’s why we rely on it later in this lecture.

### 16.4 Approximating Distributions

We’ll construct an example to verify that discretized distributions can do a good job of approximating samples drawn from underlying continuous distributions.

We’ll start by generating samples of size 25000 of three independent log normal random variates as well as pairwise and triple-wise sums.

Then we’ll plot histograms and compare them with convolutions of appropriate discretized log normal distributions.

```python
create sums of two and three log normal random variates ssum2 = s1 + s2 and ssum3 = s1 + s2 + s3

mu1, sigma1 = 5.0, 1.0 # mean and standard deviation
s1 = np.random.lognormal(mu1, sigma1, 25000)
mu2, sigma2 = 5.0, 1.0 # mean and standard deviation
s2 = np.random.lognormal(mu2, sigma2, 25000)
mu3, sigma3 = 5.0, 1.0 # mean and standard deviation
s3 = np.random.lognormal(mu3, sigma3, 25000)
ssum2 = s1 + s2
ssum3 = s1 + s2 + s3
count, bins, ignored = plt.hist(s1, 1000, density=True, align='mid')
```
count, bins, ignored = plt.hist(ssum2, 1000, density=True, align='mid')
count, bins, ignored = plt.hist(ssum3, 1000, density=True, align='mid')

samp_mean2 = np.mean(s2)
pop_mean2 = np.exp(mu2 + (sigma2**2)/2)

pop_mean2, samp_mean2, mu2, sigma2

(244.69193226422038, 243.92877031550816, 5.0, 1.0)

Here are helper functions that create a discretized version of a log normal probability density function.

```python
def p_log_normal(x, μ, σ):
 p = 1 / (σ*x*np.sqrt(2*np.pi)) * np.exp(-1/2*((np.log(x) - μ)/σ)**2)
 return p

def pdf_seq(μ, σ, I, m):
 x = np.arange(1e-7, I, m)
 p_array = p_log_normal(x, μ, σ)
 p_array_norm = p_array/np.sum(p_array)
 return p_array, p_array_norm, x
```

Now we shall set a grid length \( I \) and a grid increment size \( m = 1 \) for our discretizations.

**Note:** We set \( I \) equal to a power of two because we want to be free to use a Fast Fourier Transform to compute a convolution of two sequences (discrete distributions).

We recommend experimenting with different values of the power \( p \) of 2.
Setting it to 15 rather than 12, for example, improves how well the discretized probability mass function approximates the original continuous probability density function being studied.

```python
p = 15
I = 2**p # Truncation value
m = .1 # increment size

Cell to check -- note what happens when don't normalize!
things match up without adjustment. Compare with above

p1, p1_norm, x = pdf_seq(mu1, sigma1, I, m)
compute number of points to evaluate the probability mass function
NT = x.size

plt.figure(figsize=(8, 8))
plt.subplot(2, 1, 1)
plt.plot(x[:int(NT)], p1[:int(NT)], label='')
plt.xlim(0, 2500)
plt.hist(s1, 1000, density=True, align='mid')
plt.show()

Compute mean from discretized pdf and compare with the theoretical value

mean = np.sum(np.multiply(x[:NT], p1_norm[:NT]))
meantheory = np.exp(mu1 + .5 * sigma1**2)
mean, meantheory
```

(244.69059898302908, 244.69193226422038)
16.5 Convolving Probability Mass Functions

Now let’s use the convolution theorem to compute the probability distribution of a sum of the two log normal random variables we have parameterized above.

We’ll also compute the probability of a sum of three log normal distributions constructed above.

Before we do these things, we shall explain our choice of Python algorithm to compute a convolution of two sequences.

Because the sequences that we convolve are long, we use the `scipy.signal.fftconvolve` function rather than the `numpy.convolve` function.

These two functions give virtually equivalent answers but for long sequences `scipy.signal.fftconvolve` is much faster.

The program `scipy.signal.fftconvolve` uses fast Fourier transforms and their inverses to calculate convolutions.

Let’s define the Fourier transform and the inverse Fourier transform.

The **Fourier transform** of a sequence \( \{x_t\}_{t=0}^{T-1} \) is a sequence of complex numbers \( \{x(\omega_j)\}_{j=0}^{T-1} \) given by

\[
x(\omega_j) = \sum_{t=0}^{T-1} x_t \exp(-i\omega_j t)
\]  
(16.1)

where \( \omega_j = \frac{2\pi j}{T} \) for \( j = 0, 1, \ldots, T-1 \).

The **inverse Fourier transform** of the sequence \( \{x(\omega_j)\}_{j=0}^{T-1} \) is

\[
x_t = T^{-1} \sum_{j=0}^{T-1} x(\omega_j) \exp(i\omega_j t)
\]  
(16.2)

The sequences \( \{x_t\}_{t=0}^{T-1} \) and \( \{x(\omega_j)\}_{j=0}^{T-1} \) contain the same information.

The pair of equations (16.1) and (16.2) tell how to recover one series from its Fourier partner.

The program `scipy.signal.fftconvolve` deploys the theorem that a convolution of two sequences \( \{f_k\}, \{g_k\} \) can be computed in the following way:

- Compute Fourier transforms \( F(\omega), G(\omega) \) of the \( \{f_k\} \) and \( \{g_k\} \) sequences, respectively
- Form the product \( H(\omega) = F(\omega)G(\omega) \)
- The convolution of \( f \ast g \) is the inverse Fourier transform of \( H(\omega) \)

The **fast Fourier transform** and the associated **inverse fast Fourier transform** execute these calculations very quickly.

This is the algorithm that `scipy.signal.fftconvolve` uses.

Let’s do a warmup calculation that compares the times taken by `numpy.convolve` and `scipy.signal.fftconvolve`.

```python
p1, p1_norm, x = pdf_seq(mu1, sigma1, I, m)
p2, p2_norm, x = pdf_seq(mu2, sigma2, I, m)
p3, p3_norm, x = pdf_seq(mu3, sigma3, I, m)

tic = time.perf_counter()
c1 = np.convolve(p1_norm, p2_norm)
c2 = np.convolve(c1, p3_norm)
```

(continues on next page)
Quantitative Economics with Python

The fast Fourier transform is two orders of magnitude faster than `numpy.convolve`.

Now let’s plot our computed probability mass function approximation for the sum of two log normal random variables against the histogram of the sample that we formed above.

```python
tic = time.perf_counter()
tdiff1 = toc - tic
tic = time.perf_counter()
c1f = fftconvolve(p1_norm,p2_norm)
c2f = fftconvolve(c1f,p3_norm)
toc = time.perf_counter()
toc = time.perf_counter()
tdiff2 = toc - tic
print("time with np.convolve = ", tdiff1, "; time with fftconvolve = ", tdiff2)

time with np.convolve = 46.18396458699954 ; time with fftconvolve = 0.

The fast Fourier transform is two orders of magnitude faster than `numpy.convolve`

Now let’s plot our computed probability mass function approximation for the sum of two log normal random variables against the histogram of the sample that we formed above.

```
```python
NT = np.size(x)
plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(x[:int(NT)], c2f[:int(NT)]/m,label = '')
plt.xlim(0,5000)

count, bins, ignored = plt.hist(ssum3, 1000, density=True, align='mid')
plt.plot(P2P3[:10000],label = 'FFT method', linestyle = '--')
plt.show()

Let's compute the mean of the discretized pdf
mean = np.sum(np.multiply(x[:NT], c1f[:NT]))
meantheory = np.exp(mu1+.5*sigma1**2)
mean, 2*meantheory
(489.3810974093853, 489.38386452844077)

Let's compute the mean of the discretized pdf
mean = np.sum(np.multiply(x[:NT], c2f[:NT]))
meantheory = np.exp(mu1+.5*sigma1**2)
mean, 3*meantheory
(734.0714863312277, 734.0757967926611)```

Chapter 16. Fault Tree Uncertainties
16.6 Failure Tree Analysis

We shall soon apply the convolution theorem to compute the probability of a top event in a failure tree analysis. Before applying the convolution theorem, we first describe the model that connects constituent events to the top end whose failure rate we seek to quantify.

The model is an example of the widely used failure tree analysis described by El-Shanawany, Ardron, and Walker [ESAW18].

To construct the statistical model, we repeatedly use what is called the rare event approximation.

We want to compute the probability of an event $A \cup B$.

- the union $A \cup B$ is the event that A OR B occurs

A law of probability tells us that A OR B occurs with probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

where the intersection $A \cap B$ is the event that A AND B both occur and the union $A \cup B$ is the event that A OR B occurs.

If A and B are independent, then

$$P(A \cap B) = P(A)P(B)$$

If $P(A)$ and $P(B)$ are both small, then $P(A)P(B)$ is even smaller.

The rare event approximation is

$$P(A \cup B) \approx P(A) + P(B)$$

This approximation is widely used in evaluating system failures.

16.7 Application

A system has been designed with the feature a system failure occurs when any of n critical components fails.

The failure probability $P(A_i)$ of each event A_i is small.

We assume that failures of the components are statistically independent random variables.

We repeatedly apply a rare event approximation to obtain the following formula for the problem of a system failure:

$$P(F) \approx P(A_1) + P(A_2) + \cdots + P(A_n)$$

or

$$P(F) \approx \sum_{i=1}^{n} P(A_i)$$

(16.3)

Probabilities for each event are recorded as failure rates per year.
16.8 Failure Rates Unknown

Now we come to the problem that really interests us, following [ESAW18] and Greenfield and Sargent [GS93] in the spirit of Apostolakis [Apo90].

The constituent probabilities or failure rates $P(A_i)$ are not known a priori and have to be estimated.

We address this problem by specifying probabilities of probabilities that capture one notion of not knowing the constituent probabilities that are inputs into a failure tree analysis.

Thus, we assume that a system analyst is uncertain about the failure rates $P(A_i), i = 1, \ldots, n$ for components of a system.

The analyst copes with this situation by regarding the systems failure probability $P(F)$ and each of the component probabilities $P(A_i)$ as random variables.

- dispersions of the probability distribution of $P(A_i)$ characterizes the analyst's uncertainty about the failure probability $P(A_i)$
- the dispersion of the implied probability distribution of $P(F)$ characterizes his uncertainty about the probability of a system's failure.

This leads to what is sometimes called a hierarchical model in which the analyst has probabilities about the probabilities $P(A_i)$.

The analyst formalizes his uncertainty by assuming that

- the failure probability $P(A_i)$ is itself a log normal random variable with parameters (μ_i, σ_i).
- failure rates $P(A_i)$ and $P(A_j)$ are statistically independent for all pairs with $i \neq j$.

The analyst calibrates the parameters (μ_i, σ_i) for the failure events $i = 1, \ldots, n$ by reading reliability studies in engineering papers that have studied historical failure rates of components that are as similar as possible to the components being used in the system under study.

The analyst assumes that such information about the observed dispersion of annual failure rates, or times to failure, can inform him of what to expect about parts' performances in his system.

The analyst assumes that the random variables $P(A_i)$ are statistically mutually independent.

The analyst wants to approximate a probability mass function and cumulative distribution function of the systems failure probability $P(F)$.

- We say probability mass function because of how we discretize each random variable, as described earlier.

The analyst calculates the probability mass function for the top event F, i.e., a system failure, by repeatedly applying the convolution theorem to compute the probability distribution of a sum of independent log normal random variables, as described in equation (16.3).

16.9 Waste Hoist Failure Rate

We’ll take close to a real world example by assuming that $n = 14$.

The example estimates the annual failure rate of a critical hoist at a nuclear waste facility.

A regulatory agency wants the sytem to be designed in a way that makes the failure rate of the top event small with high probability.

This example is Design Option B-2 (Case I) described in Table 10 on page 27 of [GS93].

The table describes parameters μ_i, σ_i for fourteen log normal random variables that consist of seven pairs of random variables that are identically and independently distributed.
• Within a pair, parameters μ_i, σ_i are the same
• As described in table 10 of [GS93] p. 27, parameters of log normal distributions for the seven unique probabilities $P(A_i)$ have been calibrated to be the values in the following Python code:

<table>
<thead>
<tr>
<th>μ_1, σ_1</th>
<th>μ_2, σ_2</th>
<th>μ_3, σ_3</th>
<th>μ_4, σ_4</th>
<th>μ_5, σ_5</th>
<th>μ_6, σ_6</th>
<th>μ_7, σ_7</th>
</tr>
</thead>
</table>

Note: Because the failure rates are all very small, log normal distributions with the above parameter values actually describe $P(A_i)$ times 10^{-9}.

So the probabilities that we’ll put on the x axis of the probability mass function and associated cumulative distribution function should be multiplied by 10^{-9}.

To extract a table that summarizes computed quantiles, we’ll use a helper function

```python
def find_nearest(array, value):
    array = np.asarray(array)
    idx = (np.abs(array - value)).argmin()
    return idx
```

We compute the required thirteen convolutions in the following code.

(Please feel free to try different values of the power parameter p that we use to set the number of points in our grid for constructing the probability mass functions that discretize the continuous log normal distributions.)

We’ll plot a counterpart to the cumulative distribution function (CDF) in figure 5 on page 29 of [GS93] and we’ll also present a counterpart to their Table 11 on page 28.

```python
p=15
I = 2**p # Truncation value
m = .05 # increment size

p1,p1_norm,x = pdf_seq(mu1,sigma1,I,m)
p2,p2_norm,x = pdf_seq(mu2,sigma2,I,m)
p3,p3_norm,x = pdf_seq(mu3,sigma3,I,m)
p4,p4_norm,x = pdf_seq(mu4,sigma4,I,m)
p5,p5_norm,x = pdf_seq(mu5,sigma5,I,m)
p6,p6_norm,x = pdf_seq(mu6,sigma6,I,m)
p7,p7_norm,x = pdf_seq(mu7,sigma7,I,m)
p8,p8_norm,x = pdf_seq(mu7,sigma7,I,m)
p9,p9_norm,x = pdf_seq(mu7,sigma7,I,m)
p10,p10_norm,x = pdf_seq(mu7,sigma7,I,m)
p11,p11_norm,x = pdf_seq(mu7,sigma7,I,m)
p12,p12_norm,x = pdf_seq(mu7,sigma7,I,m)
p13,p13_norm,x = pdf_seq(mu7,sigma7,I,m)
p14,p14_norm,x = pdf_seq(mu7,sigma7,I,m)
```

(continues on next page)
tic = time.perf_counter()

c1 = fftconvolve(p1_norm,p2_norm)
c2 = fftconvolve(c1,p3_norm)
c3 = fftconvolve(c2,p4_norm)
c4 = fftconvolve(c3,p5_norm)
c5 = fftconvolve(c4,p6_norm)
c6 = fftconvolve(c5,p7_norm)
c7 = fftconvolve(c6,p8_norm)
c8 = fftconvolve(c7,p9_norm)
c9 = fftconvolve(c8,p10_norm)
c10 = fftconvolve(c9,p11_norm)
c11 = fftconvolve(c10,p12_norm)
c12 = fftconvolve(c11,p13_norm)
c13 = fftconvolve(c12,p14_norm)

toc = time.perf_counter()

tdiff13 = toc - tic

print("time for 13 convolutions = ", tdiff13)

time for 13 convolutions = 12.962005675999535

d13 = np.cumsum(c13)
Nx=int(1400)
plt.figure()
plt.plot(x[0:int(Nx/m)],d13[0:int(Nx/m)]) # show Yad this -- I multiplied by m --._step size
plt.hlines(0.5,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.9,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.95,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.1,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.hlines(0.05,min(x),Nx,linestyles='dotted',colors = {'black'})
plt.ylim(0,1)
plt.xlim(0,Nx)
plt.xlabel("$x10^\{-9}$",loc = "right")
plt.show()

x_1 = x[find_nearest(d13,0.01)]
x_5 = x[find_nearest(d13,0.05)]
x_10 = x[find_nearest(d13,0.1)]
x_50 = x[find_nearest(d13,0.50)]
x_66 = x[find_nearest(d13,0.665)]
x_85 = x[find_nearest(d13,0.85)]
x_90 = x[find_nearest(d13,0.90)]
x_95 = x[find_nearest(d13,0.95)]
x_99 = x[find_nearest(d13,0.99)]
x_9978 = x[find_nearest(d13,0.9978)]

print(tabulate([['1%',f'\{x_1\}'],
 ['5%',f'\{x_5\}'],
 ['10%',f'\{x_10\}'],
 ['50%',f'\{x_50\}'],
]))
`[66.5%], \{x_{66}\}`, `[85%], \{x_{85}\}`, `[90%], \{x_{90}\}`, `[95%], \{x_{95}\}`, `[99%], \{x_{99}\}`, `[99.78%], \{x_{9978}\}`,

`headers = ['Percentile', 'x * 1e-9'])

<table>
<thead>
<tr>
<th>Percentile</th>
<th>x * 1e-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>76.15</td>
</tr>
<tr>
<td>5%</td>
<td>106.5</td>
</tr>
<tr>
<td>10%</td>
<td>128.2</td>
</tr>
<tr>
<td>50%</td>
<td>260.55</td>
</tr>
<tr>
<td>66.5%</td>
<td>338.55</td>
</tr>
<tr>
<td>85%</td>
<td>509.4</td>
</tr>
<tr>
<td>90%</td>
<td>608.8</td>
</tr>
<tr>
<td>95%</td>
<td>807.6</td>
</tr>
<tr>
<td>99%</td>
<td>1470.2</td>
</tr>
<tr>
<td>99.78%</td>
<td>2474.85</td>
</tr>
</tbody>
</table>

The above table agrees closely with column 2 of Table 11 on p. 28 of [GS93].

Discrepancies are probably due to slight differences in the number of digits retained in inputting $\mu_i, \sigma_i, i = 1, \ldots, 14$ and in the number of points deployed in the discretizations.
INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

Note: If you are running this on Google Colab the above cell will present an error. This is because Google Colab doesn't use Anaconda to manage the Python packages. However this lecture will still execute as Google Colab has plotly installed.

17.1 Overview

Substantial parts of machine learning and artificial intelligence are about

• approximating an unknown function with a known function
• estimating the known function from a set of data on the left- and right-hand variables

This lecture describes the structure of a plain vanilla artificial neural network (ANN) of a type that is widely used to approximate a function f that maps x in a space X into y in a space Y.

To introduce elementary concepts, we study an example in which x and y are scalars.

We’ll describe the following concepts that are brick and mortar for neural networks:

• a neuron
• an activation function
• a network of neurons
• A neural network as a composition of functions
• back-propagation and its relationship to the chain rule of differential calculus
17.2 A Deep (but not Wide) Artificial Neural Network

We describe a “deep” neural network of “width” one. **Deep** means that the network composes a large number of functions organized into nodes of a graph. **Width** refers to the number of right hand side variables on the right hand side of the function being approximated.

Setting “width” to one means that the network composes just univariate functions.

Let $x \in \mathbb{R}$ be a scalar and $y \in \mathbb{R}$ be another scalar.

We assume that y is a nonlinear function of x:

$$y = f(x)$$

We want to approximate $f(x)$ with another function that we define recursively.

For a network of depth $N \geq 1$, each layer $i = 1, \ldots, N$ consists of

- an input x_i
- an **affine function** $w_i x_i + b_i$, where w_i is a scalar **weight** placed on the input x_i and b_i is a scalar **bias**
- an **activation function** h_i that takes $(w_i x_i + b_i)$ as an argument and produces an output x_{i+1}

An example of an activation function h is the **sigmoid** function

$$h(z) = \frac{1}{1 + e^{-z}}$$

Another popular activation function is the **rectified linear unit** (ReLU) function

$$h(z) = \max(0, z)$$

Yet another activation function is the identity function

$$h(z) = z$$

As activation functions below, we’ll use the sigmoid function for layers 1 to $N - 1$ and the identity function for layer N.

To approximate a function $f(x)$ we construct $\hat{f}(x)$ by proceeding as follows.

Let

$$l_i(x) = w_i x + b_i.$$

We construct \hat{f} by iterating on compositions of functions $h_i \circ l_i$:

$$f(x) \approx \hat{f}(x) = h_N \circ l_N \circ h_{N-1} \circ l_1 \circ \cdots \circ h_1 \circ l_1(x)$$

If $N > 1$, we call the right side a “deep” neural net.

The larger is the integer N, the “deeper” is the neural net.

Evidently, if we know the parameters $\{w_i, b_i\}_{i=1}^N$, then we can compute $\hat{f}(x)$ for a given $x = \bar{x}$ by iterating on the recursion

$$x_{i+1} = h_i \circ l_i(x_i), \quad i = 1, \ldots, N \quad (17.1)$$

starting from $x_1 = \bar{x}$.

The value of x_{N+1} that emerges from this iterative scheme equals $\hat{f}(\bar{x})$.

320 Chapter 17. Introduction to Artificial Neural Networks
17.3 Calibrating Parameters

We now consider a neural network like the one described above with width 1, depth N, and activation functions h_i for $1 \leq i \leq N$ that map \mathbb{R} into itself.

Let $\{(w_i, b_i)\}_{i=1}^N$ denote a sequence of weights and biases.

As mentioned above, for a given input x_1, our approximating function \hat{f} evaluated at x_1 equals the “output” x_{N+1} from our network that can be computed by iterating on $x_{i+1} = h_i(w_i x_i + b_i)$.

For a given prediction $\hat{y}(x)$ and target $y = f(x)$, consider the loss function

$$L(\hat{y}, y)(x) = \frac{1}{2} (\hat{y} - y)^2 (x).$$

This criterion is a function of the parameters $\{(w_i, b_i)\}_{i=1}^N$ and the point x.

We’re interested in solving the following problem:

$$\min_{\{(w_i, b_i)\}_{i=1}^N} \int L(x_{N+1}, y)(x) d\mu(x)$$

where $\mu(x)$ is some measure of points $x \in \mathbb{R}$ over which we want a good approximation $\hat{f}(x)$ to $f(x)$.

Stack weights and biases into a vector of parameters p:

$$p = \begin{bmatrix} w_1 \\ b_1 \\ w_2 \\ b_2 \\ \vdots \\ w_N \\ b_N \end{bmatrix}$$

Applying a “poor man’s version” of a stochastic gradient descent algorithm for finding a zero of a function leads to the following update rule for parameters:

$$p_{k+1} = p_k - \alpha \frac{dL}{dx_{N+1}} \frac{dx_{N+1}}{dp_k}$$

(17.2)

where $-\frac{dL}{dx_{N+1}} = -(x_{N+1} - y)$ and $\alpha > 0$ is a step size.

(See this and this to gather insights about how stochastic gradient descent relates to Newton’s method.)

To implement one step of this parameter update rule, we want the vector of derivatives $\frac{dx_{N+1}}{dp_k}$.

In the neural network literature, this step is accomplished by what is known as back propagation.

17.4 Back Propagation and the Chain Rule

Thanks to properties of

- the chain and product rules for differentiation from differential calculus, and
- lower triangular matrices

back propagation can actually be accomplished in one step by
Quantitative Economics with Python

- inverting a lower triangular matrix, and
- matrix multiplication

(This idea is from the last 7 minutes of this great youtube video by MIT's Alan Edelman)

https://youtu.be/rZS2LGiurKY

Here goes.

Define the derivative of \(h(z) \) with respect to \(z \) evaluated at \(z = z_i \) as \(\delta_i \):

\[
\delta_i = \frac{d}{dz} h(z) \big|_{z=z_i}
\]

or

\[
\delta_i = h'(w_i x_i + b_i).
\]

Repeated application of the chain rule and product rule to our recursion (17.1) allows us to obtain:

\[
dx_{i+1} = \delta_i (d w_i x_i + w_i dx_i + b_i)
\]

After imposing \(dx_1 = 0 \), we get the following system of equations:

\[
\begin{bmatrix}
 dx_2 \\
 \vdots \\
 dx_{N+1}
\end{bmatrix} =
\begin{bmatrix}
 \delta_1 w_1 & \delta_1 & 0 & 0 & 0 \\
 0 & 0 & \ddots & 0 & 0 \\
 0 & 0 & 0 & \delta_N w_N & \delta_N \\
\end{bmatrix}
\begin{bmatrix}
 dw_1 \\
 db_1 \\
 \vdots \\
 dw_N \\
 db_N
\end{bmatrix} +
\begin{bmatrix}
 0 & 0 & 0 & 0 & 0 \\
 w_2 & 0 & 0 & 0 & 0 \\
 0 & \ddots & 0 & 0 & 0 \\
 0 & 0 & w_N & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 dx_2 \\
 \vdots \\
 dx_{N+1}
\end{bmatrix}
\]

or

\[
dx = D dp + L dx
\]

which implies that

\[
dx = (I - L)^{-1} D dp
\]

which in turn implies

\[
\begin{bmatrix}
 dx_{N+1}/dw_1 \\
 dx_{N+1}/db_1 \\
 \vdots \\
 dx_{N+1}/dw_N \\
 dx_{N+1}/db_N
\end{bmatrix} = e_N (I - L)^{-1} D.
\]

We can then solve the above problem by applying our update for \(p \) multiple times for a collection of input-output pairs \(\{(x_i^i, y^i)\}_{i=1}^M \) that we’ll call our “training set”.

17.5 Training Set

Choosing a training set amounts to a choice of measure \(\mu \) in the above formulation of our function approximation problem as a minimization problem.

In this spirit, we shall use a uniform grid of, say, 50 or 200 points.

There are many possible approaches to the minimization problem posed above:
• batch gradient descent in which you use an average gradient over the training set
• stochastic gradient descent in which you sample points randomly and use individual gradients
• something in-between (so-called “mini-batch gradient descent”)

The update rule (17.2) described above amounts to a stochastic gradient descent algorithm.

```python
from IPython.display import Image
import jax.numpy as jnp
from jax import grad, jit, jacfwd, vmap
from jax import random
import jax
import plotly.graph_objects as go

# A helper function to randomly initialize weights and biases
# for a dense neural network layer
def random_layer_params(m, n, key, scale=1.):
    w_key, b_key = random.split(key)
    return scale * random.normal(w_key, (n, m)), scale * random.normal(b_key, (n,))

# Initialize all layers for a fully-connected neural network with sizes "sizes"
def init_network_params(sizes, key):
    keys = random.split(key, len(sizes))
    return [random_layer_params(m, n, k) for m, n, k in zip(sizes[:-1], sizes[1:], keys)]

def compute_xδw_seq(params, x):
    # Initialize arrays
    δ = jnp.zeros(len(params))
    xs = jnp.zeros(len(params) + 1)
    ws = jnp.zeros(len(params))
    bs = jnp.zeros(len(params))
    h = jax.nn.sigmoid
    xs = xs.at[0].set(x)
    for i, (w, b) in enumerate(params[:-1]):
        output = w * xs[i] + b
        activation = h(output[0, 0])
        # Store elements
        δ = δ.at[i].set(grad(h)(output[0, 0]))
        ws = ws.at[i].set(w[0, 0])
        bs = bs.at[i].set(b[0])
        xs = xs.at[i+1].set(activation)
    final_w, final_b = params[-1]
    preds = final_w * xs[-2] + final_b
    # Store elements
    δ = δ.at[-1].set(1.)
    ws = ws.at[-1].set(final_w[0, 0])
    bs = bs.at[-1].set(final_b[0])
    xs = xs.at[-1].set(preds[0, 0])
    return xs, δ, ws, bs
```

(continues on next page)
def loss(params, x, y):
 xs, δ, ws, bs = compute_xδw_seq(params, x)
 preds = xs[-1]
 return 1 / 2 * (y - preds) ** 2

Parameters
N = 3 # Number of layers
layer_sizes = [1,] * (N + 1)
param_scale = 0.1
step_size = 0.01
params = init_network_params(layer_sizes, random.PRNGKey(1))

x = 5
y = 3
xs, δ, ws, bs = compute_xδw_seq(params, x)

dxs_ad = jacfwd(loss, argnums=0)(params, x)
dxs_ad_mat = jnp.blockobjectManager(dx.reshape((-1, 1)) for dx_tuple in dxs_ad for dx in dx_tuple)

jnsp.block([[δ * xs[1:], [δ]])

DeviceArray([[8.5726520e-03, 4.0850643e-04, 6.1021703e-01],
 [1.7145304e-03, 2.3785220e-01, 1.0000000e+00]],
 dtype=float32)

L = jnp.diag(δ * ws, k=-1)
L = L[1:, 1:]

D = jax.scipy.linalg.block_diag(*[row.reshape((1, 2)) for row in jnp.block([[δ * xs[1:], [δ]])].T])
dxs_la = jax.scipy.linalg.solve_triangular(jnp.eye(N) - L, D, lower=True)

Check that the `dx` generated by the linear algebra method
are the same as the ones generated using automatic differentiation
jnsp.max(jnp.abs(dxs_ad_mat - dxs_la))

DeviceArray(0., dtype= Graduate32)

grad_loss_ad = jnp.blockobjectManager(dx.reshape((-1, 1)) for dx_tuple in grad(loss)(params, x, y) for dx in dx_tuple)

Check that the gradient of the loss is the same for both approaches
jnsp.max(jnp.abs(-(y - xs[1:]) * dxs_la[1:] - grad_loss_ad))
```python
def update_ad(params, x, y):
    grads = grad(loss)(params, x, y)
    return [(w - step_size * dw, b - step_size * db)
             for (w, b), (dw, db) in zip(params, grads)]

def update_la(params, x, y):
    xs, δ, ws, bs = compute_xδw_seq(params, x)
    N = len(params)
    L = jnp.diag(δ * ws, k=-1)
    L = L[:, 1:]
    D = jax.scipy.linalg.block_diag(*[row.reshape((1, 2)) for row in jnp.block([[δ * ~xs[:1]], [δ]])].T)
    dxs_la = jax.scipy.linalg.solve_triangular(jnp.eye(N) - L, D, lower=True)
    grads = -(y - xs[-1]) * dxs_la[-1]
    return [(w - step_size * dw, b - step_size * db)
             for (w, b), (dw, db) in zip(params, grads.reshape((-1, 2)))]
```

Check that both updates are the same
update_la(params, x, y)
```

[((DeviceArray([[-1.3489482]], dtype=float32),
  DeviceArray([0.37956238], dtype=float32)),
 (DeviceArray([[-0.00782906]], dtype=float32),
  DeviceArray([0.44972023], dtype=float32)),
 (DeviceArray([[0.22937916]], dtype=float32),
  DeviceArray([-0.04793657], dtype=float32)))]
```

update_ad(params, x, y)
```

[((DeviceArray([[-1.3489482]], dtype=float32),
  DeviceArray([0.37956238], dtype=float32)),
 (DeviceArray([[-0.00782906]], dtype=float32),
  DeviceArray([0.44972023], dtype=float32)),
 (DeviceArray([[0.22937916]], dtype=float32),
  DeviceArray([-0.04793657], dtype=float32)))]
```
17.6 Example 1

Consider the function

\[f(x) = -3x + 2 \]

on \([0.5, 3]\).

We use a uniform grid of 200 points and update the parameters for each point on the grid 300 times.

\(h_i\) is the sigmoid activation function for all layers except the final one for which we use the identity function and \(N = 3\).

Weights are initialized randomly.

```python
def f(x):
    return -3 * x + 2

M = 200
grid = jnp.linspace(0.5, 3, num=M)
f_val = f(grid)

indices = jnp.arange(M)
key = random.PRNGKey(0)
def train(params, grid, f_val, key, num_epochs=300):
    for epoch in range(num_epochs):
        key, _ = random.split(key)
        random_permutation = random.permutation(random.PRNGKey(1), indices)
        for x, y in zip(grid[random_permutation], f_val[random_permutation]):
            params = update_la(params, x, y)

    return params

# Parameters
N = 3  # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex1 = init_network_params(layer_sizes, key)

%%time
params_ex1 = train(params_ex1, grid, f_val, key, num_epochs=500)

CPU times: user 31.9 s, sys: 4.1 s, total: 36 s
Wall time: 20.6 s

predictions = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex1, grid)[0][:, -1]
```

```python
fig = go.Figure()
fig.add_trace(go.Scatter(x=grid, y=f_val, name=r'$-3x+2$'))
fig.add_trace(go.Scatter(x=grid, y=predictions, name='Approximation'))

# Export to PNG file
image(fig.to_image(format="png"))
# fig.show() will provide interactive plot when running
# notebook locally
```
17.7 How Deep?

It is fun to think about how deepening the neural net for the above example affects the quality of approximation

- If the network is too deep, you’ll run into the vanishing gradient problem
- Other parameters such as the step size and the number of epochs can be as important or more important than the number of layers in the situation considered in this lecture.
- Indeed, since f is a linear function of x, a one-layer network with the identity map as an activation would probably work best.

17.8 Example 2

We use the same setup as for the previous example with

$$f(x) = \log(x)$$

```python
def f(x):
    return jnp.log(x)

grid = jnp.linspace(0.5, 3, num=M)
f_val = f(grid)
```
```python
# Parameters
N = 1  # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_1 = init_network_params(layer_sizes, key)

# Parameters
N = 2  # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_2 = init_network_params(layer_sizes, key)

# Parameters
N = 3  # Number of layers
layer_sizes = [1, ] * (N + 1)
params_ex2_3 = init_network_params(layer_sizes, key)

params_ex2_1 = train(params_ex2_1, grid, f_val, key, num_epochs=300)
params_ex2_2 = train(params_ex2_2, grid, f_val, key, num_epochs=300)
params_ex2_3 = train(params_ex2_3, grid, f_val, key, num_epochs=300)

predictions_1 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_1, grid)[0][:, -1]
predictions_2 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_2, grid)[0][:, -1]
predictions_3 = vmap(compute_xδw_seq, in_axes=(None, 0))(params_ex2_3, grid)[0][:, -1]

fig = go.Figure()
fig.add_trace(go.Scatter(x=grid, y=f_val, name=r'$\log(x)$'))
fig.add_trace(go.Scatter(x=grid, y=predictions_1, name='One-layer neural network'))
fig.add_trace(go.Scatter(x=grid, y=predictions_2, name='Two-layer neural network'))
fig.add_trace(go.Scatter(x=grid, y=predictions_3, name='Three-layer neural network'))

# Export to PNG file
Image(fig.to_image(format='png'))
# fig.show() will provide interactive plot when running
# notebook locally
```
to check that gpu is activated in environment

```python
from jax.lib import xla_bridge
print(xla_bridge.get_backend().platform)
```

gpu

Note: Cloud Environment: This lecture site is built in a server environment that doesn’t have access to a gpu. If you run this lecture locally this lets you know where your code is being executed, either via the cpu or the gpu.
18.1 Overview

Social stigmas can inhibit people from confessing potentially embarrassing activities or opinions. When people are reluctant to participate in a sample survey about personally sensitive issues, they might decline to participate, and even if they do participate, they might choose to provide incorrect answers to sensitive questions. These problems induce selection biases that present challenges to interpreting and designing surveys.

To illustrate how social scientists have thought about estimating the prevalence of such embarrassing activities and opinions, this lecture describes a classic approach of S. L. Warner [War65].

Warner used elementary probability to construct a way to protect the privacy of individual respondents to surveys while still estimating the fraction of a collection of individuals who have a socially stigmatized characteristic or who engage in a socially stigmatized activity.

Warner’s idea was to add noise between the respondent’s answer and the signal about that answer that the survey maker ultimately receives. Knowing about the structure of the noise assures the respondent that the survey maker does not observe his answer. Statistical properties of the noise injection procedure provide the respondent plausible deniability.

Related ideas underlie modern differential privacy systems.
(See https://en.wikipedia.org/wiki/Differential_privacy)

18.2 Warner’s Strategy

As usual, let’s bring in the Python modules we’ll be using.

```python
import numpy as np
import pandas as pd
```

Suppose that every person in population either belongs to Group A or Group B.

We want to estimate the proportion \(\pi \) who belong to Group A while protecting individual respondents’ privacy.

Warner [War65] proposed and analyzed the following procedure.

- A random sample of \(n \) people is drawn with replacement from the population and each person is interviewed.
- Draw \(n \) random samples from the population with replacement and interview each person.
• Prepare a \textbf{random spinner} that with \(p \) probability points to the Letter A and with \((1-p)\) probability points to the Letter B.

• Each subject spins a random spinner and sees an outcome (A or B) that the interviewer does \textbf{not observe}.

• The subject states whether he belongs to the group to which the spinner points.

• If the spinner points to the group that the spinner belongs, the subject reports “yes”; otherwise he reports “no”.

• The subject answers the question truthfully.

Warner constructed a maximum likelihood estimators of the proportion of the population in set A.

Let

- \(\pi \): True probability of A in the population
- \(p \): Probability that the spinner points to A
- \(X_i = \begin{cases} 1, & \text{if the } i\text{th subject says yes} \\ 0, & \text{if the } i\text{th subject says no} \end{cases} \)

Index the sample set so that the first \(n_1 \) report “yes”, while the second \(n - n_1 \) report “no”.

The likelihood function of a sample set is

\[
L = [\pi p + (1 - \pi)(1 - p)]^{n_1} [(1 - \pi)p + \pi(1 - p)]^{n - n_1}
\]

The log of the likelihood function is:

\[
\log(L) = n_1 \log[\pi p + (1 - \pi)(1 - p)] + (n - n_1) \log[(1 - \pi)p + \pi(1 - p)]
\]

The first-order necessary condition for maximizing the log likelihood function with respect to \(\pi \) is:

\[
\frac{(n - n_1)(2p - 1)}{(1 - \pi)p + \pi(1 - p)} = \frac{n_1(2p - 1)}{\pi p + (1 - \pi)(1 - p)}
\]

or

\[
\pi p + (1 - \pi)(1 - p) = \frac{n_1}{n}
\]

If \(p \neq \frac{1}{2} \), then the maximum likelihood estimator (MLE) of \(\pi \) is:

\[
\hat{\pi} = \frac{p - 1}{2p - 1} + \frac{n_1}{(2p - 1)n}
\]

We compute the mean and variance of the MLE estimator \(\hat{\pi} \) to be:

\[
\mathbb{E}(\hat{\pi}) = \frac{1}{2p - 1} \left[p - 1 + \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_i \right]
\]

\[
= \frac{1}{2p - 1} \left[p - 1 + \pi p + (1 - \pi)(1 - p) \right]
\]

\[
= \pi
\]

and

\[
\text{Var}(\hat{\pi}) = \frac{n\text{Var}(X_i)}{(2p - 1)^2 n^2}
\]

\[
= \frac{\pi p + (1 - \pi)(1 - p)[(1 - \pi)p + \pi(1 - p)]}{(2p - 1)^2 n^2}
\]

\[
= \frac{1}{n} \left[\frac{1}{16(p - \frac{1}{2})^2} - (\pi - \frac{1}{2})^2 \right]
\]

332 Chapter 18. Randomized Response Surveys
Equation (18.5) indicates that \(\hat{\pi} \) is an **unbiased estimator** of \(\pi \) while equation (18.6) tell us the variance of the estimator. To compute a confidence interval, first rewrite (18.6) as:

\[
Var(\hat{\pi}) = \frac{1}{4\pi} \left(\frac{\pi}{2} - \frac{1}{2} \right)^2 + \frac{16(p-\frac{1}{2})^2}{n} - \frac{1}{4n}
\]

(18.7)

This equation indicates that the variance of \(\hat{\pi} \) can be represented as a sum of the variance due to sampling plus the variance due to the random device.

From the expressions above we can find that:

- When \(p = \frac{1}{2} \), expression (18.1) degenerates to a constant.
- When \(p = 1 \) or \(0 \), the randomized estimate degenerates to an estimator without randomized sampling.

We shall only discuss situations in which \(p \in (\frac{1}{2}, 1) \)

(a situation in which \(p \in (0, \frac{1}{2}) \) is symmetric).

From expressions (18.5) and (18.7) we can deduce that:

- The MSE of \(\hat{\pi} \) decreases as \(p \) increases.

18.3 Comparing Two Survey Designs

Let’s compare the preceding randomized-response method with a stylized non-randomized response method.

In our non-randomized response method, we suppose that:

- Members of Group A tells the truth with probability \(T_A \) while the members of Group B tells the truth with probability \(T_B \)
- \(Y_i \) is 1 or 0 according to whether the sample’s \(i \)th member’s report is in Group A or not.

Then we can estimate \(\pi \) as:

\[
\hat{\pi} = \frac{\sum_{i=1}^{n} Y_i}{n}
\]

(18.8)

We calculate the expectation, bias, and variance of the estimator to be:

\[
E(\hat{\pi}) = \pi T_A + [(1 - \pi)(1 - T_B)]
\]

(18.9)

\[
Bias(\hat{\pi}) = E(\hat{\pi} - \pi)
\]

\[
= \pi[T_A + T_B - 2] + [1 - T_B]
\]

(18.10)

\[
Var(\hat{\pi}) = \frac{[\pi T_A + (1 - \pi)(1 - T_B)][1 - \pi T_A - (1 - \pi)(1 - T_B)]}{n}
\]

(18.11)

It is useful to define a

\[
\text{MSE Ratio} = \frac{\text{Mean Square Error Randomized}}{\text{Mean Square Error Regular}}
\]

We can compute MSE Ratios for different survey designs associated with different parameter values.

The following Python code computes objects we want to stare at in order to make comparisons under different values of \(\pi_A \) and \(n \):
Let's put the code to work for parameter values

- \(\pi_A = 0.6 \)
• $n = 1000$

We can generate MSE Ratios theoretically using the above formulas.

We can also perform Monte Carlo simulations of a MSE Ratio.

```python
cp1 = Comparison(0.6, 1000)
df1_theoretical = cp1.theoretical()
df1_theoretical
```

<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a</td>
<td>T_b</td>
<td>Bias</td>
</tr>
<tr>
<td>0.95</td>
<td>1.00</td>
<td>-0.03</td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>-0.06</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>-0.18</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.30</td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.02</td>
</tr>
<tr>
<td>0.90</td>
<td>0.04</td>
<td>3.41</td>
</tr>
<tr>
<td>0.70</td>
<td>0.12</td>
<td>0.43</td>
</tr>
<tr>
<td>0.50</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>-0.01</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>-0.02</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>-0.06</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>-0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a</td>
</tr>
<tr>
<td>0.95</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.50</td>
</tr>
<tr>
<td>0.95</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>0.70</td>
</tr>
<tr>
<td>0.50</td>
</tr>
</tbody>
</table>

```python
df1_mc = cp1.MCsimulation()
df1_mc
```

<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a</td>
<td>T_b</td>
<td>Bias</td>
</tr>
<tr>
<td>0.95</td>
<td>1.00</td>
<td>-0.030060</td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>-0.060045</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>-0.179530</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.300077</td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.0199770</td>
</tr>
<tr>
<td>0.90</td>
<td>0.040050</td>
<td>3.63</td>
</tr>
<tr>
<td>0.70</td>
<td>0.120052</td>
<td>0.46</td>
</tr>
<tr>
<td>0.50</td>
<td>0.199746</td>
<td>0.17</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>-0.010137</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>-0.020103</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>-0.060488</td>
</tr>
</tbody>
</table>

(continues on next page)
The theoretical calculations do a good job of predicting Monte Carlo results. We see that in many situations, especially when the bias is not small, the MSE of the randomized-sampling methods is smaller than that of the non-randomized sampling method.

These differences become larger as \(p \) increases.

By adjusting parameters \(\pi_A \) and \(n \), we can study outcomes in different situations.

For example, for another situation described in Warner [War65]:

- \(\pi_A = 0.5 \)
- \(n = 1000 \)

we can use the code

```python
import pandas as pd

# Create a comparison object
cp2 = Comparison(0.5, 1000)

df2_theoretical = cp2.theoretical()
```

The table below shows the MSE ratios for different parameter settings:

<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a</td>
<td>T_b</td>
<td>Bias</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>0.95</td>
<td>1.00</td>
<td>-0.25</td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>-0.50</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>-0.150</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.250</td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0.90</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>0.250</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>0.000</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>0.000</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.000</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.000</td>
</tr>
</tbody>
</table>

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

<table>
<thead>
<tr>
<th>T_a</th>
<th>T_b</th>
<th>Bias</th>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>-0.150</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.250</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.025</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>0.14</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>0.000</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>0.000</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.000</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.000</td>
<td>1.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

df2_mc = cp2.MCsimulation()
df2_mc

MSE Ratio: p = 0.6 MSE Ratio: p = 0.7 MSE Ratio: p = 0.8

<table>
<thead>
<tr>
<th>T_a</th>
<th>T_b</th>
<th>Bias</th>
<th>MSE Ratio: p = 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.95</td>
<td>1.00</td>
<td>-0.025230</td>
<td>7.0</td>
</tr>
<tr>
<td>0.90</td>
<td>1.00</td>
<td>-0.050279</td>
<td>2.23</td>
</tr>
<tr>
<td>0.70</td>
<td>1.00</td>
<td>-0.149866</td>
<td>0.27</td>
</tr>
<tr>
<td>0.50</td>
<td>1.00</td>
<td>-0.250211</td>
<td>0.1</td>
</tr>
<tr>
<td>1.00</td>
<td>0.95</td>
<td>0.024410</td>
<td>7.38</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>0.049839</td>
<td>2.26</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>0.149769</td>
<td>0.27</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.249851</td>
<td>0.1</td>
</tr>
<tr>
<td>0.95</td>
<td>0.95</td>
<td>-0.000260</td>
<td>24.29</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90</td>
<td>-0.000109</td>
<td>25.73</td>
</tr>
<tr>
<td>0.70</td>
<td>0.70</td>
<td>-0.000439</td>
<td>25.75</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50</td>
<td>0.000768</td>
<td>24.91</td>
</tr>
</tbody>
</table>

We can also revisit a calculation in the concluding section of Warner [War65] in which

- $\pi_A = 0.6$
- $n = 2000$

We use the code

```python
cp3 = Comparison(0.6, 2000)
df3_theoretical = cp3.theoretical()
df3_theoretical
```

18.3. Comparing Two Survey Designs 337
<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a T_b Bias</td>
<td>3.05</td>
<td>0.76</td>
</tr>
<tr>
<td>0.95 1.00 -0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90 1.00 -0.06</td>
<td>0.84</td>
<td>0.21</td>
</tr>
<tr>
<td>0.70 1.00 -0.18</td>
<td>0.10</td>
<td>0.02</td>
</tr>
<tr>
<td>0.50 1.00 -0.30</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>1.00 0.95 0.02</td>
<td>6.03</td>
<td>1.50</td>
</tr>
<tr>
<td>0.90 0.04</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>0.70 0.12</td>
<td>0.22</td>
<td>0.05</td>
</tr>
<tr>
<td>0.50 0.20</td>
<td>0.08</td>
<td>0.02</td>
</tr>
<tr>
<td>0.95 0.95 -0.01</td>
<td>14.12</td>
<td>3.51</td>
</tr>
<tr>
<td>0.90 0.90 -0.02</td>
<td>5.98</td>
<td>1.49</td>
</tr>
<tr>
<td>0.70 0.70 -0.06</td>
<td>0.84</td>
<td>0.21</td>
</tr>
<tr>
<td>0.50 0.50 -0.10</td>
<td>0.31</td>
<td>0.08</td>
</tr>
</tbody>
</table>

MSE Ratio: p = 0.9

T_a T_b Bias	0.19
0.95 1.00 -0.03	
0.90 1.00 -0.06	0.05
0.70 1.00 -0.18	0.01
0.50 1.00 -0.30	0.00
1.00 0.95 0.02	0.37
0.90 0.04	0.11
0.70 0.12	0.01
0.50 0.20	0.00
0.95 0.95 -0.01	0.86
0.90 0.90 -0.02	0.36
0.70 0.70 -0.06	0.05
0.50 0.50 -0.10	0.02

df3_mc = cp3.MCsimulation()
df3_mc

<table>
<thead>
<tr>
<th>MSE Ratio: p = 0.6</th>
<th>MSE Ratio: p = 0.7</th>
<th>MSE Ratio: p = 0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_a T_b Bias</td>
<td>3.27</td>
<td>0.8</td>
</tr>
<tr>
<td>0.95 1.00 -0.030316</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.90 1.00 -0.060352</td>
<td>0.91</td>
<td>0.22</td>
</tr>
<tr>
<td>0.70 1.00 -0.180087</td>
<td>0.11</td>
<td>0.03</td>
</tr>
<tr>
<td>0.50 1.00 -0.299849</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>1.00 0.95 0.019734</td>
<td>6.7</td>
<td>1.64</td>
</tr>
<tr>
<td>0.90 0.039766</td>
<td>2.01</td>
<td>0.49</td>
</tr>
<tr>
<td>0.70 0.119789</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>0.50 0.200138</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>0.95 0.95 -0.010475</td>
<td>14.78</td>
<td>3.61</td>
</tr>
<tr>
<td>0.90 0.90 -0.020373</td>
<td>6.32</td>
<td>1.54</td>
</tr>
<tr>
<td>0.70 0.70 -0.059945</td>
<td>0.92</td>
<td>0.23</td>
</tr>
<tr>
<td>0.50 0.50 -0.100103</td>
<td>0.34</td>
<td>0.08</td>
</tr>
</tbody>
</table>

MSE Ratio: p = 0.9

T_a T_b Bias	0.19
0.95 1.00 -0.030316	
0.90 1.00 -0.060352	0.05
0.70 1.00 -0.180087	0.01
0.50 1.00 -0.299849	0.0
1.00 0.95 0.019734	0.39

(continues on next page)
Evidently, as \(n \) increases, the randomized response method does better performance in more situations.

18.4 Concluding Remarks

This QuantEcon lecture describes some alternative randomized response surveys.

That lecture presents a utilitarian analysis of those alternatives conducted by Lars Ljungqvist [Lju93].

```python
import matplotlib.pyplot as plt
import numpy as np
from sympy import *
import math
```
EXPECTED UTILITIES OF RANDOM RESPONSES

19.1 Overview

This QuantEcon lecture describes randomized response surveys in the tradition of Warner [War65] that are designed to protect respondents’ privacy.

Lars Ljungqvist [Lju93] analyzed how a respondent’s decision about whether to answer truthfully depends on expected utility.

The lecture tells how Ljungqvist used his framework to shed light on alternative randomized response survey techniques proposed, for example, by [Lan75], [Lan76], [LW76], [And76], [FPS77], [GKAH77], [GAESH69].

19.2 Privacy Measures

We consider randomized response models with only two possible answers, “yes” and “no.”

The design determines probabilities

\[\Pr(\text{yes}|A) = 1 - \Pr(\text{no}|A) \]
\[\Pr(\text{yes}|A') = 1 - \Pr(\text{no}|A') \]

These design probabilities in turn can be used to compute the conditional probability of belonging to the sensitive group \(A\) for a given response, say \(r\):

\[\Pr(A|r) = \frac{\pi_A \Pr(r|A)}{\pi_A \Pr(r|A) + (1 - \pi_A) \Pr(r|A')} \quad (19.1) \]

19.3 Zoo of Concepts

At this point we describe some concepts proposed by various researchers
19.3.1 Leysieffer and Warner (1976)

The response r is regarded as jeopardizing with respect to A or A' if

$$\Pr(A|r) > \pi_A$$

or

$$\Pr(A'|r) > 1 - \pi_A$$

(19.2)

From Bayes's rule:

$$\frac{\Pr(A|r)}{\Pr(A'|r)} \times \frac{(1 - \pi_A)}{\pi_A} = \frac{\Pr(r|A)}{\Pr(r|A')}$$

(19.3)

If this expression is greater (less) than unity, it follows that r is jeopardizing with respect to $A(A')$. Then, the natural measure of jeopardy will be:

$$g(r|A) = \frac{\Pr(r|A)}{\Pr(r|A')}$$

and

$$g(r|A') = \frac{\Pr(r|A')}{\Pr(r|A)}$$

(19.4)

Suppose, without loss of generality, that $\Pr(\text{yes}|A) > \Pr(\text{yes}|A')$, then a yes (no) answer is jeopardizing with respect $A(A')$, that is,

$$g(\text{yes}|A) > 1$$

and

$$g(\text{no}|A') > 1$$

Leysieffer and Warner proved that the variance of the estimate can only be decreased through an increase in one or both of these two measures of jeopardy.

An efficient randomized response model is, therefore, any model that attains the maximum acceptable levels of jeopardy that are consistent with cooperation of the respondents.

As a special example, Leysieffer and Warner considered “a problem in which there is no jeopardy in a no answer”; that is, $g(\text{no}|A')$ can be of unlimited magnitude.

Evidently, an optimal design must have

$$\Pr(\text{yes}|A) = 1$$

which implies that

$$\Pr(A|\text{no}) = 0$$

19.3.2 Lanke (1976)

Lanke (1975) [Lan75] argued that “it is membership in Group A that people may want to hide, not membership in the complementary Group A’.”

For that reason, Lanke (1976) [Lan76] argued that an appropriate measure of protection is to minimize

$$\max \{\Pr(A|\text{yes}), \Pr(A|\text{no})\}$$

(19.5)

Holding this measure constant, he explained under what conditions the smallest variance of the estimate was achieved with the unrelated question model or Warner’s (1965) original model.
19.3.3 2.3 Fligner, Policello, and Singh

Fligner, Policello, and Singh reached similar conclusion as Lanke (1976). [FPS77]
They measured “private protection” as
\[
1 - \max \{ \Pr(A|\text{yes}), \Pr(A|\text{no}) \} \over 1 - \pi_A
\]
(19.6)

19.3.4 2.4 Greenberg, Kuebler, Abernathy, and Horvitz (1977)

[GKAH77]
Greenberg, Kuebler, Abernathy, and Horvitz (1977) stressed the importance of examining the risk to respondents who
do not belong to \(A \) as well as the risk to those who do belong to the sensitive group.
They defined the hazard for an individual in \(A \) as the probability that he or she is perceived as belonging to \(A \):
\[
\Pr(\text{yes}|A) \times \Pr(A|\text{yes}) + \Pr(\text{no}|A) \times \Pr(A|\text{no})
\]
(19.7)
Similarly, the hazard for an individual who does not belong to \(A \) would be
\[
\Pr(\text{yes}|A') \times \Pr(A|\text{yes}) + \Pr(\text{no}|A') \times \Pr(A|\text{no})
\]
(19.8)
Greenberg et al. (1977) also considered an alternative related measure of hazard that “is likely to be closer to the actual
concern felt by a respondent.”
The “limited hazard” for an individual in \(A \) and \(A' \) is
\[
\Pr(\text{yes}|A) \times \Pr(A|\text{yes})
\]
(19.9)
and
\[
\Pr(\text{yes}|A') \times \Pr(A|\text{yes})
\]
(19.10)
This measure is just the first term in (19.7), i.e., the probability that an individual answers “yes” and is perceived to belong
to \(A \).

19.4 Respondent’s Expected Utility

19.4.1 Truth Border

Key assumptions that underlie a randomized response technique for estimating the fraction of a population that belongs
to \(A \) are:

• **Assumption 1**: Respondents feel discomfort from being thought of as belonging to \(A \).

• **Assumption 2**: Respondents prefer to answer questions truthfully than to lie, so long as the cost of doing so is not
too high. The cost is taken to be the discomfort in 1.

Let \(r_i \) denote individual \(i \)’s response to the randomized question.
\(r_i \) can only take values “yes” or “no”.

For a given design of a randomized response interview and a given belief about the fraction of the population that belongs
to \(A \), the respondent’s answer is associated with a conditional probability \(\Pr(A|r_i) \) that the individual belongs to \(A \).

Given \(r_i \) and complete privacy, the individual’s utility is higher if \(r_i \) represents a truthful answer rather than a lie.

In terms of a respondent’s expected utility as a function of \(\Pr(A|r_i) \) and \(r_i \)
The higher is $\Pr(A|r_i)$, the lower is individual i’s expected utility. Expected utility is higher if r_i represents a truthful answer rather than a lie.

Define:

- $\phi_i \in \{\text{truth}, \text{lie}\}$, a dichotomous variable that indicates whether or not r_i is a truthful statement.
- $U_i(\Pr(A|r_i), \phi_i)$, a utility function that is differentiable in its first argument, summarizes individual i’s expected utility.

Then there is an r_i such that

$$\frac{\partial U_i(\Pr(A|r_i), \phi_i)}{\partial \Pr(A|r_i)} < 0, \text{ for } \phi_i \in \{\text{truth, lie}\}$$

(19.11)

and

$$U_i(\Pr(A|r_i), \text{truth}) > U_i(\Pr(A|r_i), \text{lie}), \text{ for } \Pr(A|r_i) \in [0, 1]$$

(19.12)

Suppose now that correct answer for individual i is “yes”.

Individual i would choose to answer truthfully if

$$U_i(\Pr(A|\text{yes}), \text{truth}) \geq U_i(\Pr(A|\text{no}), \text{lie})$$

(19.13)

If the correct answer is “no”, individual i would volunteer the correct answer only if

$$U_i(\Pr(A|\text{no}), \text{truth}) \geq U_i(\Pr(A|\text{yes}), \text{lie})$$

(19.14)

Assume that

$$\Pr(A|\text{yes}) > \pi_A > \Pr(A|\text{no})$$

so that a “yes” answer increases the odds that an individual belongs to A.

Constraint (19.14) holds for sure.

Consequently, constraint (19.13) becomes the single necessary condition for individual i always to answer truthfully.

At equality, constraint (10.a) determines conditional probabilities that make the individual indifferent between telling the truth and lying when the correct answer is “yes”:

$$U_i(\Pr(A|\text{yes}), \text{truth}) = U_i(\Pr(A|\text{no}), \text{lie})$$

(19.15)

Equation (19.15) defines a “truth border”.

Differentiating (19.15) with respect to the conditional probabilities shows that the truth border has a positive slope in the space of conditional probabilities:

$$\frac{\partial \Pr(A|\text{no})}{\partial \Pr(A|\text{yes})} = \frac{\partial U_i(\Pr(A|\text{yes}), \text{truth})}{\partial U_i(\Pr(A|\text{no}), \text{lie})} > 0$$

(19.16)

The source of the positive relationship is:

- The individual is willing to volunteer a truthful “yes” answer so long as the utility from doing so (i.e., the left side of (19.15)) is at least as high as the utility of lying on the right side of (19.15).
- Suppose now that $\Pr(A|\text{yes})$ increases. That reduces the utility of telling the truth. To preserve indifference between a truthful answer and a lie, $\Pr(A|\text{no})$ must increase to reduce the utility of lying.
19.4.2 Drawing a Truth Border

We can deduce two things about the truth border:

- The truth border divides the space of conditional probabilities into two subsets: “truth telling” and “lying”. Thus, sufficient privacy elicits a truthful answer, whereas insufficient privacy results in a lie. The truth border depends on a respondent’s utility function.

- Assumptions in (19.11) and (19.11) are sufficient only to guarantee a positive slope of the truth border. The truth border can have either a concave or a convex shape.

We can draw some truth borders with the following Python code:

```python
x1 = np.arange(0, 1, 0.001)
y1 = x1 - 0.4
x2 = np.arange(0.4**2, 1, 0.001)
y2 = (pow(x2, 0.5) - 0.4)**2
x3 = np.arange(0.4**0.5, 1, 0.001)
y3 = pow(x3**2 - 0.4, 0.5)
plt.figure(figsize=(12, 10))
plt.plot(x1, y1, 'r-', label='Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-Pr(A|r_i)+f(\phi_i)$')
plt.fill_between(x1, 0, y1, facecolor='red', alpha=0.05)
plt.plot(x2, y2, 'b-', label='Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-Pr(A|r_i)^2+f(\phi_i)$')
plt.fill_between(x2, 0, y2, facecolor='blue', alpha=0.05)
plt.plot(x3, y3, 'y-', label='Truth Border of: $U_i(Pr(A|r_i),\phi_i)=-\sqrt{Pr(A|r_i)}+f(\phi_i)$')
plt.fill_between(x3, 0, y3, facecolor='green', alpha=0.05)
plt.plot(x1, x1, ':', linewidth=2)
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('Pr(A|yes)')
plt.ylabel('Pr(A|no)')
plt.text(0.42, 0.3, "Truth Telling", fontdict={'size':28, 'style':'italic'})
plt.text(0.8, 0.1, "Lying", fontdict={'size':28, 'style':'italic'})
plt.legend(loc=0, fontsize='large')
plt.title('Figure 1.1')
plt.show()
```
Figure 1.1 three types of truth border.
Without loss of generality, we consider the truth border:

\[U_i(\Pr(A|r_i), \phi_i) = -\Pr(A|r_i) + f(\phi_i) \]

and plot the “truth telling” and “lying area” of individual \(i \) in Figure 1.2:

```python
x1 = np.arange(0, 1, 0.001)
y1 = x1 - 0.4
z1 = x1
z2 = 0
plt.figure(figsize=(12, 10))
plt.plot(x1, y1, 'r-', label='Truth Border of: $U_i(Pr(A|r_i), \phi_i) = -Pr(A|r_i) + f(\phi_i)$')
plt.plot(x1, x1, ':', linewidth=2)
plt.fill_between(x1, y1, z1, facecolor='blue', alpha=0.05, label='truth telling')
plt.fill_between(x1, z2, y1, facecolor='green', alpha=0.05, label='lying')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('Pr(A|yes)')
plt.ylabel('Pr(A|no)')
```

(continues on next page)
19.5 Utilitarian View of Survey Design

19.5.1 Iso-variance Curves

A statistician’s objective is

- to find a randomized response survey design that minimizes the bias and the variance of the estimator.

Given a design that ensures truthful answers by all respondents, Anderson (1976, Theorem 1) [And76] showed that the minimum variance estimate in the two-response model has variance

\[
V(Pr(A|\text{yes}), Pr(A|\text{no})) = \frac{\pi_A^2 (1 - \pi_A)^2}{n} \times \frac{1}{Pr(A|\text{yes}) - \pi_A} \times \frac{1}{\pi_A - Pr(A|\text{no})}
\]

(19.17)
where the random sample with replacement consists of \(n \) individuals.

We can use Expression (19.17) to draw iso-variance curves.

The following inequalities restrict the shapes of iso-variance curves:

\[
\frac{d}{d \Pr(A|\text{yes})} \left. \left(\frac{d}{d \Pr(A|\text{no})} \right) \right|_{\text{constant variance}} = \frac{\pi_A - \Pr(A|\text{no})}{\Pr(A|\text{yes}) - \pi_A} > 0 ~ (19.18)
\]

\[
\frac{d^2}{d \Pr(A|\text{yes})^2} \left. \left(\frac{d}{d \Pr(A|\text{no})} \right) \right|_{\text{constant variance}} = -2 \left[\pi_A - \Pr(A|\text{no}) \right] \left[\Pr(A|\text{yes}) - \pi_A \right] < 0 ~ (19.19)
\]

From expression (19.17), (19.18) and (19.19) we can see that:

- Variance can be reduced only by increasing the distance of \(\Pr(A|\text{yes}) \) and/or \(\Pr(A|\text{no}) \) from \(r_A \).
- Iso-variance curves are always upward-sloping and concave.

19.5.2 Drawing Iso-variance Curves

We use Python code to draw iso-variance curves.

The pairs of conditional probabilities can be attained using Warner’s (1965) model.

Note that:

- Any point on the iso-variance curves can be attained with the unrelated question model as long as the statistician can completely control the model design.
- Warner’s (1965) original randomized response model is less flexible than the unrelated question model.

```python
class Iso_Variance:
    def __init__(self, pi, n):
        self.pi = pi
        self.n = n

    def plotting_iso_variance_curve(self):
        pi = self.pi
        n = self.n

        nv = np.array([0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7])
        x = np.arange(0, 1, 0.001)
        x0 = np.arange(pi, 1, 0.001)
        x2 = np.arange(0, pi, 0.001)
        y1 = [pi for i in x0]
        y2 = [pi for i in x2]
        y0 = 1 / ((1 + (x0 * (1 - pi)**2) / ((1 - x0) * pi**2))

    plt.figure(figsize=(12, 10))
    plt.plot(x0, y0, 'm-', label='Warner')
    plt.plot(x, x, 'c:', linewidth=2)
    plt.plot(x0, y1, 'c:', linewidth=2)
    plt.plot(x2, x2, 'c:', linewidth=2)
    for i in range(len(nv)):
        y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
    plt.plot(x0, y, 'k--', alpha=1 - 0.07 * i, label='$V(i+1)$')

    plt.xlim([0, 1])
    plt.ylim([0, 0.5])
    plt.xlabel('Pr(A|yes)')
```

(continues on next page)
Properties of iso-variance curves are:

- All points on one iso-variance curve share the same variance
- From V_1 to V_9, the variance of the iso-variance curve increase monotonically, as colors brighten monotonically

Suppose the parameters of the iso-variance model follow those in Ljungqvist [Lju93], which are:

- $\pi = 0.3$
- $n = 100$

Then we can plot the iso-variance curve in Figure 2:

```python
var = Iso_Variance(pi=0.3, n=100)
var.plotting_iso_variance_curve()
```
19.5.3 Optimal Survey

A point on an iso-variance curves can be attained with the unrelated question design.

We now focus on finding an “optimal survey design” that

• Minimizes the variance of the estimator subject to privacy restrictions.

To obtain an optimal design, we first superimpose all individuals’ truth borders on the iso-variance mapping.

To construct an optimal design

• The statistician should find the intersection of areas above all truth borders; that is, the set of conditional probabilities ensuring truthful answers from all respondents.

• The point where this set touches the lowest possible iso-variance curve determines an optimal survey design.

Consequently, a minimum variance unbiased estimator is pinned down by an individual who is the least willing to volunteer a truthful answer.

Here are some comments about the model design:

• An individual’s decision of whether or not to answer truthfully depends on his or her belief about other respondents’ behavior, because this determines the individual’s calculation of $\Pr(A|\text{yes})$ and $\Pr(A|\text{no})$.

• An equilibrium of the optimal design model is a Nash equilibrium of a noncooperative game.

• Assumption (19.12) is sufficient to guarantee existence of an optimal model design. By choosing $\Pr(A|\text{yes})$ and $\Pr(A|\text{no})$ sufficiently close to each other, all respondents will find it optimal to answer truthfully. The closer are these probabilities, the higher the variance of the estimator becomes.

• If respondents experience a large enough increase in expected utility from telling the truth, then there is no need to use a randomized response model. The smallest possible variance of the estimate is then obtained at $\Pr(A|\text{yes}) = 1$ and $\Pr(A|\text{no}) = 0$; that is, when respondents answer truthfully to direct questioning.

• A more general design problem would be to minimize some weighted sum of the estimator’s variance and bias. It would be optimal to accept some lies from the most “reluctant” respondents.

19.6 Criticisms of Proposed Privacy Measures

We can use a utilitarian approach to analyze some privacy measures.

We’ll enlist Python Code to help us.

19.6.1 Analysis of Method of Lanke’s (1976)

Lanke (1976) recommends a privacy protection criterion that minimizes:

$$\max \{\Pr(A|\text{yes}), \Pr(A|\text{no})\}$$

Following Lanke’s suggestion, the statistician should find the highest possible $\Pr(A|\text{yes})$ consistent with truth telling while $\Pr(A|\text{no})$ is fixed at 0. The variance is then minimized at point X in Figure 3.

However, we can see that in Figure 3, point Z offers a smaller variance that still allows cooperation of the respondents, and it is achievable following our discussion of the truth border in Part III:
pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]
x = np.arange(0, 1, 0.001)
y = x - 0.4
z = x
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange(0, pi, 0.001)
y1 = [pi for i in x0]
y2 = [pi for i in x2]
Leysieffer and Warner (1976) recommend a two-dimensional measure of jeopardy that reduces to a single dimension when there is no jeopardy in a ‘no’ answer, which means that

$$\Pr(yes|A) = 1$$

and

$$\Pr(A|no) = 0$$

This is not an optimal choice under a utilitarian approach.
19.6.3 Analysis on the Method of Chaudhuri and Mukerjee’s (1988)

[CM88]

Chaudhuri and Mukerjee (1988) argued that the individual may find that since “yes” may sometimes relate to the sensitive group A, a clever respondent may falsely but safely always be inclined to respond “no”. In this situation, the truth border is such that individuals choose to lie whenever the truthful answer is “yes” and

\[
\Pr(A|\text{no}) = 0
\]

Here the gain from lying is too high for someone to volunteer a “yes” answer.

This means that

\[
U_i (\Pr(A|\text{yes}), \text{truth}) < U_i (\Pr(A|\text{no}), \text{lie})
\]

in any situation always.

As a result, there is no attainable model design.

However, under a utilitarian approach there should exist other survey designs that are consistent with truthful answers.

In particular, respondents will choose to answer truthfully if the relative advantage from lying is eliminated.

We can use Python to show that the optimal model design corresponds to point Q in Figure 4:

```python
def f(x):
    if x < 0.16:
        return 0
    else:
        return (pow(x, 0.5) - 0.4)**2
```

```python
pi = 0.3
n = 100
nv = [0.27, 0.34, 0.49, 0.74, 0.92, 1.1, 1.47, 2.94, 14.7]
x = np.arange(0, 1, 0.001)
y = [f(i) for i in x]
z = x
x0 = np.arange(pi, 1, 0.001)
x2 = np.arange(0, pi, 0.001)
y1 = [pi for i in x0]
y2 = [pi for i in x2]
x3 = np.arange(0.16, 1, 0.001)
y3 = (pow(x3, 0.5) - 0.4)**2
plt.figure(figsize=(12, 10))
plt.plot(x, x, 'c:', linewidth=2)
plt.plot(x0, y1, 'c:', linewidth=2)
plt.plot(y2, x2, 'c:', linewidth=2)
plt.plot(x3, y3, 'b-', label='Truth Border')
plt.fill_between(x, y, z, facecolor='blue', alpha=0.05, label='Truth telling')
plt.fill_between(x3, 0, y3, facecolor='green', alpha=0.05, label='Lying')
for i in range(len(nv)):
    y = pi - (pi**2 * (1 - pi)**2) / (n * (nv[i] / n) * (x0 - pi + 1e-8))
    plt.plot(x0, y, 'k--', alpha=1 - 0.07 * i, label=f'V(i+1)')
plt.scatter(0.61, 0.146, c='r', marker='*', label='Z', s=150)
plt.xlim([0, 1])
plt.ylim([0, 0.5])
```

(continues on next page)
19.6.4 Method of Greenberg et al. (1977)

Greenberg et al. (1977) defined the hazard for an individual in A as the probability that he or she is perceived as belonging to A:

$$\Pr(\text{yes}|A) \times \Pr(A|\text{yes}) + \Pr(\text{no}|A) \times \Pr(A|\text{no})$$

(19.21)

The hazard for an individual who does not belong to A is

$$\Pr(\text{yes}|A') \times \Pr(A|\text{yes}) + \Pr(\text{no}|A') \times \Pr(A|\text{no})$$

(19.22)
They also considered an alternative related measure of hazard that they said “is likely to be closer to the actual concern felt by a respondent.”

Their “limited hazard” for an individual in A and A' is

$$\Pr(\text{yes}|A) \times \Pr(A|\text{yes})$$

(19.23)

and

$$\Pr(\text{yes}|A') \times \Pr(A|\text{yes})$$

(19.24)

According to Greenberg et al. (1977), a respondent commits himself or herself to answer truthfully on the basis of a probability in (19.21) or (19.23) before randomly selecting the question to be answered.

Suppose that the appropriate privacy measure is captured by the notion of “limited hazard” in (19.23) and (19.24).

Consider an unrelated question model where the unrelated question is replaced by the instruction “Say the word ‘no’”, which implies that

$$\Pr(A|\text{yes}) = 1$$

and it follows that:

• Hazard for an individual in A' is 0.
• Hazard for an individual in A can also be made arbitrarily small by choosing a sufficiently small $\Pr(\text{yes}|A)$.

Even though this hazard can be set arbitrarily close to 0, an individual in A will completely reveal his or her identity whenever truthfully answering the sensitive question.

However, under utilitarian framework, it is obviously contradictory.

If the individuals are willing to volunteer this information, it seems that the randomized response design was not necessary in the first place.

It ignores the fact that respondents retain the option of lying until they have seen the question to be answered.

19.7 Concluding Remarks

The justifications for a randomized response procedure are that

• Respondents are thought to feel discomfort from being perceived as belonging to the sensitive group.
• Respondents prefer to answer questions truthfully than to lie, unless it is too revealing.

If a privacy measure is not completely consistent with the rational behavior of the respondents, all efforts to derive an optimal model design are futile.

A utilitarian approach provides a systematic way to model respondents’ behavior under the assumption that they maximize their expected utilities.

In a utilitarian analysis:

• A truth border divides the space of conditional probabilities of being perceived as belonging to the sensitive group, $\Pr(A|\text{yes})$ and $\Pr(A|\text{no})$, into the truth-telling region and the lying region.
• The optimal model design is obtained at the point where the truth border touches the lowest possible iso-variance curve.

A practical implication of the analysis of [Lju93] is that uncertainty about respondents’ demands for privacy can be acknowledged by choosing $\Pr(A|\text{yes})$ and $\Pr(A|\text{no})$ sufficiently close to each other.
Part III

Linear Programming
20.1 Overview

Linear programming problems either maximize or minimize a linear objective function subject to a set of linear equality and/or inequality constraints.

Linear programs come in pairs:
• an original primal problem, and
• an associated dual problem.

If a primal problem involves maximization, the dual problem involves minimization.

If a primal problem involves minimization, the dual problem involves maximization.

We provide a standard form of a linear program and methods to transform other forms of linear programming problems into a standard form.

We tell how to solve a linear programming problem using SciPy.

We describe the important concept of complementary slackness and how it relates to the dual problem.

Let’s start with some standard imports.

```python
import numpy as np
from scipy.optimize import linprog
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
#matplotlib inline
```

20.2 Objective Function and Constraints

We want to minimize a cost function \(c'x = \sum_{i=1}^{n} c_i x_i \) over feasible values of \(x = (x_1, x_2, \ldots, x_n)' \).

Here
• \(c = (c_1, c_2, \ldots, c_n)' \) is a unit cost vector, and
• \(x = (x_1, x_2, \ldots, x_n)' \) is a vector of decision variables

Decision variables are restricted to satisfy a set of linear equality and/or inequality constraints.

We describe the constraints with the following collections of \(n \)-dimensional vectors \(a_i \) and scalars \(b_i \) and associated sets indexing the equality and inequality constraints:
• a_i for $i \in M_i$, where M_1, M_2, M_3 are each sets of indexes and a collection of scalers.
• b_i for $i \in N_i$, where N_1, N_2, N_3 are each sets of indexes.

A linear programming can be stated as [Ber97]:

\[
\begin{align*}
\min \quad & c'x \\
\text{subject to} \quad & a'_ix \geq b_i, \quad i \in M_1 \\
& a'_ix \leq b_i, \quad i \in M_2 \\
& a'_ix = b_i, \quad i \in M_3 \\
& x_j \geq 0, \quad j \in N_1 \\
& x_j \leq 0, \quad j \in N_2 \\
& x_j \text{ unrestricted}, \quad j \in N_3
\end{align*}
\]

(20.1)

A vector x that satisfies all of the constraints is called a **feasible solution**.

A collection of all feasible solutions is called a **feasible set**.

A feasible solution x that minimizes the cost function is called an **optimal solution**.

The corresponding value of cost function $c'x$ is called the **optimal value**.

If the feasible set is empty, we say that solving the linear programming problem is **infeasible**.

If, for any $K \in \mathbb{R}$, there exists a feasible solution x such that $c'x < K$, we say that the problem is **unbounded** or equivalently that the optimal value is $-\infty$.

20.3 Example 1: Production Problem

This example was created by [Ber97]

Suppose that a factory can produce two goods called Product 1 and Product 2.

To produce each product requires both material and labor.

Selling each product generates revenue.

Required per unit material and labor inputs and revenues are shown in table below:

<table>
<thead>
<tr>
<th></th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Labor</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Revenue</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

30 units of material and 20 units of labor available.

A firm’s problem is to construct a production plan that uses its 30 units of materials and 20 unite of labor to maximize its revenue.

Let x_i denote the quantity of Product i that the firm produces.
This problem can be formulated as:

\[
\begin{align*}
\text{max} & \quad z = 3x_1 + 4x_2 \\
\text{subject to} & \quad 2x_1 + 5x_2 \leq 30 \\
& \quad 4x_1 + 2x_2 \leq 20 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

The following graph illustrates the firm’s constraints and iso-revenue lines.
The blue region is the feasible set within which all constraints are satisfied.

Parallel orange lines are iso-revenue lines.

The firm’s objective is to find the parallel orange lines to the upper boundary of the feasible set.

The intersection of the feasible set and the highest orange line delineates the optimal set.

In this example, the optimal set is the point \((2.5, 5)\).

20.4 Example 2: Investment Problem

We now consider a problem posed and solved by [Hu18].

A mutual fund has $100,000 to be invested over a three year horizon.

Three investment options are available:

1. **Annuity**: the fund can pay a same amount of new capital at the beginning of each of three years and receive a payoff of 130% of total capital invested at the end of the third year. Once the mutual fund decides to invest in this annuity, it has to keep investing in all subsequent years in the three year horizon.

2. **Bank account**: the fund can deposit any amount into a bank at the beginning of each year and receive its capital plus 6% interest at the end of that year. In addition, the mutual fund is permitted to borrow no more than $20,000 at the beginning of each year and is asked to pay back the amount borrowed plus 6% interest at the end of the year. The mutual fund can choose whether to deposit or borrow at the beginning of each year.
3. **Corporate bond**: At the beginning of the second year, a corporate bond becomes available. The fund can buy an amount that is no more than $50,000 of this bond at the beginning of the second year and at the end of the third year receive a payout of 130% of the amount invested in the bond.

The mutual fund's objective is to maximize total payout that it owns at the end of the third year.

We can formulate this as a linear programming problem.

Let \(x_1 \) be the amount of put in the annuity, \(x_2, x_3, x_4 \) be bank deposit balances at the beginning of the three years, and \(x_5 \) be the amount invested in the corporate bond.

When \(x_2, x_3, x_4 \) are negative, it means that the mutual fund has borrowed from bank.

The table below shows the mutual fund's decision variables together with the timing protocol described above:

<table>
<thead>
<tr>
<th></th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annuity</td>
<td>(x_1)</td>
<td>(x_1)</td>
<td>(x_1)</td>
</tr>
<tr>
<td>Bank account</td>
<td>(x_2)</td>
<td>(x_3)</td>
<td>(x_4)</td>
</tr>
<tr>
<td>Corporate bond</td>
<td>0</td>
<td>(x_5)</td>
<td>0</td>
</tr>
</tbody>
</table>

The mutual fund's decision making proceeds according to the following timing protocol:

1. At the beginning of the first year, the mutual fund decides how much to invest in the annuity and how much to deposit in the bank. This decision is subject to the constraint:

 \[
 x_1 + x_2 = 100,000
 \]

2. At the beginning of the second year, the mutual fund has a bank balance of \(1.06x_2\). It must keep \(x_1 \) in the annuity. It can choose to put \(x_5 \) into the corporate bond, and put \(x_3 \) in the bank. These decisions are restricted by

 \[
 x_1 + x_5 = 1.06x_2 - x_3
 \]

3. At the beginning of the third year, the mutual fund has a bank account balance equal to \(1.06x_3\). It must again invest \(x_1 \) in the annuity, leaving it with a bank account balance equal to \(x_4 \). This situation is summarized by the restriction:

 \[
 x_1 = 1.06x_3 - x_4
 \]

The mutual fund's objective function, i.e., its wealth at the end of the third year is:

\[
1.30 \cdot 3x_1 + 1.06x_4 + 1.30x_5
\]

Thus, the mutual fund confronts the linear program:

\[
\max_x 1.30 \cdot 3x_1 + 1.06x_4 + 1.30x_5
\]

subject to

\[
\begin{align*}
x_1 + x_2 &= 100,000 \\
x_1 - 1.06x_2 + x_3 + x_5 &= 0 \\
x_1 - 1.06x_3 + x_4 &= 0 \\
x_2 &\geq -20,000 \\
x_3 &\geq -20,000 \\
x_4 &\geq -20,000 \\
x_5 &\leq 50,000 \\
x_j &\geq 0, \quad j = 1, 5 \\
x_j &\text{unrestricted}, \quad j = 2, 3, 4
\end{align*}
\]
20.5 Standard Form

For purposes of

• unifying linear programs that are initially stated in superficially different forms, and
• having a form that is convenient to put into black-box software packages,

it is useful to devote some effort to describe a **standard form**.

Our standard form is:

$$\begin{align*}
\text{min}_x & \quad c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\
\text{subject to} & \quad a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\
& \quad a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\
& \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = b_m \\
& \quad x_1, x_2, \ldots, x_n \geq 0
\end{align*}$$

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The standard form LP problem can be expressed concisely as:

$$\begin{align*}
\text{min}_x & \quad c^\prime x \\
\text{subject to} & \quad Ax = b \\
& \quad x \geq 0
\end{align*} \tag{20.2}$$

Here, $Ax = b$ means that the i-th entry of Ax equals the i-th entry of b for every i.

Similarly, $x \geq 0$ means that x_j is greater than 0 for every j.

20.5.1 Useful Transformations

It is useful to know how to transform a problem that initially is not stated in the standard form into one that is.

By deploying the following steps, any linear programming problem can be transformed into an equivalent standard form linear programming problem.

1. **Objective Function**: If a problem is originally a constrained maximization problem, we can construct a new objective function that is the additive inverse of the original objective function. The transformed problem is then a minimization problem.

2. **Decision Variables**: Given a variable x_j satisfying $x_j \leq 0$, we can introduce a new variable $x_j' = -x_j$ and substitute it into original problem. Given a free variable x_j with no restriction on its sign, we can introduce two new variables x_j^+ and x_j^- satisfying $x_j^+ \geq 0$ and replace x_j by $x_j^+ - x_j^-$.

3. **Inequality constraints**: Given an inequality constraint $\sum_{j=1}^{n} a_{ij} x_j \leq 0$, we can introduce a new variable s_i, called a **slack variable** that satisfies $s_i \geq 0$ and replace the original constraint by $\sum_{j=1}^{n} a_{ij} x_j + s_i = 0$.

Let’s apply the above steps to the two examples described above.
20.5.2 Example 1: Production Problem

The original problem is:

$$\begin{align*}
\max_{x_1, x_2} & \quad 3x_1 + 4x_2 \\
\text{subject to} & \quad 2x_1 + 5x_2 \leq 30 \\
& \quad 4x_1 + 2x_2 \leq 20 \\
& \quad x_1, x_2 \geq 0
\end{align*}$$

This problem is equivalent to the following problem with a standard form:

$$\begin{align*}
\min_{x_1, x_2} & \quad -(3x_1 + 4x_2) \\
\text{subject to} & \quad 2x_1 + 5x_2 + s_1 = 30 \\
& \quad 4x_1 + 2x_2 + s_2 = 20 \\
& \quad x_1, x_2, s_1, s_2 \geq 0
\end{align*}$$

20.5.3 Example 2: Investment Problem

The original problem is:

$$\begin{align*}
\max_{x} & \quad 1.30 \cdot 3x_1 + 1.06x_4 + 1.30x_5 \\
\text{subject to} & \quad x_1 + x_2 = 100,000 \\
& \quad x_1 - 1.06x_2 + x_3 + x_5 = 0 \\
& \quad x_1 - 1.06x_3 + x_4 = 0 \\
& \quad x_2 \geq -20,000 \\
& \quad x_3 \geq -20,000 \\
& \quad x_4 \geq -20,000 \\
& \quad x_5 \leq 50,000 \\
& \quad x_j \geq 0, \quad j = 1, 5 \\
& \quad x_j \text{ unrestricted}, \quad j = 2, 3, 4
\end{align*}$$

This problem is equivalent to the following problem with a standard form:

$$\begin{align*}
\min_{x} & \quad -(1.30 \cdot 3x_1 + 1.06x_4^+ - 1.06x_4^- + 1.30x_5) \\
\text{subject to} & \quad x_1 + x_2^+ - x_2^- = 100,000 \\
& \quad x_1 - 1.06(x_2^+ - x_2^-) + x_3^+ - x_3^- + x_5 = 0 \\
& \quad x_1 - 1.06(x_3^+ - x_3^-) + x_4^+ - x_4^- = 0 \\
& \quad x_2^- - x_2^+ + s_1 = 20,000 \\
& \quad x_3^- - x_3^+ + s_2 = 20,000 \\
& \quad x_4^- - x_4^+ + s_3 = 20,000 \\
& \quad x_5 + s_4 = 50,000 \\
& \quad x_j \geq 0, \quad j = 1, 5 \\
& \quad x_j^+, x_j^- \geq 0, \quad j = 2, 3, 4 \\
& \quad s_j \geq 0, \quad j = 1, 2, 3, 4
\end{align*}$$
20.6 Computations

The package `scipy.optimize` provides a function `linprog` to solve linear programming problems with a form below:

\[
\begin{align*}
\min_{x} & \quad c'x \\
\text{subject to} & \quad A_{ub} x \leq b_{ub} \\
& \quad A_{eq} x = b_{eq} \\
& \quad l \leq x \leq u
\end{align*}
\]

Note: By default \(l = 0 \) and \(u = \text{None} \) unless explicitly specified with the argument ‘bounds’.

Let’s apply this great Python tool to solve our two example problems.

20.6.1 Example 1: Production Problem

The problem is:

\[
\begin{align*}
\max_{x_1, x_2} & \quad 3x_1 + 4x_2 \\
\text{subject to} & \quad 2x_1 + 5x_2 \leq 30 \\
& \quad 4x_1 + 2x_2 \leq 20 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

```python
# Construct parameters
c_ex1 = np.array([3, 4])

# Inequality constraints
A_ex1 = np.array([[2, 5],
                   [4, 2]])
b_ex1 = np.array([30, 20])

# Solve the problem
res_ex1 = linprog(-c_ex1, A_ub=A_ex1, b_ub=b_ex1, method='revised simplex')
```

```
con: array([], dtype=float64)
fun: -27.5
message: 'Optimization terminated successfully.'
nit: 2
slack: array([0., 0.])
status: 0
success: True
x: array([2.5, 5.])
```
The optimal plan tells the factory to produce 2.5 units of Product 1 and 5 units of Product 2; that generates a maximizing value of revenue of 27.5.

We are using the `linprog` function as a black box.

Inside it, Python first transforms the problem into standard form.

To do that, for each inequality constraint it generates one slack variable.

Here the vector of slack variables is a two-dimensional NumPy array that equals $b_{ub} - A_{ub}x$.

See the official documentation for more details.

Note: This problem is to maximize the objective, so that we need to put a minus sign in front of parameter vector c.

20.6.2 Example 2: Investment Problem

The problem is:

$$\max_x 1.30 \cdot 3x_1 + 1.06x_4 + 1.30x_5$$

subject to

- $x_1 + x_2 = 100,000$
- $x_1 - 1.06x_2 + x_3 + x_5 = 0$
- $x_1 - 1.06x_3 + x_4 = 0$
- $x_2 \geq -20,000$
- $x_3 \geq -20,000$
- $x_4 \geq -20,000$
- $x_5 \leq 50,000$
- $x_j \geq 0, \ j = 1,5$
- x_j unrestricted, $j = 2,3,4$

Let’s solve this problem using `linprog`.

```python
# Construct parameters
rate = 1.06

# Objective function parameters
c_ex2 = np.array([1.30*3, 0, 0, 1.06, 1.30])

# Inequality constraints
A_ex2 = np.array([ [1, 1, 0, 0, 0],
                  [1, rate, 1, 0, 1],
                  [1, 0, -rate, 1, 0]])
b_ex2 = np.array([100000, 0, 0])

# Bounds on decision variables
bounds_ex2 = [( 0, None),
              (-20000, None),
              (-20000, None),
              (-20000, None),
              ( 0, 50000)]

# Solve the problem
res_ex2 = linprog(-c_ex2, A_eq=A_ex2, b_eq=b_ex2,
                  bounds=bounds_ex2,
                  method='interior-point')
```

(continues on next page)
bounds=bounds_ex2, method='revised simplex')

res_ex2

/home/ipython/w20/scipy_1.10.0/ipykernel/1937289231.py:21: DeprecationWarning: `method='revised simplex'` is deprecated and will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g. `method='highs'`) in new code.
res_ex2 = linprog(-c_ex2, A_eq=A_ex2, b_eq=b_ex2,

 con: array([1.45519152e-11, -2.18278728e-11, 0.00000000e+00])
 fun: -141018.24349792692
 message: 'Optimization terminated successfully.'
 nit: 4
 slack: array([], dtype=float64)
 status: 0
 success: True
 x: array([24927.75474306, 75072.24525694, 4648.82522930, -20000.0 ,
 50000.0 , ...])

Python tells us that the best investment strategy is:

1. At the beginning of the first year, the mutual fund should buy $24,927.75 of the annuity. Its bank account balance should be $75,072.25.
2. At the beginning of the second year, the mutual fund should buy $50,000 of the corporate bond and keep investing in the annuity. Its bank account balance should be $4,648.83.
3. At the beginning of the third year, the mutual fund should borrow $20,000 from the bank and invest in the annuity.
4. At the end of the third year, the mutual fund will get payouts from the annuity and corporate bond and repay its loan from the bank. At the end it will own $141018.24, so that it’s total net rate of return over the three periods is 41.02%.

20.7 Duality

Associated with a linear programming of form (20.1) with m constraints and n decision variables, there is an dual linear programming problem that takes the form (please see [Ber97])

\[
\begin{align*}
\max_{p} b^t p \\
\text{subject to} & \quad p_i \geq 0, & i \in M_1 \\
& \quad p_i \leq 0, & i \in M_2 \\
& \quad p_i \text{ unrestricted}, & i \in M_3 \\
& \quad A_j^t p \leq c_j, & j \in N_1 \\
& \quad A_j^t p \geq c_j, & j \in N_2 \\
& \quad A_j^t p = c_j, & j \in N_3
\end{align*}
\]

Where \(A_j\) is j-th column of the m by n matrix A.

Note: In what follows, we shall use \(a_i^t\) to denote the i-th row of \(A\) and \(A_j\) to denote the j-th column of \(A\).
To construct the dual of linear programming problem (20.1), we proceed as follows:

1. For every constraint $a'_i x \geq b_i$, $j = 1, 2, ..., m$, in the primal problem, we construct a corresponding dual variable p_i. p_i is restricted to be positive if $a'_i x \geq b_i$ or negative if $a'_i x \leq b_i$ or unrestricted if $a'_i x = b_i$. We construct the m-dimensional vector p with entries p_i.

2. For every variable x_j, $j = 1, 2, ..., n$, we construct a corresponding dual constraint $A'p \geq (\leq or =)c_j$. The constraint is $A'p \geq c_j$ if $x_j \leq 0$, $A'p \leq c_j$ if $x_j \geq 0$ or $A'p = c_j$ if x_j is unrestricted.

3. The dual problem is to maximize objective function $b'p$.

For a maximization problem, we can first transform it to an equivalent minimization problem and then follow the above steps above to construct the dual minimization problem.

We can easily verify that the dual of a dual problem is the primal problem.

The following table summarizes relationships between objects in primal and dual problems.

<table>
<thead>
<tr>
<th>Objective: Min</th>
<th>Objective: Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>m constraints</td>
<td>m variables</td>
</tr>
<tr>
<td>constraint \geq</td>
<td>variable ≥ 0</td>
</tr>
<tr>
<td>constraint \leq</td>
<td>variable ≤ 0</td>
</tr>
<tr>
<td>constraint $=$</td>
<td>variable free</td>
</tr>
<tr>
<td>n variables</td>
<td>n constraints</td>
</tr>
<tr>
<td>variable ≥ 0</td>
<td>constraint \leq</td>
</tr>
<tr>
<td>variable ≤ 0</td>
<td>constraint \geq</td>
</tr>
<tr>
<td>variable free</td>
<td>constraint $=$</td>
</tr>
</tbody>
</table>

As an example, the dual problem of the standard form (20.2) is:

$$\max_p b'p$$

subject to $A'p \leq c$

As another example, consider a linear programming problem with form:

$$\max_x c'x$$

subject to $Ax \leq b$

$x \geq 0$ (20.3)

Its dual problem is:

$$\min_p b'p$$

subject to $A'p \geq c$

$p \geq 0$
20.8 Duality Theorems

Primal and dual problems are linked by powerful duality theorems that have weak and strong forms. The duality theorems provide the foundations of enlightening economic interpretations of linear programming problems.

Weak duality: For linear programming problem (20.1), if \(x \) and \(p \) are feasible solutions to the primal and the dual problems, respectively, then

\[b'p \leq c'x \]

Strong duality: For linear programming problem (20.1), if the primal problem has an optimal solution \(x \), then the dual problem also has an optimal solution. Denote an optimal solution of the dual problem as \(p \). Then

\[b'p = c'x \]

According to strong duality, we can find the optimal value for the primal problem by solving the dual problem.

But the dual problem tells us even more as we shall see next.

20.8.1 Complementary Slackness

Let \(x \) and \(p \) be feasible solutions to the primal problem (20.1) and its dual problem, respectively.

Then \(x \) and \(p \) are also optimal solutions of the primal and dual problems if and only if:

\[p_i(a_i'x - b_i) = 0, \quad \forall i, \]
\[x_j(A_j'p - c_j) = 0, \quad \forall j. \]

This means that \(p_i = 0 \) if \(a_i'x - b_i \neq 0 \) and \(x_j = 0 \) if \(A_j'p - c_j \neq 0 \).

These are the celebrated complementary slackness conditions.

Let’s interpret them.

20.8.2 Interpretations

Let’s take a version of problem (20.3) as a production problem and consider its associated dual problem.

A factory produce \(n \) products with \(m \) types of resources.

Where \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \), let

- \(x_j \) denote quantities of product \(j \) to be produced
- \(a_{ij} \) denote required amount of resource \(i \) to make one unit of product \(j \)
- \(b_i \) denotes the available amount of resource \(i \)
- \(c_j \) denotes the revenue generated by producing one unit of product \(j \)

Dual variables: By strong duality, we have

\[c_1x_1 + c_2x_2 + \cdots + c_nx_n = b_1p_1 + b_2p_2 + \cdots + b_mp_m. \]

Evidently, a one unit change of \(b_i \) results in \(p_i \) units change of revenue.

Thus, a dual variable can be interpreted as the value of one unit of resource \(i \).

This is why it is often called the shadow price of resource \(i \).
For feasible but not optimal primal and dual solutions \(x \) and \(p \), by weak duality, we have
\[
c_1x_1 + c_2x_2 + \cdots + c_nx_n < b_1p_1 + b_2p_2 + \cdots + b_mp_m.
\]

Note: Here, the expression is opposite to the statement above since primal problem is a minimization problem.

When a strict inequality holds, the solution is not optimal because it doesn’t fully utilize all valuable resources. Evidently,

- if a shadow price \(p_i \) is larger than the market price for Resource \(i \), the factory should buy more Resource \(i \) and expand its scale to generate more revenue;
- if a shadow price \(p_i \) is less than the market price for Resource \(i \), the factory should sell its Resource \(i \).

Complementary slackness: If there exists \(i \) such that \(a_i'x - b_i < 0 \) for some \(i \), then \(p_i = 0 \) by complementary slackness. \(a_i'x - b_i < 0 \) means that to achieve its optimal production, the factory doesn’t require as much Resource \(i \) as it has. It is reasonable that the shadow price of Resource \(i \) is 0: some of its resource is redundant.

If there exists \(j \) such that \(A_j'p - c_j > 0 \), then \(x_j = 0 \) by complementary slackness. \(A_j'p - c_j > 0 \) means that the value of all resources used when producing one unit of product \(j \) is greater than its cost. This means that producing another product that can more efficiently utilize these resources is a better choice than producing product \(j \).

Since producing product \(j \) is not optimal, \(x_j \) should equal 0.

20.8.3 Example 1: Production Problem

This problem is one specific instance of the problem (20.3), whose economic meaning is interpreted above. Its dual problem is:

\[
\begin{align*}
\text{min} & \quad 30p_1 + 20p_2 \\
\text{subject to} & \quad 2p_1 + 4p_2 \geq 3 \\
& \quad 5p_1 + 2p_2 \geq 4 \\
& \quad p_1, p_2 \geq 0
\end{align*}
\]

We solve this dual problem by using the function `linprog`.

Since parameters used here are defined before when solving the primal problem, we won’t define them here.

```python
# Solve the dual problem
res_ex1_dual = linprog(b_ex1, A_ub=-A_ex1.T, b_ub=-c_ex1, method='revised simplex')
res_ex1_dual
```

```console
/tmp/ipykernel_15523/1704321462.py:2: DeprecationWarning: `method='revised simplex ...
KHIKS solvers (e.g. `method='highs'`) in new code.
res_ex1_dual = linprog(b_ex1, A_ub=-A_ex1.T, b_ub=-c_ex1, method='revised simplex ...
```

20.8. Duality Theorems

371
The optimal value for the dual problem equals 27.5.
This equals the optimal value of the primal problem, an illustration of strong duality.
Shadow prices for materials and labor are 0.625 and 0.4375, respectively.

20.8.4 Example 2: Investment Problem

The dual problem is:
\[
\begin{align*}
\text{min} & \quad \sum p \ (100,000 p_1 - 20,000 p_4 - 20,000 p_5 - 20,000 p_6 + 50,000 p_7) \\
\text{subject to} & \quad p_1 + p_2 + p_3 \geq 1.30 \cdot 3 \\
& \quad p_1 - 1.06 p_2 + p_4 = 0 \\
& \quad p_2 - 1.06 p_3 + p_5 = 0 \\
& \quad p_3 + p_6 = 1.06 \\
& \quad p_2 + p_7 \geq 1.30 \\
& \quad p_i \text{ unrestricted, } i = 1, 2, 3 \\
& \quad p_i \leq 0, \ i = 4, 5, 6 \\
& \quad p_7 \geq 0
\end{align*}
\]

We solve this dual problem by using the function \texttt{linprog}.

```python
# Objective function parameters
con = np.array([[]])
fun = 27.5
message = 'Optimization terminated successfully.'
nit = 2
slack = np.array([0., 0.])
status = 0
success = True
x = np.array([0.625, 0.4375])
```

(continues on next page)
Solve the dual problem
res_ex2_dual = linprog(c_ex2_dual, A_eq=A_eq_ex2_dual, b_eq=b_eq_ex2_dual,
 A_ub=A_ub_ex2_dual, b_ub=b_ub_ex2_dual, bounds=bounds_ex2_dual,
 method='revised simplex')

The optimal value for the dual problem is 141018.24, which equals the value of the primal problem.

Now, let’s interpret the dual variables.

By strong duality and also our numerical results, we have that optimal value is:

$$100,000p_1 - 20,000p_4 - 20,000p_5 - 20,000p_6 + 50,000p_7.$$

We know if b_i changes one dollar, then the optimal payoff in the end of the third year will change p_i dollars.

For $i = 1$, this means if the initial capital changes by one dollar, then the optimal payoff in the end of the third year will change p_1 dollars.

Thus, p_1 is the potential value of one more unit of initial capital, or the shadow price for initial capital.

We can also interpret p_1 as the prospective value in the end of the third year coming from having one more dollar to invest at the beginning of the first year.

If the mutual fund can raise money at a cost lower than $p_1 - 1$, then it should raise more money to increase its revenue.

But if it bears a cost of funds higher than $p_1 - 1$, the mutual fund shouldn’t do that.

For $i = 4, 5, 6$, this means that if the amount of capital that the fund is permitted to borrow from the bank changes by one dollar, the optimal pay out at the end of the third year will change p_i dollars.

Thus, for $i = 4, 5, 6$, $|p_i|$ indicates the value of one dollar that the mutual fund can borrow from the bank at the beginning of the $i - 3$-th year.

p_i is the shadow price for the loan amount. (We use absolute value here since $p_i \leq 0$.)

If the interest rate is lower than $|p_i|$, then the mutual fund should borrow to increase its optimal payoff; if the interest rate is higher, it is better to not do this.

For $i = 7$, this means that if the amount of the corporate bond the mutual fund can buy changes one dollar, then the optimal payoff will change p_7 dollars at the end of the third year. Again, p_7 is the shadow price for the amount of the corporate bond the mutual fund can buy.
As for numerical results

1. $p_1 = 1.38$, which means one dollar of initial capital is worth 1.38 at the end of the third year.

2. $p_4 = p_5 = 0$, which means the loan amounts at the beginning of the first and second year are worth nothing. Recall that the optimal solution to the primal problem, $x_2, x_3 > 0$, which means at the beginning of the first and second year, the mutual fund has a positive bank account and borrows no capital from the bank. Thus, it is reasonable that the loan amounts at the beginning of the first and second year are valueless. This is what the complementary slackness conditions mean in this setting.

3. $p_6 = -0.16$, which means one dollar of the loan amount at the beginning of the third year is worth 0.16. Since $|p_6|$ is higher than the interest rate 6%, the mutual fund should borrow as much as possible at the beginning of the third year. Recall that the optimal solution to the primal problem is $x_4 = -20,000$ which means the mutual fund borrows money from the bank as much as it can.

4. $p_7 = 0.0015$, which means one dollar of the amount of the corporate bond that the mutual fund can buy is worth 0.0015.

21.1 Overview

The transportation or optimal transport problem is interesting both because of its many applications and because of its important role in the history of economic theory.

In this lecture, we describe the problem, tell how linear programming is a key tool for solving it, and then provide some examples.

We will provide other applications in followup lectures.

The optimal transport problem was studied in early work about linear programming, as summarized for example by [DSS58]. A modern reference about applications in economics is [Gal16].

Below, we show how to solve the optimal transport problem using several implementations of linear programming, including, in order,

1. the linprog solver from SciPy,
2. the linprog_simplex solver from QuantEcon and
3. the simplex-based solvers included in the Python Optimal Transport package.

!pip install --upgrade quantecon
!pip install --upgrade POT jax jaxlib

Let’s start with some imports.

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linprog
from quantecon.optimize.linprog_simplex import linprog_simplex
import ot
from scipy.stats import binom, betabinom
import networkx as nx
```
21.2 The Optimal Transport Problem

Suppose that m factories produce goods that must be sent to n locations.

Let

- x_{ij} denote the quantity shipped from factory i to location j
- c_{ij} denote the cost of shipping one unit from factory i to location j
- p_i denote the capacity of factory i and q_j denote the amount required at location j.
- $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$.

A planner wants to minimize total transportation costs subject to the following constraints:

- The amount shipped from each factory must equal its capacity.
- The amount shipped to each location must equal the quantity required there.

The figure below shows one visualization of this idea, when factories and target locations are distributed in the plane.

The size of the vertices in the figure are proportional to

- capacity, for the factories, and
- demand (amount required) for the target locations.

The arrows show one possible transport plan, which respects the constraints stated above.

The planner’s problem can be expressed as the following constrained minimization problem:

\[
\min_{x_{ij}} \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\
\text{subject to} \sum_{j=1}^{n} x_{ij} = p_i, \quad i = 1, 2, \ldots, m \\
\sum_{i=1}^{m} x_{ij} = q_j, \quad j = 1, 2, \ldots, n \\
x_{ij} \geq 0
\]

This is an \textbf{optimal transport problem} with

- mn decision variables, namely, the entries x_{ij} and
- $m + n$ constraints.
Summing the q_j's across all j's and the p_i's across all i's indicates that the total capacity of all the factories equals total requirements at all locations:

$$
\sum_{j=1}^{n} q_j = \sum_{j=1}^{m} \sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} = \sum_{i=1}^{m} p_i \quad \text{(21.2)}
$$

The presence of the restrictions in (21.2) will be the source of one redundancy in the complete set of restrictions that we describe below.

More about this later.

21.3 The Linear Programming Approach

In this section we discuss using standard linear programming solvers to tackle the optimal transport problem.

21.3.1 Vectorizing a Matrix of Decision Variables

A matrix of decision variables x_{ij} appears in problem (21.1).

The SciPy function `linprog` expects to see a vector of decision variables.

This situation impels us to rewrite our problem in terms of a vector of decision variables.

Let

- X, C be $m \times n$ matrices with entries x_{ij}, c_{ij},
- p be m-dimensional vector with entries p_i,
- q be n-dimensional vector with entries q_j.

With 1_n denoting the n-dimensional column vector $(1, 1, \ldots, 1)'$, our problem can now be expressed compactly as:

$$
\min_X \text{tr}(C'X) \\
\text{subject to } X \cdot 1_n = p \\
X' \cdot 1_m = q \\
X \geq 0
$$

We can convert the matrix X into a vector by stacking all of its columns into a column vector.

Doing this is called **vectorization**, an operation that we denote $\text{vec}(X)$.

Similarly, we convert the matrix C into an mn-dimensional vector $\text{vec}(C)$.

The objective function can be expressed as the inner product between $\text{vec}(C)$ and $\text{vec}(X)$:

$$
\text{vec}(C)' \cdot \text{vec}(X).
$$

To express the constraints in terms of $\text{vec}(X)$, we use a **Kronecker product** denoted by \otimes and defined as follows.

Suppose A is an $m \times s$ matrix with entries (a_{ij}) and that B is an $n \times t$ matrix.

The **Kronecker product** of A and B is defined, in block matrix form, by

$$
A \otimes B = \begin{pmatrix}
a_{11}B & a_{12}B & \cdots & a_{1s}B \\
a_{21}B & a_{22}B & \cdots & a_{2s}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}B & a_{m2}B & \cdots & a_{ms}B
\end{pmatrix}.
$$
$A \otimes B$ is an $mn \times st$ matrix.

It has the property that for any $m \times n$ matrix X

\[\text{vec}(A'XB) = (B' \otimes A')\text{vec}(X). \quad (21.3) \]

We can now express our constraints in terms of $\text{vec}(X)$.

Let $A = I_m', B = 1_n$.

By equation (21.3)

\[X \mathbf{1}_n = \text{vec}(X \mathbf{1}_n) = \text{vec}(I_m X \mathbf{1}_n) = (\mathbf{1}'_n \otimes I_m) \text{vec}(X). \]

where I_m denotes the $m \times m$ identity matrix.

Constraint $X \mathbf{1}_n = p$ can now be written as:

\[(\mathbf{1}'_n \otimes I_m) \text{vec}(X) = p. \]

Similarly, the constraint $X' \mathbf{1}_m = q$ can be rewritten as:

\[(I_n \otimes \mathbf{1}'_m) \text{vec}(X) = q. \]

With $z := \text{vec}(X)$, our problem can now be expressed in terms of an mn-dimensional vector of decision variables:

\[
\begin{aligned}
\min_z & \quad \text{vec}(C)'z \\
\text{subject to} & \quad Az = b \\
& \quad z \geq 0
\end{aligned}
\]

where

\[A = \begin{pmatrix} \mathbf{1}'_n \otimes I_m \\ I_n \otimes \mathbf{1}'_m \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} p \\ q \end{pmatrix} \]

21.3.2 An Application

We now provide an example that takes the form (21.4) that we’ll solve by deploying the function `linprog`.

The table below provides numbers for the requirements vector q, the capacity vector p, and entries c_{ij} of the cost-of-shipping matrix C.

The numbers in the above table tell us to set $m = 3$, $n = 5$, and construct the following objects:

\[
p = \begin{pmatrix} 50 \\ 100 \\ 150 \end{pmatrix}, \quad q = \begin{pmatrix} 25 \\ 115 \\ 60 \\ 30 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 10 & 15 & 20 & 20 & 40 \\ 20 & 40 & 15 & 30 & 30 \\ 30 & 35 & 40 & 55 & 25 \end{pmatrix}.
\]

Let’s write Python code that sets up the problem and solves it.

```python
# Define parameters
m = 3
n = 5
p = np.array([50, 100, 150])
```
Quantitative Economics with Python

(continued from previous page)

```python
q = np.array([25, 115, 60, 30, 70])

C = np.array([[10, 15, 20, 20, 40],
              [20, 40, 15, 30, 30],
              [30, 35, 40, 55, 25]])

# Vectorize matrix C
C_vec = C.reshape((m*n, 1), order='F')

# Construct matrix A by Kronecker product
A1 = np.kron(np.ones((1, n)), np.identity(m))
A2 = np.kron(np.identity(n), np.ones((1, m)))
A = np.vstack([A1, A2])

# Construct vector b
b = np.hstack([p, q])

# Solve the primal problem
res = linprog(C_vec, A_eq=A, b_eq=b, method='Revised simplex')

# Print results
print("message:", res.message)
print("nit:", res.nit)
print("fun:", res.fun)
print("z:", res.x)
print("X:", res.x.reshape((m,n), order='F'))
```

Notice how, in the line `C_vec = C.reshape((m*n, 1), order='F')`, we are careful to vectorize using the flag `order='F'`.

This is consistent with converting C into a vector by stacking all of its columns into a column vector.

Here 'F' stands for “Fortran”, and we are using Fortran style column-major order.

(For an alternative approach, using Python's default row-major ordering, see this lecture by Alfred Galichon.)

Interpreting the warning:

The above warning message from SciPy points out that A is not full rank.

This indicates that the linear program has been set up to include one or more redundant constraints.
Here, the source of the redundancy is the structure of restrictions (21.2).

Let's explore this further by printing out A and staring at it.

```
A
```

```
array([[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.],
       [0., 1., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0.],
       [0., 0., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 1., 0., 0.],
       [1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1.]])
```

The singularity of A reflects that the first three constraints and the last five constraints both require that “total requirements equal total capacities” expressed in (21.2).

One equality constraint here is redundant.

Below we drop one of the equality constraints, and use only 7 of them.

After doing this, we attain the same minimized cost.

However, we find a different transportation plan.

Though it is a different plan, it attains the same cost!

```
linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1], method='Revised simplex')
```

```
/tmp/ipykernel_13938/1219707093.py:1: DeprecationWarning: `method='revised simplex长途旅行'` is deprecated and will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g. `method='highs'`) in new code.
  linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1], method='Revised simplex')
...
message: 'Optimization terminated successfully.'
status: 0
success: True
x: array([ 0., 25., 0., 35., 0., 60., 0., 15., 15., 0., 0., 70.])
```

```
%time linprog(C_vec, A_eq=A[:-1], b_eq=b[:-1], method='Revised simplex')
```

```
CPU times: user 7.24 ms, sys: 0 ns, total: 7.24 ms
Wall time: 6.11 ms
```

```
<timed eval>:1: DeprecationWarning: `method='revised simplex长途旅行'` is deprecated and...长途旅行 will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g.长途旅行 'method='highs'') in new code.
```

Chapter 21. Optimal Transport
Evidently, it is slightly quicker to work with the system that removed a redundant constraint.

Let's drill down and do some more calculations to help us understand whether or not our finding two different optimal transport plans reflects our having dropped a redundant equality constraint.

Hint

It will turn out that dropping a redundant equality isn't really what mattered.

To verify our hint, we shall simply use all of the original equality constraints (including a redundant one), but we'll just shuffle the order of the constraints.

```python
arr = np.arange(m+n)

sol_found = []
cost = []

# simulate 1000 times
for i in range(1000):
    # (continues on next page)
```
Ah hah! As you can see, putting constraints in different orders in this case uncovers two optimal transportation plans that achieve the same minimized cost.

These are the same two plans computed earlier.

Next, we show that leaving out the first constraint “accidentally” leads to the initial plan that we computed.

```
linprog(C_vec, A_eq=A[1:], b_eq=b[1:], method='Revised simplex')
```

```
con: array([[0., 0., 0., 0., 0., 0.]])
fun: 7225.0
message: 'Optimization terminated successfully.'
nit: 12
slack: array([], dtype=float64)
status: 0
success: True
x: array([15., 10., 0., 35., 0., 80., 0., 60., 0., 0., 30., 0., 0., 0., 70.])
```
Here the matrix X contains entries x_{ij} that tell amounts shipped from factor $i = 1, 2, 3$ to location $j = 1, 2, \ldots, 5$. The vector z evidently equals $\text{vec}(X)$.

The minimized cost from the optimal transport plan is given by the fun variable.

21.3.3 Using a Just-in-Time Compiler

We can also solve optimal transportation problems using a powerful tool from QuantEcon, namely `quantecon.optimize.linprog_simplex`.

While this routine uses the same simplex algorithm as `scipy.optimize.linprog`, the code is accelerated by using a just-in-time compiler shipped in the `numba` library.

As you will see very soon, by using `scipy.optimize.linprog` the time required to solve an optimal transportation problem can be reduced significantly.

```python
# construct matrices/vectors for linprog_simplex
C = C.flatten()

# Equality constraints
A_eq = np.zeros((m*n, m*n))
for i in range(m):
    for j in range(n):
        A_eq[i*m+n+j] = 1
        A_eq[m+n+j] = 1
b_eq = np.hstack([p, q])

Since quantecon.optimize.linprog_simplex does maximization instead of minimization, we need to put a negative sign before vector $c$.

```res_qe = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)`

Since the two LP solvers use the same simplex algorithm, we expect to get exactly the same solutions.

```python
res_qe.x.reshape((m, n), order='C')
```

```python
array([[15., 35., 0., 0., 0.],
       [10., 0., 60., 30., 0.],
       [0., 80., 0., 0., 70.]])
```

```python
res.x.reshape((m, n), order='F')
```

```python
array([[15., 35., 0., 0., 0.],
       [10., 0., 60., 30., 0.],
       [0., 80., 0., 0., 70.]])
```
Let’s do a speed comparison between `scipy.optimize.linprog` and `quantecon.optimize.linprog_simplex`.

```python
# scipy.optimize.linprog
@time res = linprog(C_vec, A_eq=A[:-1, :], b_eq=b[:-1], method='Revised simplex')
```

```
CPU times: user 7.59 ms, sys: 0 ns, total: 7.59 ms
Wall time: 6.54 ms
```

```
<timed exec>:1: DeprecationWarning: 'method='revised simplex'' is deprecated and...-
will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g...-
= method='highs') in new code.
```

```python
# quantecon.optimize.linprog_simplex
@time out = linprog_simplex(-c, A_eq=A_eq, b_eq=b_eq)
```

```
CPU times: user 122 µs, sys: 0 ns, total: 122 µs
Wall time: 129 µs
```

As you can see, the `quantecon.optimize.linprog_simplex` is much faster.

(Note however, that the SciPy version is probably more stable than the QuantEcon version, having been tested more extensively over a longer period of time.)

21.4 The Dual Problem

Let u, v denote vectors of dual decision variables with entries $(u_i), (v_j)$.

The dual to minimization problem (21.1) is the maximization problem:

\[
\begin{align*}
\max_{u, v} & \quad \sum_{i=1}^{m} p_i u_i + \sum_{j=1}^{n} q_j v_j \\
\text{subject to} & \quad u_i + v_j \leq c_{ij}, \quad i = 1, 2, \ldots, m; \quad j = 1, 2, \ldots, n
\end{align*}
\]

(21.5)

The dual problem is also a linear programming problem.

It has $m + n$ dual variables and mn constraints.

Vectors u and v of values are attached to the first and the second sets of primal constraints, respectively.

Thus, u is attached to the constraints

- $(I_n \otimes I_m) \text{vec}(X) = p$

and v is attached to constraints

- $(I_n \otimes I_m^T) \text{vec}(X) = q$.

Components of the vectors u and v of per unit values are shadow prices of the quantities appearing on the right sides of those constraints.

We can write the dual problem as

\[
\begin{align*}
\max_{u, v} & \quad pu + qv \\
\text{subject to} & \quad A' \begin{pmatrix} u \\ v \end{pmatrix} = \text{vec}(C)
\end{align*}
\]

(21.6)
For the same numerical example described above, let’s solve the dual problem.

```python
# Solve the dual problem
res_dual = linprog(-b, A_ub=A.T, b_ub=C_vec,
                   bounds=[(None, None)]*(m+n), method='Revised simplex')

# Print results
print("message:", res_dual.message)
print("nit:", res_dual.nit)
print("fun:", res_dual.fun)
print("u:", res_dual.x[:m])
print("v:", res_dual.x[-n:])
```

```
message: Optimization terminated successfully.
nit: 7
fun: -7225.0
u: [ 5. 15. 25.]
v: [ 5. 10. 0. 15. 0.]
```

We can also solve the dual problem using `quantecon.optimize.linprog_simplex`.

```python
res_dual_qe = linprog_simplex(b_eq, A_ub=A_eq.T, b_ub=c)
```

And the shadow prices computed by the two programs are identical.

```python
res_dual_qe.x
```

```
array([ 5., 15., 25., 5., 10., 0., 15., 0.])
```

```python
res_dual.x
```

```
array([ 5., 15., 25., 5., 10., 0., 15., 0.])
```

We can compare computational times from using our two tools.

```python
%time linprog(-b, A_ub=A.T, b_ub=C_vec, bounds=[(None, None)]*(m+n), method='Revised simplex')
```

```
CPU times: user 6.32 ms, sys: 638 µs, total: 6.95 ms
Wall time: 5.57 ms
```

```
<timed eval>:1: DeprecationWarning: 'method='revised simplex'' is deprecated and will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g. 'method='highs'')) in new code.
```

21.4. The Dual Problem 385
Quantitative Economics with Python

```
con: array([], dtype=float64)
fun: -7225.0
message: 'Optimization terminated successfully.'
nit: 7
slack: array([ 0., 0., 0., 0., 15., 0., 15., 0., 15., 0., 0., 15., 35., 15., 0.])
status: 0
success: True
x: array([ 5., 15., 25., 5., 10., 0., 15., 0.])
```

```
@time linprog_simplex(b_eq, A_ub=A_eq.T, b_ub=c)
```

CPU times: user 468 µs, sys: 47 µs, total: 515 µs
Wall time: 523 µs

```
SimplexResult(x=array([ 5., 15., 25., 5., 10., 0., 15., 0.]),
lambd=array([ 0., -35., 0., 15., 0., 25., 0., 60., 15., 0., 0., 80., 0.,
0., 70.]), fun=7225.0, success=True, status=0, num_iter=24)
```

The `quantecon.optimize.linprog_simplex` function solves the dual problem 10 times faster.

Just for completeness, let's solve the dual problems with nonsingular A matrices that we create by dropping a redundant equality constraint.

Try first leaving out the first constraint:

```
linprog(-b[1:], A_ub=A[1:].T, b_ub=C_vec,
       bounds=[(None, None)]*(m+n-1), method='Revised simplex')
```

```
/tmp/ipykernel_13938/57054120.py:1: DeprecationWarning: `method='revised simplex'` is deprecated and will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g. `method='highs'`) in new code.
linprog(-b[1:], A_ub=A[1:].T, b_ub=C_vec,
(con: array([], dtype=float64)
fun: -7225.0
message: 'Optimization terminated successfully.'
nit: 7
slack: array([ 0., 0., 0., 0., 15., 0., 15., 0., 15., 0., 0., 15., 35., 15., 0.])
status: 0
success: True
x: array([10., 20., 10., 15., 5., 20., 5.])
```

Not let's instead leave out the last constraint:

```
linprog(-b[:-1], A_ub=A[:-1].T, b_ub=C_vec,
       bounds=[(None, None)]*(m+n-1), method='Revised simplex')
```

```
/tmp/ipykernel_13938/2450640664.py:1: DeprecationWarning: `method='revised simplex'` is deprecated and will be removed in SciPy 1.11.0. Please use one of the HiGHS solvers (e.g. `method='highs'`) in new code.
linprog(-b[:-1], A_ub=A[:-1].T, b_ub=C_vec,
(con: array([], dtype=float64)
fun: -7225.0
message: 'Optimization terminated successfully.'
nit: 7
slack: array([ 0., 0., 0., 0., 15., 0., 15., 0., 15., 0., 0., 15., 35., 15., 0.])
status: 0
success: True
x: array([5., 15., 25., 5., 10., 0., 15., 0.])
```

Chapter 21. Optimal Transport
21.4.1 Interpretation of dual problem

By strong duality (please see this lecture Linear Programming), we know that:

$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij} = \sum_{i=1}^{m} p_i u_i + \sum_{j=1}^{n} q_j v_j$$

One unit more capacity in factory i, i.e. p_i, results in u_i more transportation costs.

Thus, u_i describes the cost of shipping one unit from factory i.

Call this the ship-out cost of one unit shipped from factory i.

Similarly, v_j is the cost of shipping one unit to location j.

Call this the ship-in cost of one unit to location j.

Strong duality implies that total transportation costs equals total ship-out costs plus total ship-in costs.

It is reasonable that, for one unit of a product, ship-out cost u_i plus ship-in cost v_j should equal transportation cost c_{ij}.

This equality is assured by complementary slackness conditions that state that whenever $x_{ij} > 0$, meaning that there are positive shipments from factory i to location j, it must be true that $u_i + v_j = c_{ij}$.

21.5 The Python Optimal Transport Package

There is an excellent Python package for optimal transport that simplifies some of the steps we took above.

In particular, the package takes care of the vectorization steps before passing the data out to a linear programming routine.

(That said, the discussion provided above on vectorization remains important, since we want to understand what happens under the hood.)

21.5.1 Replicating Previous Results

The following line of code solves the example application discussed above using linear programming.

```python
X = ot.emd(p, q, C)
X
```
Sure enough, we have the same solution and the same cost

```python
X = ot.emd(p, q, C)
array([[15, 35, 0, 0, 0],
       [10, 0, 60, 30, 0],
       [ 0, 80, 0, 0, 70]])
```

```python
total_cost = np.sum(X * C)
total_cost
```

```
7225
```

21.5.2 A Larger Application

Now let’s try using the same package on a slightly larger application.

The application has the same interpretation as above but we will also give each node (i.e., vertex) a location in the plane. This will allow us to plot the resulting transport plan as edges in a graph.

The following class defines a node by
- its location \((x, y) \in \mathbb{R}^2\),
- its group (factory or location, denoted by \(p\) or \(q\)) and
- its mass (e.g., \(p_i\) or \(q_j\)).

```python
class Node:
    def __init__(self, x, y, mass, group, name):
        self.x, self.y = x, y
        self.mass, self.group = mass, group
        self.name = name
```

Next we write a function that repeatedly calls the class above to build instances.

It allocates to the nodes it creates their location, mass, and group.

Locations are assigned randomly.

```python
def build_nodes_of_one_type(group='p', n=100, seed=123):
    nodes = []
    np.random.seed(seed)

    for i in range(n):
        if group == 'p':
```
m = 1/n
x = np.random.uniform(-2, 2)
y = np.random.uniform(-2, 2)

else:
m = betabinom.pmf(i, n-1, 2, 2)
x = 0.6 * np.random.uniform(-1.5, 1.5)
y = 0.6 * np.random.uniform(-1.5, 1.5)

name = group + str(i)
nodes.append(Node(x, y, m, group, name))

return nodes

Now we build two lists of nodes, each one containing one type (factories or locations)

n_p = 32
n_q = 32
p_list = build_nodes_of_one_type(group='p', n=n_p)
q_list = build_nodes_of_one_type(group='q', n=n_q)
p_probs = [p.mass for p in p_list]
q_probs = [q.mass for q in q_list]

For the cost matrix \(C \), we use the Euclidean distance between each factory and location.

c = np.empty((n_p, n_q))
for i in range(n_p):
 for j in range(n_q):
 x0, y0 = p_list[i].x, p_list[i].y
 x1, y1 = q_list[j].x, q_list[j].y
 c[i, j] = np.sqrt((x0-x1)**2 + (y0-y1)**2)

Now we are ready to apply the solver

%time pi = ot.emd(p_probs, q_probs, c)

CPU times: user 884 µs, sys: 89 µs, total: 973 µs
Wall time: 596 µs

Finally, let’s plot the results using networkx.

In the plot below,

• node size is proportional to probability mass
• an edge (arrow) from \(i \) to \(j \) is drawn when a positive transfer is made from \(i \) to \(j \) under the optimal transport plan.

g = nx.DiGraph()
g.add_nodes_from([p.name for p in p_list])
g.add_nodes_from([q.name for q in q_list])

for i in range(n_p):
 for j in range(n_q):
 if pi[i, j] > 0:
 g.add_edge(p_list[i].name, q_list[j].name, weight=pi[i, j])

(continues on next page)
```python
node_pos_dict = {}
for p in p_list:
    node_pos_dict[p.name] = (p.x, p.y)

for q in q_list:
    node_pos_dict[q.name] = (q.x, q.y)

node_color_list = []
node_size_list = []
scale = 8_000
for p in p_list:
    node_color_list.append('blue')
    node_size_list.append(p.mass * scale)
for q in q_list:
    node_color_list.append('red')
    node_size_list.append(q.mass * scale)

fig, ax = plt.subplots(figsize=(7, 10))
plt.axis('off')

nx.draw_networkx_nodes(g,
    node_pos_dict,
    node_color=node_color_list,
    node_size=node_size_list,
    edgecolors='grey',
    linewidths=1,
    alpha=0.5,
    ax=ax)

nx.draw_networkx_edges(g,
    node_pos_dict,
    arrows=True,
    connectionstyle='arc3, rad=0.1',
    alpha=0.6)

plt.show()
```
21.5. The Python Optimal Transport Package
VON NEUMANN GROWTH MODEL (AND A GENERALIZATION)

This lecture uses the class Neumann to calculate key objects of a linear growth model of John von Neumann [vN37] that was generalized by Kemeny, Morgenstern and Thompson [KMT56].

Objects of interest are the maximal expansion rate (α), the interest factor (β), the optimal intensities (x), and prices (p).

In addition to watching how the towering mind of John von Neumann formulated an equilibrium model of price and quantity vectors in balanced growth, this lecture shows how fruitfully to employ the following important tools:

- a zero-sum two-player game
- linear programming
- the Perron-Frobenius theorem

We'll begin with some imports:

```python
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import solve
from scipy.optimize import fsolve, linprog
from textwrap import dedent
#matplotlib inline
np.set_printoptions(precision=2)
```

The code below provides the Neumann class.

```python
class Neumann(object):
    
    ""
    This class describes the Generalized von Neumann growth model as it was
```

(continues on next page)
discussed in Kemeny et al. (1956, ECTA) and Gale (1960, Chapter 9.5):

Let:

- \(n \) ... number of goods
- \(m \) ... number of activities
- \(A \) ... input matrix is \(m \times n \)
 - \(a_{i,j} \) - amount of good \(j \) consumed by activity \(i \)
- \(B \) ... output matrix is \(m \times n \)
 - \(b_{i,j} \) - amount of good \(j \) produced by activity \(i \)
- \(x \) ... intensity vector (\(m \)-vector) with non-negative entries
 - \(x'B \) - the vector of goods produced
 - \(x'A \) - the vector of goods consumed
- \(p \) ... price vector (\(n \)-vector) with non-negative entries
 - \(Bp \) - the revenue vector for every activity
 - \(Ap \) - the cost of each activity

Both \(A \) and \(B \) have non-negative entries. Moreover, we assume that

1. Assumption I (every good which is consumed is also produced):
 - For all \(j \), \(b_{.,j} > 0 \), i.e. at least one entry is strictly positive
2. Assumption II (no free lunch):
 - For all \(i \), \(a_{i,.} > 0 \), i.e. at least one entry is strictly positive

Parameters

- \(A \) : array_like or scalar(float)
 - Part of the state transition equation. It should be \(n \times n \)
- \(B \) : array_like or scalar(float)
 - Part of the state transition equation. It should be \(n \times k \)

```python
def __init__(self, A, B):
    self.A, self.B = list(map(self.convert, (A, B)))
    self.m, self.n = self.A.shape

    # Check if (A, B) satisfy the basic assumptions
    assert self.A.shape == self.B.shape, 'The input and output matrices \
    must have the same dimensions!'
    assert (self.A >= 0).all() and (self.B >= 0).all(), 'The input and \
    output matrices must have only non-negative entries!'

    # (1) Check whether Assumption I is satisfied:
    if (np.sum(B, 0) <= 0).any():
        self.AI = False
    else:
        self.AI = True

    # (2) Check whether Assumption II is satisfied:
    if (np.sum(A, 1) <= 0).any():
        self.AII = False
    else:
        self.AII = True

def __repr__(self):
    return self.__str__()
```

(continues on next page)
def __str__(self):
 me = ""
 Generalized von Neumann expanding model:
 - number of goods : \(n \)
 - number of activities : \(m \)
 Assumptions:
 - AI: every column of \(B \) has a positive entry : \(\{AI\} \)
 - AII: every row of \(A \) has a positive entry : \(\{AII\} \)

 # Irreducible
 return dedent(me.format(n=self.n, m=self.m,
 AI=self.AI, AII=self.AII))

def convert(self, x):
 ""
 Convert array_like objects (lists of lists, floats, etc.) into
 well-formed 2D NumPy arrays
 """
 return np.atleast_2d(np.asarray(x))

def bounds(self):
 ""
 Calculate the trivial upper and lower bounds for alpha (expansion rate)
 and beta (interest factor). See the proof of Theorem 9.8 in Gale (1960)
 ""
 n, m = self.n, self.m
 A, B = self.A, self.B
 f = lambda α: ((B - α * A) @ np.ones((n, 1))).max()
 g = lambda β: (np.ones((1, m)) @ (B - β * A)).min()
 UB = fsolve(f, 1).item() # Upper bound for α, β
 LB = fsolve(g, 2).item() # Lower bound for α, β
 return LB, UB

def zerosum(self, γ, dual=False):
 ""
 Given gamma, calculate the value and optimal strategies of a
 two-player zero-sum game given by the matrix
 \[
 M(\gamma) = B - \gamma A
 \]
 Row player maximizing, column player minimizing
 Zero-sum game as an LP (primal --> α)
 \[
 \text{max } (0', 1) @ (x', v) \\
 \text{subject to}
 \]
 (continues on next page)
Zero-sum game as an LP (dual --> beta)

\[
\begin{align*}
-\mathbf{M}' & \in \mathbf{v} + \mathbf{0}' \leq 0 \\
\mathbf{v} & \in \mathbf{0} + \mathbf{0}' = 1 \\
\mathbf{v} & = \lt \mathbf{0}', -\infty \gt
\end{align*}
\]

Outputs:

value: scalar
value of the zero-sum game
strategy: vector
 if dual = False, it is the intensity vector,
 if dual = True, it is the price vector

```
A, B, n, m = self.A, self.B, self.n, self.m
M = B - \gamma \cdot A

if dual == False:
    # Solve the primal LP (for details see the description)
    # (1) Define the problem for v as a maximization (linprog minimizes)
    c = np.hstack([np.zeros(m), -1])

    # (2) Add constraints :
    # ... non-negativity constraints
    bounds = tuple(m * [[0, None]] + [(None, None)])
    # ... inequality constraints
    A_iq = np.hstack([-M.T, np.ones((n, 1))])
    b_iq = np.zeros((n, 1))
    # ... normalization
    A_eq = np.hstack([np.ones(m), 0]).reshape(1, m + 1)
    b_eq = 1

    res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq,
                  bounds=bounds)

else:
    # Solve the dual LP (for details see the description)
    # (1) Define the problem for v as a maximization (linprog minimizes)
    c = np.hstack([np.zeros(n), 1])

    # (2) Add constraints :
    # ... non-negativity constraints
    bounds = tuple(n * [[0, None]] + [(None, None)])
    # ... inequality constraints
    A_iq = np.hstack([M, -np.ones((m, 1))])
    b_iq = np.zeros((m, 1))
    # ... normalization
    A_eq = np.hstack([np.ones(n), 0]).reshape(1, n + 1)
```

(continues on next page)
b_eq = 1

res = linprog(c, A_ub=A_iq, b_ub=b_iq, A_eq=A_eq, b_eq=b_eq, bounds=bounds)

if res.status != 0:
 print(res.message)

Pull out the required quantities
value = res.x[-1]
strategy = res.x[:-1]

return value, strategy

def expansion(self, tol=1e-8, maxit=1000):
 ""
 The algorithm used here is described in Hamburger-Thompson-Weil
 (1967, ECTA). It is based on a simple bisection argument and utilizes
 the idea that for a given γ (= α or β), the matrix "M = B - γ * A"
 defines a two-player zero-sum game, where the optimal strategies are
 the (normalized) intensity and price vector.
 ""
 LB, UB = self.bounds()

 for iter in range(maxit):
 γ = (LB + UB) / 2
 ZS = self.zerosum(γ=γ)
 V = ZS[0] # value of the game with γ

 if V >= 0:
 LB = γ
 else:
 UB = γ

 if abs(UB - LB) < tol:
 γ = (UB + LB) / 2
 x = self.zerosum(γ=γ)[1]
 p = self.zerosum(γ=γ, dual=True)[1]
 break

 return γ, x, p

def interest(self, tol=1e-8, maxit=1000):
 ""
 The algorithm used here is described in Hamburger-Thompson-Weil
 (1967, ECTA). It is based on a simple bisection argument and utilizes
 the idea that for a given gamma (= alpha or beta),
 the matrix "M = B - γ * A" defines a two-player zero-sum game,
where the optimal strategies are the (normalized) intensity and price
vector.

Outputs:

beta: scalar
 optimal interest rate

LB, UB = self.bounds()

for iter in range(maxit):
 γ = (LB + UB) / 2
 ZS = self.zerosum(γ=γ, dual=True)
 V = ZS[0]

 if V > 0:
 LB = γ
 else:
 UB = γ

 if abs(UB - LB) < tol:
 γ = (UB + LB) / 2
 p = self.zerosum(γ=γ, dual=True)[1]
 x = self.zerosum(γ=γ)[1]
 break

return γ, x, p

22.1 Notation

We use the following notation.

0 denotes a vector of zeros.

We call an n-vector positive and write $x \gg 0$ if $x_i > 0$ for all $i = 1, 2, \ldots, n$.

We call a vector non-negative and write $x \geq 0$ if $x_i \geq 0$ for all $i = 1, 2, \ldots, n$.

We call a vector semi-positive and written $x > 0$ if $x \geq 0$ and $x \neq 0$.

For two conformable vectors x and y, $x \gg y$, $x \geq y$ and $x > y$ mean $x - y \gg 0$, $x - y \geq 0$, and $x - y > 0$, respectively.

We let all vectors in this lecture be column vectors; x^T denotes the transpose of x (i.e., a row vector).

Let ℓ_n denote a column vector composed of n ones, i.e. $\ell_n = (1, 1, \ldots, 1)^T$.

Let e^i denote a vector (of arbitrary size) containing zeros except for the i th position where it is one.

We denote matrices by capital letters. For an arbitrary matrix A, $a_{i,j}$ represents the entry in its i th row and j th column. a_{j} and a_{i} denote the j th column and i th row of A, respectively.
22.2 Model Ingredients and Assumptions

A pair \((A, B)\) of \(m \times n\) non-negative matrices defines an economy.

- \(m\) is the number of activities (or sectors)
- \(n\) is the number of goods (produced and/or consumed).
- \(A\) is called the input matrix; \(a_{i,j}\) denotes the amount of good \(j\) consumed by activity \(i\)
- \(B\) is called the output matrix; \(b_{i,j}\) represents the amount of good \(j\) produced by activity \(i\)

Two key assumptions restrict economy \((A, B)\):

- **Assumption I**: (every good that is consumed is also produced)
 \[b_{i,j} > 0 \quad \forall j = 1, 2, \ldots, n \]

- **Assumption II**: (no free lunch)
 \[a_{i,.} > 0 \quad \forall i = 1, 2, \ldots, m \]

A semi-positive intensity \(m\)-vector \(x\) denotes levels at which activities are operated.
Therefore,

- vector \(x^T A\) gives the total amount of goods used in production
- vector \(x^T B\) gives total outputs

An economy \((A, B)\) is said to be productive, if there exists a non-negative intensity vector \(x \geq 0\) such that \(x^T B > x^T A\).

The semi-positive \(n\)-vector \(p\) contains prices assigned to the \(n\) goods.

The \(p\) vector implies cost and revenue vectors

- the vector \(Ap\) tells costs of the vector of activities
- the vector \(Bp\) tells revenues from the vector of activities

Satisfaction or a property of an input-output pair \((A, B)\) called irreducibility (or indecomposability) determines whether an economy can be decomposed into multiple “sub-economies”.

Definition: For an economy \((A, B)\), the set of goods \(S \subset \{1, 2, \ldots, n\}\) is called an independent subset if it is possible to produce every good in \(S\) without consuming goods from outside \(S\). Formally, the set \(S\) is independent if \(\exists T \subset \{1, 2, \ldots, m\}\) (a subset of activities) such that \(a_{i,j} = 0 \ \forall i \in T\) and \(j \in S^c\) and for all \(j \in S, \exists i \in T\) for which \(b_{i,j} > 0\).

The economy is irreducible if there are no proper independent subsets.

We study two examples, both in Chapter 9.6 of Gale [Gal89]

```python
# (1) Irreducible (A, B) example: a_0 = b_0
A1 = np.array([[0, 1, 0, 0],
                [1, 0, 0, 1],
                [0, 0, 1, 0]])

B1 = np.array([[1, 0, 0, 0],
               [0, 2, 0, 1],
               [0, 1, 0, 1]])

# (2) Reducible (A, B) example: b_0 < a_0
A2 = np.array([[0, 1, 0, 0, 0],
               [0, 1, 0, 0, 0],
               [0, 0, 1, 0, 0],
               [0, 0, 0, 1, 0],
               [0, 0, 0, 0, 1]])
```

(continues on next page)
The following code sets up our first Neumann economy or Neumann instance

```python
B2 = np.array([[[1, 0, 0, 0, 0],
                [0, 1, 0, 0, 0],
                [0, 0, 1, 0, 0],
                [0, 0, 0, 1, 0]]])
```

The following code sets up our first Neumann economy or Neumann instance

```python
n1 = Neumann(A1, B1)
n1
```

Assumptions:
- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True

Here is a second instance of a Neumann economy

```python
n2 = Neumann(A2, B2)
n2
```

Assumptions:
- AI: every column of B has a positive entry : True
- AII: every row of A has a positive entry : True

22.3 Dynamic Interpretation

Attach a time index t to the preceding objects, regard an economy as a dynamic system, and study sequences

$$\{(A_t, B_t)\}_{t \geq 0}, \quad \{x_t\}_{t \geq 0}, \quad \{p_t\}_{t \geq 0}$$

An interesting special case holds the technology process constant and investigates the dynamics of quantities and prices only. Accordingly, in the rest of this lecture, we assume that $(A_t, B_t) = (A, B)$ for all $t \geq 0$.

A crucial element of the dynamic interpretation involves the timing of production.

We assume that production (consumption of inputs) takes place in period t, while the consequent output materializes in period $t+1$, i.e., consumption of $x_t^T A$ in period t results in $x_t^T B$ amounts of output in period $t+1$.

400 Chapter 22. Von Neumann Growth Model (and a Generalization)
These timing conventions imply the following feasibility condition:

$$x_t^T B \geq x_{t+1}^T A \quad \forall t \geq 1$$

which asserts that no more goods can be used today than were produced yesterday.

Accordingly, A_p_t tells the costs of production in period t and B_p_{t+1} tells revenues in period $t + 1$.

22.3.1 Balanced Growth

We follow John von Neumann in studying “balanced growth”. Let $./$ denote an elementwise division of one vector by another and let $\alpha > 0$ be a scalar.

Then balanced growth is a situation in which

$$x_{t+1}./x_t = \alpha, \quad \forall t \geq 0$$

With balanced growth, the law of motion of x is evidently $x_{t+1} = \alpha x_t$ and so we can rewrite the feasibility constraint as

$$x_t^T B \geq \alpha x_t^T A \quad \forall t$$

In the same spirit, define $\beta \in \mathbb{R}$ as the **interest factor** per unit of time.

We assume that it is always possible to earn a gross return equal to the constant interest factor β by investing “outside the model”.

Under this assumption about outside investment opportunities, a no-arbitrage condition gives rise to the following (no profit) restriction on the price sequence:

$$\beta A_p_t \geq B_p_t \quad \forall t$$

This says that production cannot yield a return greater than that offered by the outside investment opportunity (here we compare values in period $t + 1$).

The balanced growth assumption allows us to drop time subscripts and conduct an analysis purely in terms of a time-invariant growth rate α and interest factor β.

22.4 Duality

Two problems are connected by a remarkable dual relationship between technological and valuation characteristics of the economy:

Definition: The **technological expansion problem** (TEP) for the economy (A, B) is to find a semi-positive m-vector $x > 0$ and a number $\alpha \in \mathbb{R}$ that satisfy

$$\max_{\alpha} \quad \alpha$$

s.t.

$$x^T B \geq \alpha x^T A$$

Theorem 9.3 of David Gale’s book [Gal89] asserts that if Assumptions I and II are both satisfied, then a maximum value of α exists and that it is positive.

The maximal value is called the **technological expansion rate** and is denoted by α_0. The associated intensity vector x_0 is the **optimal intensity vector**.
Definition: The economic expansion problem (EEP) for \((A, B)\) is to find a semi-positive \(n\)-vector \(p > 0\) and a number \(\beta \in \mathbb{R}\) that satisfy

\[
\min_{\beta} \beta \quad \text{s.t.} \quad Bp \leq \beta Ap
\]

Assumptions I and II imply existence of a minimum value \(\beta_0 > 0\) called the economic expansion rate. The corresponding price vector \(p_0\) is the optimal price vector.

Because the criterion functions in the technological expansion problem and the economical expansion problem are both linearly homogeneous, the optimality of \(x_0\) and \(p_0\) are defined only up to a positive scale factor.

For convenience (and to emphasize a close connection to zero-sum games), we normalize both vectors \(x_0\) and \(p_0\) to have unit length.

A standard duality argument (see Lemma 9.4. in [Gale, 1960]) implies that under Assumptions I and II, \(\beta_0 \leq \alpha_0\). But to deduce that \(\beta_0 \geq \alpha_0\), Assumptions I and II are not sufficient. Therefore, von Neumann [vN37] went on to prove the following remarkable “duality” result that connects TEP and EEP.

Theorem I (von Neumann): If the economy \((A, B)\) satisfies Assumptions I and II, then there exist \((\gamma^*, x_0, p_0)\), where \(\gamma^* \in [\beta_0, \alpha_0] \subseteq \mathbb{R}, x_0 > 0\) is an \(m\)-vector, \(p_0 > 0\) is an \(n\)-vector, and the following arbitrage true

\[
\begin{align*}
x_0^T B &\geq \gamma^* x_0^T A \\
B p_0 &\leq \gamma^* A p_0 \\
x_0^T (B - \gamma^* A) p_0 & = 0
\end{align*}
\]

Note: Proof (Sketch): Assumption I and II imply that there exist \((\alpha_0, x_0)\) and \((\beta_0, p_0)\) that solve the TEP and EEP, respectively. If \(\gamma^* > \alpha_0\), then by definition of \(\alpha_0\), there cannot exist a semi-positive \(x\) that satisfies \(x^T B \geq \gamma^* x^T A\). Similarly, if \(\gamma^* < \beta_0\), there is no semi-positive \(p\) for which \(Bp \leq \gamma^* Ap\). Let \(\gamma^* \in [\beta_0, \alpha_0]\), then \(x_0^T B \geq \alpha_0 x_0^T A \geq \gamma^* x_0^T A\). Moreover, \(Bp_0 \leq \beta_0 Ap_0 \leq \gamma^* Ap_0\). These two inequalities imply \(x_0^T (B - \gamma^* A) p_0 = 0\).

Here the constant \(\gamma^*\) is both an expansion factor and an interest factor (not necessarily optimal).

We have already encountered and discussed the first two inequalities that represent feasibility and no-profit conditions.

Moreover, the equality \(x_0^T (B - \gamma^* A) p_0 = 0\) concisely expresses the requirements that if any good grows at a rate larger than \(\gamma^*\) (i.e., if it is oversupplied), then its price must be zero; and that if any activity provides negative profit, it must be unused.

Therefore, the conditions stated in Theorem I encode all equilibrium conditions.

So Theorem I essentially states that under Assumptions I and II there always exists an equilibrium \((\gamma^*, x_0, p_0)\) with balanced growth.

Note that Theorem I is silent about uniqueness of the equilibrium. In fact, it does not rule out (trivial) cases with \(x_0^T B p_0 = 0\) so that nothing of value is produced.

To exclude such uninteresting cases, Kemeny, Morgenstern and Thompson [KMT56] add an extra requirement

\[x_0^T B p_0 > 0\]

and call the associated equilibria economic solutions.

They show that this extra condition does not affect the existence result, while it significantly reduces the number of (relevant) solutions.
22.5 Interpretation as Two-player Zero-sum Game

To compute the equilibrium \((\gamma^*, x_0, p_0)\), we follow the algorithm proposed by Hamburger, Thompson and Weil (1967), building on the key insight that an equilibrium (with balanced growth) can be solved a particular two-player zero-sum game. First, we introduce some notation.

Consider the \(m \times n\) matrix \(C\) as a payoff matrix, with the entries representing payoffs from the \textit{minimizing} column player to the \textit{maximizing} row player and assume that the players can use mixed strategies. Thus,

- the row player chooses the \(m\)-vector \(x > 0\) subject to \(\iota_m^T x = 1\)
- the column player chooses the \(n\)-vector \(p > 0\) subject to \(\iota_n^T p = 1\).

\textbf{Definition:} The \(m \times n\) matrix game \(C\) has the solution \((x^*, p^*, V(C))\) in mixed strategies if

\[(x^*)^T C e^j \geq V(C) \quad \forall j \in \{1, \ldots, n\} \quad \text{and} \quad (e^i)^T C p^* \leq V(C) \quad \forall i \in \{1, \ldots, m\}\]

The number \(V(C)\) is called the \textit{value} of the game.

From the above definition, it is clear that the value \(V(C)\) has two alternative interpretations:

- by playing the appropriate mixed strategy, the maximizing player can assure himself at least \(V(C)\) (no matter what the column player chooses)
- by playing the appropriate mixed strategy, the minimizing player can make sure that the maximizing player will not get more than \(V(C)\) (irrespective of what is the maximizing player’s choice)

A famous theorem of Nash (1951) tells us that there always exists a mixed strategy Nash equilibrium for any \textit{finite} two-player zero-sum game.

Moreover, von Neumann’s Minmax Theorem \(vN28\) implies that

\[V(C) = \max_x \min_p x^T C p = \min_p \max_x x^T C p = (x^*)^T C p^*\]

22.5.1 Connection with Linear Programming (LP)

Nash equilibria of a finite two-player zero-sum game solve a linear programming problem.

To see this, we introduce the following notation

- For a fixed \(x\), let \(v\) be the value of the minimization problem: \(v \equiv \min_p x^T C p = \min_j x^T C e^j\)
- For a fixed \(p\), let \(u\) be the value of the maximization problem: \(u \equiv \max_x x^T C p = \max_i (e^i)^T C p\)

Then the \textit{max-min problem} (the game from the maximizing player’s point of view) can be written as the \textit{primal} LP

\[V(C) = \max_x v \quad \text{subject to} \quad v^T u_n \leq x^T C \quad x \geq 0 \quad \iota_m^T x = 1\]

while the \textit{min-max problem} (the game from the minimizing player’s point of view) is the \textit{dual} LP

\[V(C) = \min_u u \quad \text{subject to} \quad u^T m \geq C p \quad p \geq 0 \quad \iota_m^T p = 1\]
Hamburger, Thompson and Weil [HTW67] view the input-output pair of the economy as payoff matrices of two-player zero-sum games.

Using this interpretation, they restate Assumption I and II as follows

\[V(-A) < 0 \quad \text{and} \quad V(B) > 0 \]

Note: Proof (Sketch):

- \(\Rightarrow V(B) > 0 \) implies \(x_0^T B \gg 0 \), where \(x_0 \) is a maximizing vector. Since \(B \) is non-negative, this requires that each column of \(B \) has at least one positive entry, which is Assumption I.

- \(\Leftarrow \) From Assumption I and the fact that \(p > 0 \), it follows that \(Bp > 0 \). This implies that the maximizing player can always choose \(x \) so that \(x^T Bp > 0 \) so that it must be the case that \(V(B) > 0 \).

In order to (re)state Theorem I in terms of a particular two-player zero-sum game, we define a matrix for \(\gamma \in \mathbb{R} \)

\[M(\gamma) \equiv B - \gamma A \]

For fixed \(\gamma \), treating \(M(\gamma) \) as a matrix game, calculating the solution of the game implies

- If \(\gamma > \alpha_0 \), then for all \(x > 0 \), there \(\exists j \in \{1, \ldots, n\} \), s.t. \([x^T M(\gamma)]_j < 0 \) implying that \(V(M(\gamma)) < 0 \).

- If \(\gamma < \beta_0 \), then for all \(p > 0 \), there \(\exists i \in \{1, \ldots, m\} \), s.t. \([M(\gamma)p]_i > 0 \) implying that \(V(M(\gamma)) > 0 \).

- If \(\gamma \in (\beta_0, \alpha_0) \), then (by Theorem I) the optimal intensity and price vectors \(x_0 \) and \(p_0 \) satisfy

\[x_0^T M(\gamma) \geq 0^T \quad \text{and} \quad M(\gamma)p_0 \leq 0 \]

That is, \((x_0, p_0, 0) \) is a solution of the game \(M(\gamma) \) so that \(V(M(\beta_0)) = V(M(\alpha_0)) = 0 \).

- If \(\beta_0 < \alpha_0 \) and \(\gamma \in (\beta_0, \alpha_0) \), then \(V(M(\gamma)) = 0 \).

Moreover, if \(x' \) is optimal for the maximizing player in \(M(\gamma') \) for \(\gamma' \in (\beta_0, \alpha_0) \) and \(p'' \) is optimal for the minimizing player in \(M(\gamma'') \) where \(\gamma'' \in (\beta_0, \gamma') \), then \((x', p'', 0) \) is a solution for \(M(\gamma) \forall \gamma \in (\gamma'', \gamma') \).

Proof (Sketch): If \(x' \) is optimal for a maximizing player in game \(M(\gamma') \), then \((x')^T M(\gamma') \geq 0^T \) and so for all \(\gamma < \gamma' \).

\[(x')^T M(\gamma) = (x')^T M(\gamma') + (x')^T (\gamma' - \gamma)A \geq 0^T \]

hence \(V(M(\gamma)) \geq 0 \). If \(p'' \) is optimal for a minimizing player in game \(M(\gamma'') \), then \(M(\gamma)p \leq 0 \) and so for all \(\gamma'' < \gamma \)

\[M(\gamma)p'' = M(\gamma'') + (\gamma'' - \gamma)Ap'' \leq 0 \]

hence \(V(M(\gamma)) \leq 0 \).

It is clear from the above argument that \(\beta_0, \alpha_0 \) are the minimal and maximal \(\gamma \) for which \(V(M(\gamma)) = 0 \).

Furthermore, Hamburger et al. [HTW67] show that the function \(\gamma \mapsto V(M(\gamma)) \) is continuous and nonincreasing in \(\gamma \).
This suggests an algorithm to compute \((\alpha_0, x_0) \) and \((\beta_0, p_0) \) for a given input-output pair \((A, B) \).
22.5.2 Algorithm

Hamburger, Thompson and Weil [HTW67] propose a simple bisection algorithm to find the minimal and maximal roots (i.e. β_0 and α_0) of the function $\gamma \mapsto V(M(\gamma))$.

Step 1

First, notice that we can easily find trivial upper and lower bounds for α_0 and β_0.

- TEP requires that $x^T(B - \alpha A) \geq 0^T$ and $x > 0$, so if α is so large that $\max_i \{((B - \alpha A)\epsilon_n)_{i} \} < 0$, then TEP ceases to have a solution. Accordingly, let UB be the α^* that solves $\max_i \{((B - \alpha^* A)\epsilon_n)_{i} \} = 0$.

- Similar to the upper bound, if β is so low that $\min_j \{\epsilon_m^T (B - \beta A) \} > 0$, then the EEP has no solution and so we can define LB as the β^* that solves $\min_j \{\epsilon_m^T (B - \beta^* A) \} = 0$.

The `bounds` method calculates these trivial bounds for us

```
n1.bounds()
```

```
(1.0, 2.0)
```

Step 2

Compute α_0 and β_0

- Finding α_0
 1. Fix $\gamma = \frac{UB + LB}{2}$ and compute the solution of the two-player zero-sum game associated with $M(\gamma)$. We can use either the primal or the dual LP problem.
 2. If $V(M(\gamma)) \geq 0$, then set $LB = \gamma$, otherwise let $UB = \gamma$.
 3. Iterate on 1. and 2. until $|UB - LB| < \epsilon$.

- Finding β_0
 1. Fix $\gamma = \frac{UB + LB}{2}$ and compute the solution of the two-player zero-sum game associated with $M(\gamma)$. We can use either the primal or the dual LP problem.
 2. If $V(M(\gamma)) > 0$, then set $LB = \gamma$, otherwise let $UB = \gamma$.
 3. Iterate on 1. and 2. until $|UB - LB| < \epsilon$.

- Existence: Since $V(M(LB)) > 0$ and $V(M(UB)) < 0$ and $V(M(\cdot))$ is a continuous, nonincreasing function, there is at least one $\gamma \in [LB, UB]$, s.t. $V(M(\gamma)) = 0$.

The `zerosum` method calculates the value and optimal strategies associated with a given γ.

```
\gamma = 2

print(f'Value of the game with $\gamma = {\gamma}$')
n1.zerosum(\gamma=\gamma)[0]
print('Intensity vector (from the primal)')
n1.zerosum(\gamma=\gamma)[1]
print('Price vector (from the dual)')
n1.zerosum(\gamma=\gamma, dual=True)[1]
```
Value of the game with $\gamma = 2$
-0.24
Intensity vector (from the primal)
[0.32 0.28 0.4]
Price vector (from the dual)
[0.4 0.32 0.28 0.]

```
numb_grid = 100
γ_grid = np.linspace(0.4, 2.1, numb_grid)

value_ex1_grid = np.asarray([n1.zerosum(γ=γ_grid[i])[0]
                           for i in range(numb_grid)])
value_ex2_grid = np.asarray([n2.zerosum(γ=γ_grid[i])[0]
                           for i in range(numb_grid)])

fig, axes = plt.subplots(1, 2, figsize=(14, 5), sharey=True)
fig.suptitle(r'The function $V(M(\gamma))$', fontsize=16)

for ax, grid, N, i in zip(axes, (value_ex1_grid, value_ex2_grid),
                           (n1, n2), (1, 2)):
    ax.plot(γ_grid, grid)
    ax.set(title=f'Example {i}', xlabel='$\gamma$')
    ax.axhline(0, c='k', lw=1)
    ax.axvline(N.bounds()[0], c='r', ls='--', label='lower bound')
    ax.axvline(N.bounds()[1], c='g', ls='--', label='upper bound')

plt.show()
```

The function $V(M(\gamma))$

The expansion method implements the bisection algorithm for α_0 (and uses the primal LP problem for x_0)

```
a_0, x, p = n1.expansion()
print(f'a_0 = {a_0}')
print(f'x_0 = {x}')
print(f'The corresponding p from the dual = {p}')
```

```
a_0 = 1.2599210478365421
x_0 = [0.33 0.26 0.41]
```
The interest method implements the bisection algorithm for β_0 (and uses the dual LP problem for p_0)

```python
beta_0, x, p = n1.interest()
print(f'\beta_0 = (beta_0)')
print(f'\beta_0 = (p)')
print(f'The corresponding x from the primal = (x)')

beta_0 = 1.2599210478365421
p_0 = [0.41 0.33 0.26 0.]
The corresponding x from the primal = [0.33 0.26 0.41]
```

Of course, when γ^* is unique, it is irrelevant which one of the two methods we use – both work.

In particular, as will be shown below, in case of an irreducible (A, B) (like in Example 1), the maximal and minimal roots of $V(M(\gamma))$ necessarily coincide implying a “full duality” result, i.e. $\alpha_0 = \beta_0 = \gamma^*$ so that the expansion (and interest) rate γ^* is unique.

22.5.3 Uniqueness and Irreducibility

As an illustration, compute first the maximal and minimal roots of $V(M(\cdot))$ for our Example 2 that has a reducible input-output pair (A, B)

```python
alpha_0, x, p = n2.expansion()
print(f'\alpha_0 = (alpha_0)')
print(f'\alpha_0 = (x)')
print(f'The corresponding p from the dual = (p)')

alpha_0 = 1.259921052493155
x_0 = [5.27e-10 0.00e+00 3.27e-01 2.60e-01 4.13e-01]
The corresponding p from the primal = [0. 0.21 0.33 0.26 0.21 0.]
```

```python
beta_0, x, p = n2.interest()
print(f'\beta_0 = (beta_0)')
print(f'\beta_0 = (p)')
print(f'The corresponding x from the primal = (x)')

beta_0 = 1.0000000009313226
p_0 = [ 5.00e-01 5.00e-01 -1.55e-09 -1.24e-09 -9.31e-10 0.00e+00]
The corresponding x from the primal = [-0. 0. 0.25 0.25 0.5]
```

As we can see, with a reducible (A, B), the roots found by the bisection algorithms might differ, so there might be multiple γ^* that make the value of the game with $M(\gamma^*)$ zero. (see the figure above).

Indeed, although the von Neumann theorem assures existence of the equilibrium, Assumptions I and II are not sufficient for uniqueness. Nonetheless, Kemeny et al. (1967) show that there are at most finitely many economic solutions, meaning that there are only finitely many γ^* that satisfy $V(M(\gamma^*)) = 0$ and $x_0^TBp_0 > 0$ and that for each such γ_i^*, there is a self-contained part of the economy (a sub-economy) that in equilibrium can expand independently with the expansion coefficient γ_i^*.

22.5. Interpretation as Two-player Zero-sum Game
The following theorem (see Theorem 9.10. in Gale [Gal89]) asserts that imposing irreducibility is sufficient for uniqueness of (γ^*, x_0, p_0).

Theorem II: Adopt the conditions of Theorem 1. If the economy (A, B) is irreducible, then $\gamma^* = \alpha_0 = \beta_0$.

22.5.4 A Special Case

There is a special (A, B) that allows us to simplify the solution method significantly by invoking the powerful Perron-Frobenius theorem for non-negative matrices.

Definition: We call an economy *simple* if it satisfies

- $n = m$
- Each activity produces exactly one good
- Each good is produced by one and only one activity.

These assumptions imply that $B = I_n$, i.e., that B can be written as an identity matrix (possibly after reshuffling its rows and columns).

The simple model has the following special property (Theorem 9.11. in Gale [Gal89]): if x_0 and $\alpha_0 > 0$ solve the TEP with (A, I_n), then

$$x_0^T = \alpha_0 x_0^T A \quad \Leftrightarrow \quad x_0^T A = \left(\frac{1}{\alpha_0}\right) x_0^T$$

The latter shows that $1/\alpha_0$ is a positive eigenvalue of A and x_0 is the corresponding non-negative left eigenvector.

The classic result of Perron and Frobenius implies that a non-negative matrix has a non-negative eigenvalue-eigenvector pair.

Moreover, if A is irreducible, then the optimal intensity vector x_0 is positive and *unique* up to multiplication by a positive scalar.

Suppose that A is reducible with k irreducible subsets S_1, \ldots, S_k. Let A_i be the submatrix corresponding to S_i and let α_i and β_i be the associated expansion and interest factors, respectively. Then we have

$$\alpha_0 = \max_i \{\alpha_i\} \quad \text{and} \quad \beta_0 = \min_i \{\beta_i\}$$
Part IV

Introduction to Dynamics
23.1 Overview

In this lecture we give a quick introduction to discrete time dynamics in one dimension. Although most interesting dynamic models have two or more state variables, the one-dimensional setting is a good place to learn the foundations of dynamics and build intuition.

Let's start with some standard imports:

```python
# matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
```

23.2 Some Definitions

This section sets out the objects of interest and the kinds of properties we study.
23.2.1 Difference Equations

A time homogeneous first order difference equation is an equation of the form

\[x_{t+1} = g(x_t) \] \hspace{1cm} (23.1)

where \(g \) is a function from some subset \(S \) of \(\mathbb{R} \) to itself.

Here \(S \) is called the state space and \(x \) is called the state variable.

In the definition,

- time homogeneity means that \(g \) is the same at each time \(t \)
- first order means dependence on only one lag (i.e., earlier states such as \(x_{t-1} \) do not enter into (23.1)).

If \(x_0 \in S \) is given, then (23.1) recursively defines the sequence

\[x_0, \quad x_1 = g(x_0), \quad x_2 = g(x_1) = g(g(x_0)), \quad \text{etc.} \] \hspace{1cm} (23.2)

This sequence is called the trajectory of \(x_0 \) under \(g \).

If we define \(g^n \) to be \(n \) compositions of \(g \) with itself, then we can write the trajectory more simply as \(x_t = g^t(x_0) \) for \(t \geq 0 \).

23.2.2 Example: A Linear Model

One simple example is the linear difference equation

\[x_{t+1} = ax_t + b, \quad S = \mathbb{R} \]

where \(a, b \) are fixed constants.

In this case, given \(x_0 \), the trajectory (23.2) is

\[x_0, \quad ax_0 + b, \quad a^2x_0 + ab + b, \quad \text{etc.} \] \hspace{1cm} (23.3)

Continuing in this way, and using our knowledge of geometric series, we find that, for any \(t \geq 0 \),

\[x_t = a^t x_0 + b \frac{1 - a^t}{1 - a} \] \hspace{1cm} (23.4)

This is about all we need to know about the linear model.

We have an exact expression for \(x_t \) for all \(t \) and hence a full understanding of the dynamics.

Notice in particular that \(|a| < 1\), then, by (23.4), we have

\[x_t \to \frac{b}{1 - a} \text{ as } t \to \infty \] \hspace{1cm} (23.5)

regardless of \(x_0 \).

This is an example of what is called global stability, a topic we return to below.
23.2.3 Example: A Nonlinear Model

In the linear example above, we obtained an exact analytical expression for \(x_t \) in terms of arbitrary \(t \) and \(x_0 \).

This made analysis of dynamics very easy.

When models are nonlinear, however, the situation can be quite different.

For example, recall how we previously studied the law of motion for the Solow growth model, a simplified version of which is

\[
k_{t+1} = s z k_t^\alpha + (1 - \delta) k_t
\]

(23.6)

Here \(k \) is capital stock and \(s, z, \alpha, \delta \) are positive parameters with \(0 < \alpha, \delta < 1 \).

If you try to iterate like we did in (23.3), you will find that the algebra gets messy quickly.

Analyzing the dynamics of this model requires a different method (see below).

23.2.4 Stability

A **steady state** of the difference equation \(x_{t+1} = g(x_t) \) is a point \(x^* \) in \(S \) such that \(x^* = g(x^*) \).

In other words, \(x^* \) is a **fixed point** of the function \(g \) in \(S \).

For example, for the linear model \(x_{t+1} = ax_t + b \), you can use the definition to check that

- \(x^* := b/(1 - a) \) is a steady state whenever \(a \neq 1 \).
- if \(a = 1 \) and \(b = 0 \), then every \(x \in \mathbb{R} \) is a steady state.
- if \(a = 1 \) and \(b \neq 0 \), then the linear model has no steady state in \(\mathbb{R} \).

A steady state \(x^* \) of \(x_{t+1} = g(x_t) \) is called **globally stable** if, for all \(x_0 \in S \),

\[
x_t = g^t(x_0) \to x^* \text{ as } t \to \infty
\]

For example, in the linear model \(x_{t+1} = ax_t + b \) with \(a \neq 1 \), the steady state \(x^* \)

- is globally stable if \(|a| < 1 \) and
- fails to be globally stable otherwise.

This follows directly from (23.4).

A steady state \(x^* \) of \(x_{t+1} = g(x_t) \) is called **locally stable** if there exists an \(\epsilon > 0 \) such that

\[
|x_0 - x^*| < \epsilon \implies x_t = g^t(x_0) \to x^* \text{ as } t \to \infty
\]

Obviously every globally stable steady state is also locally stable.

We will see examples below where the converse is not true.
23.3 Graphical Analysis

As we saw above, analyzing the dynamics for nonlinear models is nontrivial.
There is no single way to tackle all nonlinear models.
However, there is one technique for one-dimensional models that provides a great deal of intuition.
This is a graphical approach based on 45 degree diagrams.
Let's look at an example: the Solow model with dynamics given in (23.6).
We begin with some plotting code that you can ignore at first reading.
The function of the code is to produce 45 degree diagrams and time series plots.

```python
def subplots(fs):
    "Custom subplots with axes through the origin"
    fig, ax = plt.subplots(figsize=fs)
    
    # Set the axes through the origin
    for spine in ['left', 'bottom']:
        ax.spines[spine].set_position('zero')
        ax.spines[spine].set_color('green')
    for spine in ['right', 'top']:
        ax.spines[spine].set_color('none')
    return fig, ax

def plot45(g, xmin, xmax, x0, num_arrows=6, var='x'):
    xgrid = np.linspace(xmin, xmax, 200)
    fig, ax = subplots((6.5, 6))
    ax.set_xlim(xmin, xmax)
    ax.set_ylim(xmin, xmax)
    hw = (xmax - xmin) * 0.01
    hl = 2 * hw
    arrow_args = dict(fc="k", ec="k", head_width=hw,
                     length_includes_head=True, lw=1,
                     alpha=0.6, head_length=hl)
    ax.plot(xgrid, g(xgrid), 'b-', lw=2, alpha=0.6, label="g")
    ax.plot(xgrid, xgrid, 'k-', lw=1, alpha=0.7, label="45")
    x = x0
    xticks = [xmin]
    xtick_labels = [xmin]
    for i in range(num_arrows):
        if i == 0:
            ax.arrow(x, 0.0, 0.0, g(x), **arrow_args)  # x, y, dx, dy
        else:
            ax.arrow(x, x, 0.0, g(x) - x, **arrow_args)
            ax.plot((x, x), (0, x), 'k', ls='dotted')
    ax.arrow(x, g(x), g(x) - x, 0, **arrow_args)
```

(continues on next page)
Let’s create a 45 degree diagram for the Solow model with a fixed set of parameters

\[A, s, \alpha, \delta = 2, 0.3, 0.3, 0.4 \]

Here’s the update function corresponding to the model.

```python
def g(k):
    return A * s * k**alpha + (1 - delta) * k
```

Here is the 45 degree plot.

```python
xmin, xmax = 0, 4  # Suitable plotting region.
plot45(g, xmin, xmax, 0, num_arrows=0)
```
The plot shows the function g and the 45 degree line.

Think of k_t as a value on the horizontal axis.

To calculate k_{t+1}, we can use the graph of g to see its value on the vertical axis.

Clearly,

- If g lies above the 45 degree line at this point, then we have $k_{t+1} > k_t$.
- If g lies below the 45 degree line at this point, then we have $k_{t+1} < k_t$.
- If g hits the 45 degree line at this point, then we have $k_{t+1} = k_t$, so k_t is a steady state.

For the Solow model, there are two steady states when $S = \mathbb{R}_+ = [0, \infty)$.

- the origin $k = 0$
- the unique positive number such that $k = szk^\alpha + (1 - \delta)k$.

By using some algebra, we can show that in the second case, the steady state is

$$k^* = \left(\frac{sz}{\delta} \right)^{1/(1-\alpha)}$$
23.3.1 Trajectories

By the preceding discussion, in regions where g lies above the 45 degree line, we know that the trajectory is increasing. The next figure traces out a trajectory in such a region so we can see this more clearly.

The initial condition is $k_0 = 0.25$.

```python
k0 = 0.25
plot45(g, xmin, xmax, k0, num_arrows=5, var='k')
```

We can plot the time series of capital corresponding to the figure above as follows:
Here's a somewhat longer view:

```python
ts_plot(g, xmin, xmax, k0, ts_length=20, var='k')
```
When capital stock is higher than the unique positive steady state, we see that it declines:

\[k_0 = 2.95 \]

\[
\text{plot45}(g, \text{xmin}, \text{xmax}, k_0, \text{num_arrows}=5, \text{var}='k')
\]
Here is the time series:

```python
  ts_plot(g, xmin, xmax, k0, var='k')
```
23.3.2 Complex Dynamics

The Solow model is nonlinear but still generates very regular dynamics.

One model that generates irregular dynamics is the **quadratic map**

\[g(x) = 4x(1 - x), \quad x \in [0, 1] \]

Let's have a look at the 45 degree diagram.

```python
xmin, xmax = 0, 1
g = lambda x: 4 * x ** (1 - x)
x0 = 0.3
g = plot45(g, xmin, xmax, x0, num_arrows=0)
```
Now let's look at a typical trajectory.

```python
plot45(g, xmin, xmax, x0, num_arrows=6)
```
Notice how irregular it is.

Here is the corresponding time series plot.

ts_plot(g, xmin, xmax, x0, ts_length=6)
The irregularity is even clearer over a longer time horizon:

ts_plot(g, xmin, xmax, x0, ts_length=20)
Exercise 23.4.1

Consider again the linear model $x_{t+1} = ax_t + b$ with $a \neq 1$.

The unique steady state is $b/(1 - a)$.

The steady state is globally stable if $|a| < 1$.

Try to illustrate this graphically by looking at a range of initial conditions.

What differences do you notice in the cases $a \in (-1, 0)$ and $a \in (0, 1)$?

Use $a = 0.5$ and then $a = -0.5$ and study the trajectories

Set $b = 1$ throughout.

Solution to Exercise 23.4.1

We will start with the case $a = 0.5$.

Let’s set up the model and plotting region:
Quantitative Economics with Python

\[a, b = 0.5, 1 \]
\[\text{xmin, xmax} = -1, 3 \]
\[g = \text{lambda } x: a \cdot x + b \]

Now let's plot a trajectory:

\[x0 = -0.5 \]
\[\text{plot45}(g, \text{xmin}, \text{xmax}, x0, \text{num_arrows}=5) \]

Here is the corresponding time series, which converges towards the steady state.

\[\text{ts_plot}(g, \text{xmin}, \text{xmax}, x0, \text{ts_length}=10) \]
Now let’s try $a = -0.5$ and see what differences we observe.

Let’s set up the model and plotting region:

```python
a, b = -0.5, 1
xmin, xmax = -1, 3
g = lambda x: a * x + b
```

Now let’s plot a trajectory:

```python
x0 = -0.5
plot45(g, xmin, xmax, x0, num_arrows=5)
```

23.4. Exercises 427
Here is the corresponding time series, which converges towards the steady state.

```
  ts_plot(g, xmin, xmax, x0, ts_length=10)
```
Once again, we have convergence to the steady state but the nature of convergence differs. In particular, the time series jumps from above the steady state to below it and back again. In the current context, the series is said to exhibit damped oscillations.
24.1 Overview

In this lecture we are going to study a very simple class of stochastic models called AR(1) processes. These simple models are used again and again in economic research to represent the dynamics of series such as

- labor income
- dividends
- productivity, etc.

AR(1) processes can take negative values but are easily converted into positive processes when necessary by a transformation such as exponentiation.

We are going to study AR(1) processes partly because they are useful and partly because they help us understand important concepts.

Let’s start with some imports:

```python
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
```
24.2 The AR(1) Model

The AR(1) model (autoregressive model of order 1) takes the form

\[X_{t+1} = aX_t + b + cW_{t+1} \]

(24.1)

where \(a, b, c \) are scalar-valued parameters.

This law of motion generates a time series \(\{X_t\} \) as soon as we specify an initial condition \(X_0 \).

This is called the state process and the state space is \(\mathbb{R} \).

To make things even simpler, we will assume that

- the process \(\{W_t\} \) is IID and standard normal,
- the initial condition \(X_0 \) is drawn from the normal distribution \(N(\mu_0, \nu_0) \) and
- the initial condition \(X_0 \) is independent of \(\{W_t\} \).

24.2.1 Moving Average Representation

Iterating backwards from time \(t \), we obtain

\[X_t = aX_{t-1} + b + cW_t = a^2X_{t-2} + ab + aeW_{t-1} + b + cW_t = \cdots \]

If we work all the way back to time zero, we get

\[X_t = a^tX_0 + b \sum_{j=0}^{t-1} a^j + c \sum_{j=0}^{t-1} a^jW_{t-j} \]

(24.2)

Equation (24.2) shows that \(X_t \) is a well defined random variable, the value of which depends on

- the parameters,
- the initial condition \(X_0 \) and
- the shocks \(W_1, \ldots, W_t \) from time \(t = 1 \) to the present.

Throughout, the symbol \(\psi_t \) will be used to refer to the density of this random variable \(X_t \).

24.2.2 Distribution Dynamics

One of the nice things about this model is that it’s so easy to trace out the sequence of distributions \(\{\psi_t\} \) corresponding to the time series \(\{X_t\} \).

To see this, we first note that \(X_t \) is normally distributed for each \(t \).

This is immediate from (24.2), since linear combinations of independent normal random variables are normal.

Given that \(X_t \) is normally distributed, we will know the full distribution \(\psi_t \) if we can pin down its first two moments.

Let \(\mu_t \) and \(\nu_t \) denote the mean and variance of \(X_t \) respectively.

We can pin down these values from (24.2) or we can use the following recursive expressions:

\[\mu_{t+1} = a\mu_t + b \quad \text{and} \quad \nu_{t+1} = a^2\nu_t + c^2 \]

(24.3)

These expressions are obtained from (24.1) by taking, respectively, the expectation and variance of both sides of the equality.
In calculating the second expression, we are using the fact that X_t and W_{t+1} are independent. (This follows from our assumptions and (24.2).)

Given the dynamics in (24.2) and initial conditions μ_0, v_0, we obtain μ_t, v_t and hence

$$\psi_t = N(\mu_t, v_t)$$

The following code uses these facts to track the sequence of marginal distributions $\{\psi_t\}$.

The parameters are

```
a, b, c = 0.9, 0.1, 0.5
mu, v = -3.0, 0.6  # initial conditions mu_0, v_0
```

Here’s the sequence of distributions:

```
from scipy.stats import norm

sim_length = 10
grid = np.linspace(-5, 7, 120)

fig, ax = plt.subplots()

for t in range(sim_length):
    mu = a * mu + b
    v = a**2 * v + c**2
    ax.plot(grid, norm.pdf(grid, loc=mu, scale=np.sqrt(v)),
            label=r'$\psi_{t}$',
            alpha=0.7)

ax.legend(bbox_to_anchor=[1.05, 1], loc=2, borderaxespad=1)

plt.show()
```
24.3 Stationarity and Asymptotic Stability

Notice that, in the figure above, the sequence \{\psi_t\} seems to be converging to a limiting distribution. This is even clearer if we project forward further into the future:

```python
def plot_density_seq(ax, mu_0=-3.0, v_0=0.6, sim_length=60):
    mu, v = mu_0, v_0
    for t in range(sim_length):
        mu = a * mu + b
        v = a**2 * v + c**2
        ax.plot(grid,
                norm.pdf(grid, loc=mu, scale=np.sqrt(v)),
                alpha=0.5)

fig, ax = plt.subplots()
plot_density_seq(ax)
plt.show()
```

Moreover, the limit does not depend on the initial condition. For example, this alternative density sequence also converges to the same limit.

```python
fig, ax = plt.subplots()
plot_density_seq(ax, mu_0=3.0)
plt.show()
```

In fact it’s easy to show that such convergence will occur, regardless of the initial condition, whenever $|a| < 1$.

To see this, we just have to look at the dynamics of the first two moments, as given in (24.3).

When $|a| < 1$, these sequences converge to the respective limits

$$
\mu^* := \frac{b}{1 - a} \quad \text{and} \quad \nu^* = \frac{c^2}{1 - a^2}
$$

(See our lecture on one dimensional dynamics for background on deterministic convergence.)

Hence

$$
\psi_t \to \psi^* = N(\mu^*, \nu^*) \quad \text{as} \ t \to \infty
$$

We can confirm this is valid for the sequence above using the following code.

```python
fig, ax = plt.subplots()
plot_density_seq(ax, mu_0=3.0)

mu_star = b / (1 - a)
std_star = np.sqrt(c**2 / (1 - a**2))  # square root of v_star
psi_star = norm.pdf(grid, loc=mu_star, scale=std_star)
ax.plot(grid, psi_star, 'k-', lw=2, label='$\psi^*$')
ax.legend()

plt.show()
```
As claimed, the sequence \(\{ \psi_t \} \) converges to \(\psi^* \).

24.3.1 Stationary Distributions

A stationary distribution is a distribution that is a fixed point of the update rule for distributions.

In other words, if \(\psi_t \) is stationary, then \(\psi_{t+j} = \psi_t \) for all \(j \) in \(\mathbb{N} \).

A different way to put this, specialized to the current setting, is as follows: a density \(\psi \) on \(\mathbb{R} \) is stationary for the AR(1) process if

\[
X_t \sim \psi \implies aX_t + b + cW_{t+1} \sim \psi
\]

The distribution \(\psi^* \) in (24.5) has this property — checking this is an exercise.

(Of course, we are assuming that \(|a| < 1 \) so that \(\psi^* \) is well defined.)

In fact, it can be shown that no other distribution on \(\mathbb{R} \) has this property.

Thus, when \(|a| < 1 \), the AR(1) model has exactly one stationary density and that density is given by \(\psi^* \).

24.4 Ergodicity

The concept of ergodicity is used in different ways by different authors.

One way to understand it in the present setting is that a version of the Law of Large Numbers is valid for \(\{ X_t \} \), even though it is not IID.

In particular, averages over time series converge to expectations under the stationary distribution.

Indeed, it can be proved that, whenever \(|a| < 1 \), we have

\[
\frac{1}{m} \sum_{t=1}^{m} h(X_t) \to \int h(x)\psi^*(x)dx \quad \text{as} \quad m \to \infty
\]

whenever the integral on the right hand side is finite and well defined.

Notes:
• In (24.6), convergence holds with probability one.
• The textbook by [MT09] is a classic reference on ergodicity.

For example, if we consider the identity function $h(x) = x$, we get

$$\frac{1}{m} \sum_{t=1}^{m} X_t \to \int x \psi^*(x) dx \quad \text{as} \ m \to \infty$$

In other words, the time series sample mean converges to the mean of the stationary distribution.

As will become clear over the next few lectures, ergodicity is a very important concept for statistics and simulation.

24.5 Exercises

Exercise 24.5.1

Let k be a natural number.

The k-th central moment of a random variable is defined as

$$M_k := \mathbb{E}[(X - \mathbb{E}X)^k]$$

When that random variable is $N(\mu, \sigma^2)$, it is known that

$$M_k = \begin{cases} 0 & \text{if } k \text{ is odd} \\ \sigma^k (k-1)!! & \text{if } k \text{ is even} \end{cases}$$

Here $n!!$ is the double factorial.

According to (24.6), we should have, for any $k \in \mathbb{N}$,

$$\frac{1}{m} \sum_{t=1}^{m} (X_t - \mu^*)^k \approx M_k$$

when m is large.

Confirm this by simulation at a range of k using the default parameters from the lecture.

Solution to Exercise 24.5.1

Here is one solution:

```python
def sample_moments_ar1(k, m=100_000, mu_0=0.0, sigma_0=1.0, seed=1234):
    np.random.seed(seed)
    sample_sum = 0.0
    x = mu_0 + sigma_0 * np.random.randn()
    for t in range(m):
        sample_sum += (x - mu_star)**k
        x = a * x + b + c * np.random.randn()
```

(continues on next page)
return sample_sum / m

```python
def true_moments_ar1(k):
    if k % 2 == 0:
        return std_star**k * factorial2(k - 1)
    else:
        return 0

k_vals = np.arange(6) + 1
sample_moments = np.empty_like(k_vals)
true_moments = np.empty_like(k_vals)

for k_idx, k in enumerate(k_vals):
    sample_moments[k_idx] = sample_moments_ar1(k)
    true_moments[k_idx] = true_moments_ar1(k)

fig, ax = plt.subplots()
ax.plot(k_vals, true_moments, label="true moments")
ax.plot(k_vals, sample_moments, label="sample moments")
ax.legend()
plt.show()
```

Exercise 24.5.2

Write your own version of a one dimensional kernel density estimator, which estimates a density from a sample. Write it as a class that takes the data X and bandwidth h when initialized and provides a method f such that

$$f(x) = \frac{1}{hn} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right)$$

For K use the Gaussian kernel (K is the standard normal density).

Write the class so that the bandwidth defaults to Silverman’s rule (see the “rule of thumb” discussion on this page). Test the class you have written by going through the steps.
1. simulate data X_1, \ldots, X_n from distribution ϕ
2. plot the kernel density estimate over a suitable range
3. plot the density of ϕ on the same figure

for distributions ϕ of the following types

- beta distribution with $\alpha = \beta = 2$
- beta distribution with $\alpha = 2$ and $\beta = 5$
- beta distribution with $\alpha = \beta = 0.5$

Use $n = 500$.

Make a comment on your results. (Do you think this is a good estimator of these distributions?)

Solution to Exercise 24.5.2

Here is one solution:

```python
K = norm.pdf

class KDE:
    
    def __init__(self, x_data, h=None):
        if h is None:
            c = x_data.std()
            n = len(x_data)
            h = 1.06 * c * n**(-1/5)
        self.h = h
        self.x_data = x_data

    def f(self, x):
        if np.isscalar(x):
            return K((x - self.x_data) / self.h).mean() * (1/self.h)
        else:
            y = np.empty_like(x)
            for i, x_val in enumerate(x):
                y[i] = K((x_val - self.x_data) / self.h).mean() * (1/self.h)
            return y

def plot_kde(\phi, x_min=-0.2, x_max=1.2):
    x_data = \phi.rvs(n)
    kde = KDE(x_data)

    x_grid = np.linspace(-0.2, 1.2, 100)
    fig, ax = plt.subplots()
    ax.plot(x_grid, kde.f(x_grid), label="estimate")
    ax.plot(x_grid, \phi.pdf(x_grid), label="true density")
    ax.legend()
    plt.show()

from scipy.stats import beta

n = 500
```

(continues on next page)
parameter_pairs = (2, 2), (2, 5), (0.5, 0.5)
for α, β in parameter_pairs:
 plot_kde(beta(α, β))
We see that the kernel density estimator is effective when the underlying distribution is smooth but less so otherwise.

Exercise 24.5.3

In the lecture we discussed the following fact: for the $AR(1)$ process

$$X_{t+1} = aX_t + b + cW_{t+1}$$

with $\{W_t\}$ iid and standard normal,

$$\psi_t = N(\mu, s^2) \implies \psi_{t+1} = N(a\mu + b, a^2s^2 + c^2)$$

Confirm this, at least approximately, by simulation. Let

- $a = 0.9$
- $b = 0.0$
- $c = 0.1$
- $\mu = -3$
- $s = 0.2$

First, plot ψ_t and ψ_{t+1} using the true distributions described above.

Second, plot ψ_{t+1} on the same figure (in a different color) as follows:

1. Generate n draws of X_t from the $N(\mu, s^2)$ distribution
2. Update them all using the rule $X_{t+1} = aX_t + b + cW_{t+1}$
3. Use the resulting sample of X_{t+1} values to produce a density estimate via kernel density estimation.

Try this for $n = 2000$ and confirm that the simulation based estimate of ψ_{t+1} does converge to the theoretical distribution.

Solution to Exercise 24.5.3

Here is our solution
Quantitative Economics with Python

The simulated distribution approximately coincides with the theoretical distribution, as predicted.
CHAPTER
TWENTYFIVE

FINITE MARKOV CHAINS

Contents

• Finite Markov Chains
 – Overview
 – Definitions
 – Simulation
 – Marginal Distributions
 – Irreducibility and Aperiodicity
 – Stationary Distributions
 – Ergodicity
 – Computing Expectations
 – Exercises

In addition to what's in Anaconda, this lecture will need the following libraries:

!pip install quantecon

25.1 Overview

Markov chains are one of the most useful classes of stochastic processes, being
• simple, flexible and supported by many elegant theoretical results
• valuable for building intuition about random dynamic models
• central to quantitative modeling in their own right

You will find them in many of the workhorse models of economics and finance.

In this lecture, we review some of the theory of Markov chains.

We will also introduce some of the high-quality routines for working with Markov chains available in QuantEcon.py.

Prerequisite knowledge is basic probability and linear algebra.

Let's start with some standard imports:
25.2 Definitions

The following concepts are fundamental.

25.2.1 Stochastic Matrices

A stochastic matrix (or Markov matrix) is an $n \times n$ square matrix P such that

1. each element of P is nonnegative, and
2. each row of P sums to one

Each row of P can be regarded as a probability mass function over n possible outcomes. It is too not difficult to check that if P is a stochastic matrix, then so is the k-th power P^k for all $k \in \mathbb{N}$.

25.2.2 Markov Chains

There is a close connection between stochastic matrices and Markov chains. To begin, let S be a finite set with n elements $\{x_1, \ldots, x_n\}$.

The set S is called the state space and x_1, \ldots, x_n are the state values.

A Markov chain $\{X_t\}$ on S is a sequence of random variables on S that have the Markov property. This means that, for any date t and any state $y \in S$,

$$\mathbb{P}\{X_{t+1} = y \mid X_t\} = \mathbb{P}\{X_{t+1} = y \mid X_t, X_{t-1}, \ldots\}$$ \hspace{1cm} (25.1)

In other words, knowing the current state is enough to know probabilities for future states. In particular, the dynamics of a Markov chain are fully determined by the set of values

$$P(x, y) := \mathbb{P}\{X_{t+1} = y \mid X_t = x\} \quad (x, y \in S)$$ \hspace{1cm} (25.2)

By construction,

- $P(x, y)$ is the probability of going from x to y in one unit of time (one step)
- $P(x, \cdot)$ is the conditional distribution of X_{t+1} given $X_t = x$

We can view P as a stochastic matrix where

$$P_{ij} = P(x_i, x_j) \quad 1 \leq i, j \leq n$$

Going the other way, if we take a stochastic matrix P, we can generate a Markov chain $\{X_t\}$ as follows:

1 Hint: First show that if P and Q are stochastic matrices then so is their product — to check the row sums, try post multiplying by a column vector of ones. Finally, argue that P^n is a stochastic matrix using induction.
• draw \(X_0 \) from a marginal distribution \(\psi \)
• for each \(t = 0, 1, \ldots \), draw \(X_{t+1} \) from \(P(X_t, \cdot) \)

By construction, the resulting process satisfies (25.2).

25.2.3 Example 1

Consider a worker who, at any given time \(t \), is either unemployed (state 0) or employed (state 1).

Suppose that, over a one month period,

1. An unemployed worker finds a job with probability \(\alpha \in (0, 1) \).
2. An employed worker loses her job and becomes unemployed with probability \(\beta \in (0, 1) \).

In terms of a Markov model, we have

• \(S = \{0, 1\} \)
• \(P(0, 1) = \alpha \) and \(P(1, 0) = \beta \)

We can write out the transition probabilities in matrix form as

\[
P = \begin{pmatrix}
1 - \alpha & \alpha \\
\beta & 1 - \beta
\end{pmatrix}
\]

(25.3)

Once we have the values \(\alpha \) and \(\beta \), we can address a range of questions, such as

• What is the average duration of unemployment?
• Over the long-run, what fraction of time does a worker find herself unemployed?
• Conditional on employment, what is the probability of becoming unemployed at least once over the next 12 months?

We'll cover such applications below.

25.2.4 Example 2

From US unemployment data, Hamilton [Ham05] estimated the stochastic matrix

\[
P = \begin{pmatrix}
0.971 & 0.029 & 0 \\
0.145 & 0.778 & 0.077 \\
0 & 0.508 & 0.492
\end{pmatrix}
\]

where

• the frequency is monthly
• the first state represents “normal growth”
• the second state represents “mild recession”
• the third state represents “severe recession”

For example, the matrix tells us that when the state is normal growth, the state will again be normal growth next month with probability 0.97.

In general, large values on the main diagonal indicate persistence in the process \(\{X_t\} \).

This Markov process can also be represented as a directed graph, with edges labeled by transition probabilities

Here “ng” is normal growth, “mr” is mild recession, etc.
25.3 Simulation

One natural way to answer questions about Markov chains is to simulate them.
(To approximate the probability of event E, we can simulate many times and count the fraction of times that E occurs).

Nice functionality for simulating Markov chains exists in QuantEcon.py.

- Efficient, bundled with lots of other useful routines for handling Markov chains.

However, it’s also a good exercise to roll our own routines — let’s do that first and then come back to the methods in QuantEcon.py.

In these exercises, we’ll take the state space to be $S = 0, \ldots, n - 1$.

25.3.1 Rolling Our Own

To simulate a Markov chain, we need its stochastic matrix P and a marginal probability distribution ψ from which to draw a realization of X_0.

The Markov chain is then constructed as discussed above. To repeat:

1. At time $t = 0$, draw a realization of X_0 from ψ.
2. At each subsequent time t, draw a realization of the new state X_{t+1} from $P(X_t, \cdot)$.

To implement this simulation procedure, we need a method for generating draws from a discrete distribution.

For this task, we’ll use random.draw from QuantEcon, which works as follows:

```python
ψ = (0.3, 0.7)  # probabilities over {0, 1}
cdf = np.cumsum(ψ)  # convert into cumulative distribution
tqe.random.draw(cdf, 5)  # generate 5 independent draws from ψ

array([1, 1, 1, 1, 0])
```

We’ll write our code as a function that accepts the following three arguments

- A stochastic matrix P
- An initial state init
- A positive integer sample_size representing the length of the time series the function should return
def mc_sample_path(P, ψ_0=None, sample_size=1_000):
 # set up
 P = np.asarray(P)
 X = np.empty(sample_size, dtype=int)

 # Convert each row of P into a cdf
 n = len(P)
 P_dist = [np.cumsum(P[i, :]) for i in range(n)]

 # draw initial state, defaulting to 0
 if ψ_0 is not None:
 X_0 = qe.random.draw(np.cumsum(ψ_0))
 else:
 X_0 = 0

 # simulate
 X[0] = X_0
 for t in range(sample_size - 1):
 X[t+1] = qe.random.draw(P_dist[X[t]])
 return X

Let's see how it works using the small matrix

P = [[0.4, 0.6],
 [0.2, 0.8]]

As we'll see later, for a long series drawn from P, the fraction of the sample that takes value 0 will be about 0.25. Moreover, this is true, regardless of the initial distribution from which X_0 is drawn.

The following code illustrates this

X = mc_sample_path(P, ψ_0=[0.1, 0.9], sample_size=100_000)
np.mean(X == 0)

0.25124

You can try changing the initial distribution to confirm that the output is always close to 0.25, at least for the P matrix above.

25.3.2 Using QuantEcon’s Routines

As discussed above, QuantEcon.py has routines for handling Markov chains, including simulation.

Here’s an illustration using the same P as the preceding example

from quantecon import MarkovChain
mc = qe.MarkovChain(P)
X = mc.simulate(ts_length=1_000_000)
np.mean(X == 0)
The QuantEcon.py routine is JIT compiled and much faster.

```python
%time mc_sample_path(P, sample_size=1_000_000) # Our homemade code version
```

CPU times: user 810 ms, sys: 7.53 ms, total: 817 ms
Wall time: 816 ms

```
array([0, 1, 1, ..., 1, 1, 1])
```

```python
%time mc.simulate(ts_length=1_000_000) # qe code version
```

CPU times: user 15.5 ms, sys: 11.8 ms, total: 27.4 ms
Wall time: 26.7 ms

```
array([1, 1, 0, ..., 1, 1, 1])
```

Adding State Values and Initial Conditions

If we wish to, we can provide a specification of state values to MarkovChain.

These state values can be integers, floats, or even strings.

The following code illustrates

```python
mc = qe.MarkovChain(P, state_values=('unemployed', 'employed'))
mc.simulate(ts_length=4, init='employed')
```

```
array(['employed', 'employed', 'employed', 'employed'], dtype='<U10')
```

```python
mc.simulate(ts_length=4, init='unemployed')
```

```
array(['unemployed', 'unemployed', 'employed', 'unemployed'], dtype='<U10')
```

```python
mc.simulate(ts_length=4)  # Start at randomly chosen initial state
```

```
array(['employed', 'employed', 'unemployed', 'employed'], dtype='<U10')
```

If we want to see indices rather than state values as outputs as we can use

```python
mc.simulate_indices(ts_length=4)
```

```
array([0, 1, 1, 1])
```
25.4 Marginal Distributions

Suppose that
1. \(\{X_t\} \) is a Markov chain with stochastic matrix \(P \)
2. the marginal distribution of \(X_t \) is known to be \(\psi_t \)

What then is the marginal distribution of \(X_{t+1} \), or, more generally, of \(X_{t+m} \)?

To answer this, we let \(\psi_t \) be the marginal distribution of \(X_t \) for \(t = 0, 1, 2, \ldots \).

Our first aim is to find \(\psi_{t+1} \) given \(\psi_t \) and \(P \).

To begin, pick any \(y \in S \).

Using the law of total probability, we can decompose the probability that \(X_{t+1} = y \) as follows:

\[
P\{X_{t+1} = y\} = \sum_{x \in S} P\{X_{t+1} = y \mid X_t = x\} \cdot P\{X_t = x\}
\]

In words, to get the probability of being at \(y \) tomorrow, we account for all ways this can happen and sum their probabilities.

Rewriting this statement in terms of marginal and conditional probabilities gives

\[
\psi_{t+1}(y) = \sum_{x \in S} P(x, y) \psi_t(x)
\]

There are \(n \) such equations, one for each \(y \in S \).

If we think of \(\psi_{t+1} \) and \(\psi_t \) as row vectors, these \(n \) equations are summarized by the matrix expression

\[
\psi_{t+1} = \psi_t P
\]

Thus, to move a marginal distribution forward one unit of time, we postmultiply by \(P \).

By postmultiplying \(m \) times, we move a marginal distribution forward \(m \) steps into the future.

Hence, iterating on (25.4), the expression \(\psi_{t+m} = \psi_t P^m \) is also valid — here \(P^m \) is the \(m \)-th power of \(P \).

As a special case, we see that if \(\psi_0 \) is the initial distribution from which \(X_0 \) is drawn, then \(\psi_0 P^m \) is the distribution of \(X_m \).

This is very important, so let’s repeat it

\[
X_0 \sim \psi_0 \quad \Rightarrow \quad X_m \sim \psi_0 P^m
\]

and, more generally,

\[
X_t \sim \psi_t \quad \Rightarrow \quad X_{t+m} \sim \psi_t P^m
\]

25.4.1 Multiple Step Transition Probabilities

We know that the probability of transitioning from \(x \) to \(y \) in one step is \(P(x, y) \).

It turns out that the probability of transitioning from \(x \) to \(y \) in \(m \) steps is \(P^m(x, y) \), the \((x, y)\)-th element of the \(m \)-th power of \(P \).

To see why, consider again (25.6), but now with a \(\psi_t \) that puts all probability on state \(x \) so that the transition probabilities are

- 1 in the \(x \)-th position and zero elsewhere
Inserting this into (25.6), we see that, conditional on $X_t = x$, the distribution of X_{t+m} is the x-th row of P^m.

In particular

$$
P\{X_{t+m} = y \mid X_t = x\} = P^m(x, y) = (x, y)\text{-th element of } P^m
$$

25.4.2 Example: Probability of Recession

Recall the stochastic matrix P for recession and growth considered above.

Suppose that the current state is unknown — perhaps statistics are available only at the end of the current month.

We guess that the probability that the economy is in state x is $\psi(x)$.

The probability of being in recession (either mild or severe) in 6 months time is given by the inner product

$$
\psi P^6 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
$$

25.4.3 Example 2: Cross-Sectional Distributions

The marginal distributions we have been studying can be viewed either as probabilities or as cross-sectional frequencies that a Law of Large Numbers leads us to anticipate for large samples.

To illustrate, recall our model of employment/unemployment dynamics for a given worker discussed above.

Consider a large population of workers, each of whose lifetime experience is described by the specified dynamics, with each worker’s outcomes being realizations of processes that are statistically independent of all other workers’ processes.

Let ψ be the current cross-sectional distribution over $\{0, 1\}$.

The cross-sectional distribution records fractions of worker employed and unemployed at a given moment.

- For example, $\psi(0)$ is the unemployment rate.

What will the cross-sectional distribution be in 10 periods hence?

The answer is ψP^{10}, where P is the stochastic matrix in (25.3).

This is because each worker’s state evolves according to P, so ψP^{10} is a marginal distribution for a single randomly selected worker.

But when the sample is large, outcomes and probabilities are roughly equal (by an application of the Law of Large Numbers).

So for a very large (tending to infinite) population, ψP^{10} also represents fractions of workers in each state.

This is exactly the cross-sectional distribution.
25.5 Irreducibility and Aperiodicity

Irreducibility and aperiodicity are central concepts of modern Markov chain theory. Let’s see what they’re about.

25.5.1 Irreducibility

Let P be a fixed stochastic matrix. Two states x and y are said to communicate with each other if there exist positive integers j and k such that

$$P^j(x, y) > 0 \quad \text{and} \quad P^k(y, x) > 0$$

In view of our discussion above, this means precisely that

- state x can eventually be reached from state y, and
- state y can eventually be reached from state x

The stochastic matrix P is called irreducible if all states communicate; that is, if x and y communicate for all (x, y) in $S \times S$.

For example, consider the following transition probabilities for wealth of a fictitious set of households

We can translate this into a stochastic matrix, putting zeros where there’s no edge between nodes

$$P := \begin{pmatrix} 0.9 & 0.1 & 0 \\ 0.4 & 0.4 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$$

It’s clear from the graph that this stochastic matrix is irreducible: we can eventually reach any state from any other state.

We can also test this using QuantEcon.py’s MarkovChain class

```python
P = [[0.9, 0.1, 0.0],
     [0.4, 0.4, 0.2],
     [0.1, 0.1, 0.8]]
mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible
```

True
Here’s a more pessimistic scenario in which poor people remain poor forever.

This stochastic matrix is not irreducible, since, for example, rich is not accessible from poor.

Let’s confirm this.

```python
P = [[1.0, 0.0, 0.0],
     [0.1, 0.8, 0.1],
     [0.0, 0.2, 0.8]]
mc = qe.MarkovChain(P, ('poor', 'middle', 'rich'))
mc.is_irreducible
```

```
False
```

We can also determine the “communication classes”

```python
mc.communication_classes
```

```
[array(["poor"], dtype='<U6'), array(["middle", "rich"], dtype='<U6')]
```

It might be clear to you already that irreducibility is going to be important in terms of long run outcomes.

For example, poverty is a life sentence in the second graph but not the first.

We’ll come back to this a bit later.
25.5.2 Aperiodicity

Loosely speaking, a Markov chain is called periodic if it cycles in a predictable way, and aperiodic otherwise.

Here's a trivial example with three states

![Diagram of a Markov chain with three states: a, b, c.]

The chain cycles with period 3:

\[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\]

More formally, the period of a state \(x \) is the largest common divisor of a set of integers

\[D(x) := \{ j \geq 1 : P^j(x, x) > 0 \} \]

In the last example, \(D(x) = \{3, 6, 9, \ldots\} \) for every state \(x \), so the period is 3.

A stochastic matrix is called aperiodic if the period of every state is 1, and periodic otherwise.

For example, the stochastic matrix associated with the transition probabilities below is periodic because, for example, state \(a \) has period 2

![Diagram of a Markov chain with four states: a, b, c, d.]

We can confirm that the stochastic matrix is periodic with the following code

\[
\begin{bmatrix}
0.0 & 1.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.5 & 0.0 \\
0.0 & 0.5 & 0.0 & 0.5 \\
0.0 & 0.0 & 1.0 & 0.0
\end{bmatrix}
\]
25.6 Stationary Distributions

As seen in (25.4), we can shift a marginal distribution forward one unit of time via postmultiplication by P.

Some distributions are invariant under this updating process — for example,

```python
P = np.array([[0.4, 0.6],
              [0.2, 0.8]])
ψ = (0.25, 0.75)
ψ @ P
```

```
array([0.25, 0.75])
```

Such distributions are called **stationary** or **invariant**.

Formally, a marginal distribution $ψ^*$ on S is called **stationary** for P if $ψ^* = ψ^*P$.

(This is the same notion of stationarity that we learned about in the *lecture on AR(1) processes* applied to a different setting.)

From this equality, we immediately get $ψ^* = ψ^*P^t$ for all t.

This tells us an important fact: If the distribution of X_0 is a stationary distribution, then X_t will have this same distribution for all t.

Hence stationary distributions have a natural interpretation as **stochastic steady states** — we’ll discuss this more soon.

Mathematically, a stationary distribution is a fixed point of P when P is thought of as the map $ψ \mapsto ψP$ from (row) vectors to (row) vectors.

Theorem. Every stochastic matrix P has at least one stationary distribution.

(We are assuming here that the state space S is finite; if not more assumptions are required)

For proof of this result, you can apply Brouwer’s fixed point theorem, or see EDTC, theorem 4.3.5.

There can be many stationary distributions corresponding to a given stochastic matrix P.

- For example, if P is the identity matrix, then all marginal distributions are stationary.

To get uniqueness an invariant distribution, the transition matrix P must have the property that no nontrivial subsets of the state space are **infinitely persistent**.

A subset of the state space is infinitely persistent if other parts of the state space cannot be accessed from it.

Thus, infinite persistence of a non-trivial subset is the opposite of irreducibility.

This gives some intuition for the following fundamental theorem.

Theorem. If P is both aperiodic and irreducible, then

1. P has exactly one stationary distribution $ψ^*$.
2. For any initial marginal distribution $ψ_0$, we have $\|ψ_0P^t - ψ^*\| \to 0$ as $t \to ∞$.

454 Chapter 25. Finite Markov Chains
For a proof, see, for example, theorem 5.2 of [Haggstrom02].
(Notes that part 1 of the theorem only requires irreducibility, whereas part 2 requires both irreducibility and aperiodicity)
A stochastic matrix that satisfies the conditions of the theorem is sometimes called uniformly ergodic.
A sufficient condition for aperiodicity and irreducibility is that every element of \(P \) is strictly positive.
• Try to convince yourself of this.

25.6.1 Example
Recall our model of the employment/unemployment dynamics of a particular worker discussed above.
Assuming \(\alpha \in (0, 1) \) and \(\beta \in (0, 1) \), the uniform ergodicity condition is satisfied.
Let \(\psi^* = (p, 1 - p) \) be the stationary distribution, so that \(p \) corresponds to unemployment (state 0).
Using \(\psi^* = \psi^*P \) and a bit of algebra yields
\[
p = \frac{\beta}{\alpha + \beta}
\]
This is, in some sense, a steady state probability of unemployment — more about the interpretation of this below.
Not surprisingly it tends to zero as \(\beta \to 0 \), and to one as \(\alpha \to 0 \).

25.6.2 Calculating Stationary Distributions
As discussed above, a particular Markov matrix \(P \) can have many stationary distributions.
That is, there can be many row vectors \(\psi \) such that \(\psi = \psi P \).
In fact if \(P \) has two distinct stationary distributions \(\psi_1, \psi_2 \) then it has infinitely many, since in this case, as you can verify, for any \(\lambda \in [0, 1] \)

\[
\psi_3 := \lambda \psi_1 + (1 - \lambda) \psi_2
\]
is a stationary distribution for \(P \).
If we restrict attention to the case in which only one stationary distribution exists, one way to finding it is to solve the system
\[
\psi(I_n - P) = 0
\]
for \(\psi \), where \(I_n \) is the \(n \times n \) identity.
But the zero vector solves system (25.7), so we must proceed cautiously.
We want to impose the restriction that \(\psi \) is a probability distribution.
There are various ways to do this.
One option is to regard solving system (25.7) as an eigenvector problem: a vector \(\psi \) such that \(\psi = \psi P \) is a left eigenvector associated with the unit eigenvalue \(\lambda = 1 \).
A stable and sophisticated algorithm specialized for stochastic matrices is implemented in QuantEcon.py.
This is the one we recommend:
25.6.3 Convergence to Stationarity

Part 2 of the Markov chain convergence theorem stated above tells us that the marginal distribution of X_t converges to the stationary distribution regardless of where we begin.

This adds considerable authority to our interpretation of ψ^* as a stochastic steady state.

The convergence in the theorem is illustrated in the next figure.

```python
P = ([0.4, 0.6],
     [0.2, 0.8])
mc = qe.MarkovChain(P)
mixed_stationary_distributions # Show all stationary distributions

array([[0.25, 0.75]])
```

```python
P = ((0.971, 0.029, 0.000),
     (0.145, 0.778, 0.077),
     (0.000, 0.508, 0.492))
P = np.array(P)
ψ = (0.0, 0.2, 0.8) # Initial condition

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

ax.set(xlim=(0, 1), ylim=(0, 1), zlim=(0, 1),
       xticks=(0.25, 0.5, 0.75),
       yticks=(0.25, 0.5, 0.75),
       zticks=(0.25, 0.5, 0.75))

x_vals, y_vals, z_vals = [], [], []
for t in range(20):
    x_vals.append(ψ[0])
    y_vals.append(ψ[1])
    z_vals.append(ψ[2])
    ψ = ψ @ P

ax.scatter(x_vals, y_vals, z_vals, c='r', s=60)
ax.view_init(30, 210)

mc = qe.MarkovChain(P)
ψ_star = mc.stationary_distributions[0]
ax.scatter(ψ_star[0], ψ_star[1], ψ_star[2], c='k', s=60)

plt.show()
```
Here

- P is the stochastic matrix for recession and growth considered above.
- The highest red dot is an arbitrarily chosen initial marginal probability distribution ψ, represented as a vector in \mathbb{R}^3.
- The other red dots are the marginal distributions ψP^t for $t = 1, 2, \ldots$.
- The black dot is ψ^*.

You might like to try experimenting with different initial conditions.

25.7 Ergodicity

Under irreducibility, yet another important result obtains: for all $x \in S$,

$$\frac{1}{m} \sum_{t=1}^{m} 1\{X_t = x\} \rightarrow \psi^*(x) \quad \text{as} \quad m \rightarrow \infty$$

(25.8)

Here

- $1\{X_t = x\} = 1$ if $X_t = x$ and zero otherwise
- convergence is with probability one
- the result does not depend on the marginal distribution of X_0
The result tells us that the fraction of time the chain spends at state x converges to $\psi^*(x)$ as time goes to infinity. This gives us another way to interpret the stationary distribution — provided that the convergence result in (25.8) is valid.

The convergence asserted in (25.8) is a special case of a law of large numbers result for Markov chains — see EDTC, section 4.3.4 for some additional information.

25.7.1 Example

Recall our cross-sectional interpretation of the employment/unemployment model discussed above. Assume that $\alpha \in (0, 1)$ and $\beta \in (0, 1)$, so that irreducibility and aperiodicity both hold.

We saw that the stationary distribution is $(p, 1 - p)$, where

$$p = \frac{\beta}{\alpha + \beta}$$

In the cross-sectional interpretation, this is the fraction of people unemployed.

In view of our latest (ergodicity) result, it is also the fraction of time that a single worker can expect to spend unemployed. Thus, in the long-run, cross-sectional averages for a population and time-series averages for a given person coincide. This is one aspect of the concept of ergodicity.

25.8 Computing Expectations

We sometimes want to compute mathematical expectations of functions of X_t of the form

$$E[h(X_t)]$$

and conditional expectations such as

$$E[h(X_{t+k}) \mid X_t = x]$$

where

- $\{X_t\}$ is a Markov chain generated by $n \times n$ stochastic matrix P
- h is a given function, which, in terms of matrix algebra, we’ll think of as the column vector

$$h = \begin{pmatrix} h(x_1) \\ \vdots \\ h(x_n) \end{pmatrix}$$

Computing the unconditional expectation (25.9) is easy.

We just sum over the marginal distribution of X_t to get

$$E[h(X_t)] = \sum_{x \in S} (\psi^t(x)) h(x)$$

Here ψ is the distribution of X_0.

Since ψ and hence ψ^t are row vectors, we can also write this as

$$E[h(X_t)] = \psi^t h$$

For the conditional expectation (25.10), we need to sum over the conditional distribution of X_{t+k} given $X_t = x$.

458 Chapter 25. Finite Markov Chains
We already know that this is $P^k(x, \cdot)$, so

$$
E[h(X_{t+k}) \mid X_t = x] = (P^k h)(x)
$$

(25.11)

The vector $P^k h$ stores the conditional expectation $E[h(X_{t+k}) \mid X_t = x]$ over all x.

25.8.1 Iterated Expectations

The **law of iterated expectations** states that

$$
E[E[h(X_{t+k}) \mid X_t = x]] = E[h(X_{t+k})]
$$

where the outer E on the left side is an unconditional distribution taken with respect to the marginal distribution ψ_t of X_t (again see equation (25.6)).

To verify the law of iterated expectations, use equation (25.11) to substitute $(P^k h)(x)$ for $E[h(X_{t+k}) \mid X_t = x]$, write

$$
E[E[h(X_{t+k}) \mid X_t = x]] = \psi_t P^k h,
$$

and note $\psi_t P^k h = \psi_{t+k} h = E[h(X_{t+k})]$.

25.8.2 Expectations of Geometric Sums

Sometimes we want to compute the mathematical expectation of a geometric sum, such as $\sum_{t=0}^\infty \beta^t h(X_t)$.

In view of the preceding discussion, this is

$$
E[\sum_{j=0}^\infty \beta^j h(X_{t+j}) \mid X_t = x] = [(I - \beta P)^{-1} h](x)
$$

where

$$(I - \beta P)^{-1} = I + \beta P + \beta^2 P^2 + \cdots$$

Premultiplication by $(I - \beta P)^{-1}$ amounts to “applying the resolvent operator”.

25.9 Exercises

Exercise 25.9.1

According to the discussion *above*, if a worker’s employment dynamics obey the stochastic matrix

$$
P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}
$$

with $\alpha \in (0, 1)$ and $\beta \in (0, 1)$, then, in the long-run, the fraction of time spent unemployed will be

$$
p := \frac{\beta}{\alpha + \beta}
$$

In other words, if $\{X_t\}$ represents the Markov chain for employment, then $\bar{X}_m \to p$ as $m \to \infty$, where

$$
\bar{X}_m := \frac{1}{m} \sum_{t=1}^m 1\{X_t = 0\}
$$
This exercise asks you to illustrate convergence by computing \bar{X}_m for large m and checking that it is close to p.

You will see that this statement is true regardless of the choice of initial condition or the values of α, β, provided both lie in $(0, 1)$.

Solution to Exercise 25.9.1

We will address this exercise graphically.

The plots show the time series of $\bar{X}_m - p$ for two initial conditions.

As m gets large, both series converge to zero.

```python
alpha = beta = 0.1
N = 10000
p = beta / (alpha + beta)

P = ((1 - alpha, alpha),
     (beta, 1 - beta))  # Careful: P and p are distinct
mc = MarkovChain(P)

fig, ax = plt.subplots(figsize=(9, 6))
ax.set_ylim(-0.25, 0.25)
ax.grid()
ax.hlines(0, 0, N, lw=2, alpha=0.6)  # Horizontal line at zero

for x0, col in [(0, 'blue'), (1, 'green')]:
    # Generate time series for worker that starts at x0
    X = mc.simulate(N, init=x0)
    # Compute fraction of time spent unemployed, for each n
    X_bar = (X == 0).cumsum() / (1 + np.arange(N, dtype=float))
    # Plot
    ax.fill_between(range(N), np.zeros(N), X_bar - p, color=col, alpha=0.1)
    ax.plot(X_bar - p, color=col, label=f'${X_0} = \{x0\}$')
    # Overlay in black--make lines clearer
    ax.plot(X_bar - p, 'k-', alpha=0.6)

ax.legend(loc='upper right')
plt.show()
```
Exercise 25.9.2

A topic of interest for economics and many other disciplines is *ranking*.

Let's now consider one of the most practical and important ranking problems — the rank assigned to web pages by search engines.

(Although the problem is motivated from outside of economics, there is in fact a deep connection between search ranking systems and prices in certain competitive equilibria — see [DLP13].)

To understand the issue, consider the set of results returned by a query to a web search engine.

For the user, it is desirable to

1. receive a large set of accurate matches
2. have the matches returned in order, where the order corresponds to some measure of “importance”

Ranking according to a measure of importance is the problem we now consider.

The methodology developed to solve this problem by Google founders Larry Page and Sergey Brin is known as PageRank.

To illustrate the idea, consider the following diagram

Imagine that this is a miniature version of the WWW, with

- each node representing a web page
- each arrow representing the existence of a link from one page to another

Now let’s think about which pages are likely to be important, in the sense of being valuable to a search engine user. One possible criterion for the importance of a page is the number of inbound links — an indication of popularity.
By this measure, \(m \) and \(j \) are the most important pages, with 5 inbound links each.

However, what if the pages linking to \(m \), say, are not themselves important?

Thinking this way, it seems appropriate to weight the inbound nodes by relative importance.

The PageRank algorithm does precisely this.

A slightly simplified presentation that captures the basic idea is as follows.

Letting \(j \) be (the integer index of) a typical page and \(r_j \) be its ranking, we set

\[
r_j = \sum_{i \in L_j} \frac{r_i}{\ell_i}
\]

where

- \(\ell_i \) is the total number of outbound links from \(i \)
- \(L_j \) is the set of all pages \(i \) such that \(i \) has a link to \(j \)

This is a measure of the number of inbound links, weighted by their own ranking (and normalized by \(1/\ell_i \)).

There is, however, another interpretation, and it brings us back to Markov chains.

Let \(P \) be the matrix given by \(P(i, j) = 1\{i \to j\}/\ell_i \) where \(1\{i \to j\} = 1 \) if \(i \) has a link to \(j \) and zero otherwise.

The matrix \(P \) is a stochastic matrix provided that each page has at least one link.

With this definition of \(P \) we have

\[
r_j = \sum_{i \in L_j} \frac{r_i}{\ell_i} = \sum_{i} 1\{i \to j\} \frac{r_i}{\ell_i} = \sum_{i} P(i, j) r_i
\]

Writing \(r \) for the row vector of rankings, this becomes \(r = rP \).

Hence \(r \) is the stationary distribution of the stochastic matrix \(P \).
Let’s think of $P(i, j)$ as the probability of “moving” from page i to page j.

The value $P(i, j)$ has the interpretation

- $P(i, j) = 1/k$ if i has k outbound links and j is one of them
- $P(i, j) = 0$ if i has no direct link to j

Thus, motion from page to page is that of a web surfer who moves from one page to another by randomly clicking on one of the links on that page.

Here “random” means that each link is selected with equal probability.

Since r is the stationary distribution of P, assuming that the uniform ergodicity condition is valid, we can interpret r_j as the fraction of time that a (very persistent) random surfer spends at page j.

Your exercise is to apply this ranking algorithm to the graph pictured above and return the list of pages ordered by rank.

There is a total of 14 nodes (i.e., web pages), the first named a and the last named n.

A typical line from the file has the form

```
d -> h;
```

This should be interpreted as meaning that there exists a link from d to h.

The data for this graph is shown below, and read into a file called `web_graph_data.txt` when the cell is executed.

```text
%%file web_graph_data.txt
a -> d;
a -> f;
b -> j;
b -> k;
b -> m;
c -> c;
c -> g;
c -> j;
c -> m;
d -> f;
d -> h;
d -> k;
e -> d;
e -> h;
e -> l;
f -> a;
f -> b;
f -> j;
f -> l;
g -> b;
g -> j;
h -> d;
h -> g;
h -> l;
h -> m;
i -> g;
i -> h;
i -> n;
j -> e;
j -> i;
j -> k;
k -> n;
```
Overwriting web_graph_data.txt

To parse this file and extract the relevant information, you can use regular expressions.

The following code snippet provides a hint as to how you can go about this:

```python
import re
def findall(pattern, string):
    return re.findall(pattern, string)
```

```python
findall(r'\w', 'x +++ y ***** z')  # \w matches alphanumerics
# ['x', 'y', 'z']

findall(r'\w', 'a ^^ b &&& $$ c')
# ['a', 'b', 'c']
```

When you solve for the ranking, you will find that the highest ranked node is in fact `g`, while the lowest is `a`.

Solution to Exercise 25.9.2

Here is one solution:

```python

Return list of pages, ordered by rank

import re
from operator import itemgetter

infile = 'web_graph_data.txt'
alphabet = 'abcdefghijklmnopqrstuvwxyz'

n = 14  # Total number of web pages (nodes)

# Create a matrix Q indicating existence of links
# * Q[i, j] = 1 if there is a link from i to j
# * Q[i, j] = 0 otherwise
Q = np.zeros((n, n), dtype=int)
f = open(infile, 'r')
edges = f.readlines()
f.close()

for edge in edges:
    from_node, to_node = re.findall(r'\w', edge)
    i, j = alphabet.index(from_node), alphabet.index(to_node)
    Q[i, j] = 1

# Create the corresponding Markov matrix P
P = np.empty((n, n))
```
\begin{verbatim}
for i in range(n):
 P[i, :] = Q[i, :] / Q[i, :].sum()
mc = MarkovChain(P)
 # Compute the stationary distribution r
r = mc.stationary_distributions[0]
ranked_pages = {alphabet[i] : r[i] for i in range(n)}
 # Print solution, sorted from highest to lowest rank
print('Rankings

for name, rank in sorted(ranked_pages.items(), key=itemgetter(1), reverse=1):
 print(f'{name}: {rank:.4}')

Rankings

g: 0.1607
j: 0.1594
m: 0.1195
n: 0.1088
k: 0.09106
b: 0.08326
e: 0.05312
i: 0.05312
c: 0.04834
h: 0.0456
l: 0.03202
d: 0.03056
f: 0.01164
a: 0.002911
\end{verbatim}

Exercise 25.9.3

In numerical work, it is sometimes convenient to replace a continuous model with a discrete one. In particular, Markov chains are routinely generated as discrete approximations to AR(1) processes of the form

\[y_{t+1} = \rho y_t + u_{t+1} \]

Here \(u_t \) is assumed to be IID and \(N(0, \sigma_u^2) \).

The variance of the stationary probability distribution of \(\{y_t\} \) is

\[\sigma_y^2 := \frac{\sigma_u^2}{1 - \rho^2} \]

Tauchen’s method [Tau86] is the most common method for approximating this continuous state process with a finite state Markov chain. A routine for this already exists in QuantEcon.py but let’s write our own version as an exercise.

As a first step, we choose

- \(n \), the number of states for the discrete approximation
- \(m \), an integer that parameterizes the width of the state space

Next, we create a state space \(\{x_0, ..., x_{n-1}\} \subset \mathbb{R} \) and a stochastic \(n \times n \) matrix \(P \) such that

- \(x_0 = -m \sigma_y \)
• \(x_{n-1} = m \sigma_y \)
• \(x_{i+1} = x_i + s \) where \(s = (x_{n-1} - x_0)/(n - 1) \)

Let \(F \) be the cumulative distribution function of the normal distribution \(N(0, \sigma_u^2) \).

The values \(P(x_i, x_j) \) are computed to approximate the AR(1) process — omitting the derivation, the rules are as follows:

1. If \(j = 0 \), then set
\[
P(x_i, x_j) = P(x_i, x_0) = F(x_0 - \rho x_i + s/2)
\]

2. If \(j = n - 1 \), then set
\[
P(x_i, x_j) = P(x_i, x_{n-1}) = 1 - F(x_{n-1} - \rho x_i - s/2)
\]

3. Otherwise, set
\[
P(x_i, x_j) = F(x_j - \rho x_i + s/2) - F(x_j - \rho x_i - s/2)
\]

The exercise is to write a function \(\text{approx}_\text{markov}(\rho, \sigma_u, m=3, n=7) \) that returns \(\{x_0, \ldots, x_{n-1}\} \subset \mathbb{R} \) and \(n \times n \) matrix \(P \) as described above.

• Even better, write a function that returns an instance of \text{QuantEcon.py}'s \text{MarkovChain} class.
26.1 Overview

In this lecture we will study the time path of inventories for firms that follow so-called s-S inventory dynamics. Such firms

1. wait until inventory falls below some level \(s \) and then

2. order sufficient quantities to bring their inventory back up to capacity \(S \).

These kinds of policies are common in practice and also optimal in certain circumstances. A review of early literature and some macroeconomic implications can be found in [Cap85]. Here our main aim is to learn more about simulation, time series and Markov dynamics.

While our Markov environment and many of the concepts we consider are related to those found in our lecture on finite Markov chains, the state space is a continuum in the current application.

Let’s start with some imports

```python
# matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from numba import njit, float64, prange
from numba.experimental import jitclass
```
26.2 Sample Paths

Consider a firm with inventory X_t.

The firm waits until $X_t \leq s$ and then restocks up to S units.

It faces stochastic demand $\{D_t\}$, which we assume is IID.

With notation $a^+ := \max\{a, 0\}$, inventory dynamics can be written as

$$X_{t+1} = \begin{cases} (S - D_{t+1})^+ & \text{if } X_t \leq s \\ (X_t - D_{t+1})^+ & \text{if } X_t > s \end{cases}$$

In what follows, we will assume that each D_t is lognormal, so that

$$D_t = \exp(\mu + \sigma Z_t)$$

where μ and σ are parameters and $\{Z_t\}$ is IID and standard normal.

Here’s a class that stores parameters and generates time paths for inventory.

```python
firm_data = [
    ('s', float64),  # restock trigger level
    ('S', float64),  # capacity
    ('mu', float64), # shock location parameter
    ('sigma', float64) # shock scale parameter
]

@jitclass(firm_data)
class Firm:
    def __init__(self, s=10, S=100, mu=1.0, sigma=0.5):
        self.s, self.S, self.mu, self.sigma = s, S, mu, sigma
    def update(self, x):
        """Update the state from t to t+1 given current state x.""
        Z = np.random.randn()
        D = np.exp(self.mu + self.sigma * Z)
        if x <= self.s:
            return max(self.S - D, 0)
        else:
            return max(x - D, 0)
    def sim_inventory_path(self, x_init, sim_length):
        X = np.empty(sim_length)
        X[0] = x_init
        for t in range(sim_length-1):
            X[t+1] = self.update(X[t])
        return X
```

Let’s run a first simulation, of a single path:
firm = Firm()
s, S = firm.s, firm.S
sim_length = 100
x_init = 50
X = firm.sim_inventory_path(x_init, sim_length)
fig, ax = plt.subplots()
bbox = (0., 1.02, 1., .102)
legend_args = {
 'ncol': 3,
 'bbox_to_anchor': bbox,
 'loc': 3,
 'mode': 'expand'}
ax.plot(X, label="inventory")
ax.plot(np.full(sim_length, s), 'k--', label="s")
ax.plot(np.full(sim_length, S), 'k-', label="S")
ax.set_ylim(0, S+10)
ax.set_xlabel("time")
ax.legend(**legend_args)
plt.show()

Now let's simulate multiple paths in order to build a more complete picture of the probabilities of different outcomes:

sim_length=200
fig, ax = plt.subplots()
ax.plot(np.full(sim_length, s), 'k--', label="s")
ax.plot(np.full(sim_length, S), 'k-', label="S")
ax.set_ylim(0, S+10)
ax.legend(**legend_args)
26.3 Marginal Distributions

Now let’s look at the marginal distribution ψ_T of X_T for some fixed T.

We will do this by generating many draws of X_T given initial condition X_0.

With these draws of X_T we can build up a picture of its distribution ψ_T.

Here’s one visualization, with $T = 50$.

```python
T = 50
M = 200  # Number of draws

ymin, ymax = 0, S + 10

fig, axes = plt.subplots(1, 2, figsize=(11, 6))

for ax in axes:
    ax.grid(alpha=0.4)

ax = axes[0]
ax.set_ylim(ymin, ymax)
ax.set_ylabel(r'$X_t$', fontsize=16)
ax.vlines((T,), -1.5, 1.5)
ax.set_xticks((T,))
```
We can build up a clearer picture by drawing more samples

```python
T = 50
M = 50_000

fig, ax = plt.subplots()

sample = np.empty(M)
for m in range(M):
    X = firm.sim_inventory_path(x_init, 2 * T)
    ax.plot(X, 'b-', lw=1, alpha=0.5)
    ax.plot((T,), (X[T+1],), 'ko', alpha=0.5)
    sample[m] = X[T+1]

axes[1].set_xlim(ymin, ymax)

axes[1].hist(sample,
    bins=16,
    density=True,
    orientation='horizontal',
    histtype='bar',
    alpha=0.5)

plt.show()
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

bins=36,
density=True,
histtype='bar',
alpha=0.75)

plt.show()

Note that the distribution is bimodal

- Most firms have restocked twice but a few have restocked only once (see figure with paths above).
- Firms in the second category have lower inventory.

We can also approximate the distribution using a kernel density estimator.

Kernel density estimators can be thought of as smoothed histograms.

They are preferable to histograms when the distribution being estimated is likely to be smooth.

We will use a kernel density estimator from scikit-learn

```python
from sklearn.neighbors import KernelDensity

def plot_kde(sample, ax, label=' '):
    xmin, xmax = 0.9 * min(sample), 1.1 * max(sample)
    xgrid = np.linspace(xmin, xmax, 200)
    kde = KernelDensity(kernel='gaussian').fit(sample[:, None])
    log_dens = kde.score_samples(xgrid[:, None])
    ax.plot(xgrid, np.exp(log_dens), label=label)

fig, ax = plt.subplots()
plot_kde(sample, ax)
plt.show()
```

Chapter 26. Inventory Dynamics
The allocation of probability mass is similar to what was shown by the histogram just above.

26.4 Exercises

Exercise 26.4.1

This model is asymptotically stationary, with a unique stationary distribution.

(See the discussion of stationarity in our lecture on AR(1) processes for background — the fundamental concepts are the same.)

In particular, the sequence of marginal distributions \(\{\psi_t\} \) is converging to a unique limiting distribution that does not depend on initial conditions.

Although we will not prove this here, we can investigate it using simulation.

Your task is to generate and plot the sequence \(\{\psi_t\} \) at times \(t = 10, 50, 250, 500, 750 \) based on the discussion above.

(The kernel density estimator is probably the best way to present each distribution.)

You should see convergence, in the sense that differences between successive distributions are getting smaller.

Try different initial conditions to verify that, in the long run, the distribution is invariant across initial conditions.

Solution to Exercise 26.4.1

Below is one possible solution:

The computations involve a lot of CPU cycles so we have tried to write the code efficiently.

This meant writing a specialized function rather than using the class above.

```python
s, S, mu, sigma = firm.s, firm.S, firm.mu, firm.sigma

@njit(parallel=True)
def shift_firms_forward(current_inventory_levels, num_periods):
    pass
```

(continues on next page)
num_firms = len(current_inventory_levels)
new_inventory_levels = np.empty(num_firms)

for f in prange(num_firms):
 x = current_inventory_levels[f]
 for t in range(num_periods):
 Z = np.random.randn()
 D = np.exp(mu + sigma * Z)
 if x <= s:
 x = max(S - D, 0)
 else:
 x = max(x - D, 0)
 new_inventory_levels[f] = x

return new_inventory_levels

x_init = 50
num_firms = 50_000

sample_dates = 0, 10, 50, 250, 500, 750
first_diffs = np.diff(sample_dates)

fig, ax = plt.subplots()
X = np.full(num_firms, x_init)
current_date = 0
for d in first_diffs:
 X = shift_firms_forward(X, d)
 current_date += d
 plot_kde(X, ax, label=f't = {current_date}')

ax.set_xlabel('inventory')
ax.set_ylabel('probability')
ax.legend()
plt.show()
Notice that by $t = 500$ or $t = 750$ the densities are barely changing.

We have reached a reasonable approximation of the stationary density.

You can convince yourself that initial conditions don’t matter by testing a few of them.

For example, try rerunning the code above will all firms starting at $X_0 = 20$ or $X_0 = 80$.

Exercise 26.4.2

Using simulation, calculate the probability that firms that start with $X_0 = 70$ need to order twice or more in the first 50 periods.

You will need a large sample size to get an accurate reading.

Solution to Exercise 26.4.2

Here is one solution.

Again, the computations are relatively intensive so we have written a a specialized function rather than using the class above.

We will also use parallelization across firms.

```python
@njit(parallel=True)
def compute_freq(sim_length=50, x_init=70, num_firms=1_000_000):
    firm_counter = 0  # Records number of firms that restock 2x or more
    for m in prange(num_firms):
        x = x_init
        restock_counter = 0  # Will record number of restocks for firm m
        for t in range(sim_length):
            Z = np.random.randn()
            D = np.exp(mu + sigma * Z)
            if x <= s:
                # Increment restock counter
                restock_counter += 1
                # Increment firm counter if overstocked
                if restock_counter >= 2:
                    firm_counter += 1
```

(continues on next page)
Quantitative Economics with Python

\[
x = \max(S - D, 0) \\
\text{restock_counter} += 1
\]

\[
\text{else:} \\
x = \max(x - D, 0)
\]

\[
\text{if restock_counter > 1:} \\
\text{firm_counter} += 1
\]

\[
\text{return firm_counter / num_firms}
\]

Note the time the routine takes to run, as well as the output.

```
%%time

freq = compute_freq()
print(f"Frequency of at least two stock outs = {freq}")
```

```
Frequency of at least two stock outs = 0.446551
CPU times: user 4.18 s, sys: 116 µs, total: 4.18 s
Wall time: 1.18 s
```

Try switching the parallel flag to False in the jitted function above.

Depending on your system, the difference can be substantial.

(On our desktop machine, the speed up is by a factor of 5.)
"We may regard the present state of the universe as the effect of its past and the cause of its future" – Marquis de Laplace

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

27.1 Overview

This lecture introduces the **linear state space** dynamic system.

The linear state space system is a generalization of the scalar AR(1) process *we studied before.*

This model is a workhorse that carries a powerful theory of prediction.

Its many applications include:

- representing dynamics of higher-order linear systems
- predicting the position of a system j steps into the future
- predicting a geometric sum of future values of a variable like
 - non-financial income
 - dividends on a stock
– the money supply
– a government deficit or surplus, etc.

• key ingredient of useful models
 – Friedman’s permanent income model of consumption smoothing.
 – Barro’s model of smoothing total tax collections.
 – Rational expectations version of Cagan’s model of hyperinflation.
 – Sargent and Wallace’s “unpleasant monetarist arithmetic,” etc.

Let’s start with some imports:

```python
@matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from quantecon import LinearStateSpace
from scipy.stats import norm
import random
```

27.2 The Linear State Space Model

The objects in play are:

- An $n \times 1$ vector x_t denoting the state at time $t = 0, 1, 2, \ldots$.
- An IID sequence of $m \times 1$ random vectors $w_t \sim N(0, I)$.
- A $k \times 1$ vector y_t of observations at time $t = 0, 1, 2, \ldots$.
- An $n \times n$ matrix A called the transition matrix.
- An $n \times m$ matrix C called the volatility matrix.
- A $k \times n$ matrix G sometimes called the output matrix.

Here is the linear state-space system

\[
\begin{align*}
x_{t+1} &= Ax_t + Cw_{t+1} \\
y_t &= Gx_t \\
x_0 &\sim N(\mu_0, \Sigma_0)
\end{align*}
\]

27.2.1 Primitives

The primitives of the model are

1. the matrices A, C, G
2. shock distribution, which we have specialized to $N(0, I)$
3. the distribution of the initial condition x_0, which we have set to $N(\mu_0, \Sigma_0)$

Given A, C, G and draws of x_0 and w_1, w_2, \ldots, the model (27.1) pins down the values of the sequences $\{x_t\}$ and $\{y_t\}$.

Even without these draws, the primitives 1–3 pin down the probability distributions of $\{x_t\}$ and $\{y_t\}$.

Later we’ll see how to compute these distributions and their moments.
Martingale Difference Shocks

We’ve made the common assumption that the shocks are independent standardized normal vectors. But some of what we say will be valid under the assumption that \(\{w_{t+1}\} \) is a martingale difference sequence. A martingale difference sequence is a sequence that is zero mean when conditioned on past information. In the present case, since \(\{x_t\} \) is our state sequence, this means that it satisfies

\[
\mathbb{E}[w_{t+1}|x_t, x_{t-1}, ...] = 0
\]

This is a weaker condition than that \(\{w_t\} \) is IID with \(w_{t+1} \sim N(0, I) \).

27.2.2 Examples

By appropriate choice of the primitives, a variety of dynamics can be represented in terms of the linear state space model. The following examples help to highlight this point. They also illustrate the wise dictum finding the state is an art.

Second-order Difference Equation

Let \(\{y_t\} \) be a deterministic sequence that satisfies

\[
y_{t+1} = \phi_0 + \phi_1 y_t + \phi_2 y_{t-1} \quad \text{s.t.} \quad y_0, y_{-1} \text{ given} \quad (27.1)
\]

To map (27.1) into our state space system (27.1), we set

\[
x_t = \begin{bmatrix} 1 \\ y_t \\ y_{t-1} \end{bmatrix} \quad A = \begin{bmatrix} 1 & 0 & 0 \\ \phi_0 & \phi_1 & \phi_2 \\ 0 & 1 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad G = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}
\]

You can confirm that under these definitions, (27.1) and (27.1) agree.

The next figure shows the dynamics of this process when \(\phi_0 = 1.1, \phi_1 = 0.8, \phi_2 = -0.8, y_0 = y_{-1} = 1 \).

```python
def plot_lss(A, C, G, n=3, ts_length=50):
    ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))
    x, y = ar.simulate(ts_length)

    fig, ax = plt.subplots()
    y = y.flatten()
    ax.plot(y, 'b-', lw=2, alpha=0.7)
    ax.grid()
    ax.set_xlabel('time', fontsize=12)
    ax.set_ylabel(r'$y_t$', fontsize=12)
    plt.show()
```
Later you’ll be asked to recreate this figure.

Univariate Autoregressive Processes

We can use (27.1) to represent the model

\[y_{t+1} = \phi_1 y_t + \phi_2 y_{t-1} + \phi_3 y_{t-2} + \phi_4 y_{t-3} + \sigma w_{t+1} \]

(27.2)

where \(\{w_t\} \) is IID and standard normal.

To put this in the linear state space format we take \(x_t = [y_t \ y_{t-1} \ y_{t-2} \ y_{t-3}]' \) and

\[
A = \begin{bmatrix}
\phi_1 & \phi_2 & \phi_3 & \phi_4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}, \quad C = \begin{bmatrix}
\sigma \\
0 \\
0 \\
0
\end{bmatrix}, \quad G = [1 \ 0 \ 0 \ 0]
\]

The matrix \(A \) has the form of the companion matrix to the vector \([\phi_1 \ \phi_2 \ \phi_3 \ \phi_4] \).

The next figure shows the dynamics of this process when

\[\phi_1 = 0.5, \ \phi_2 = -0.2, \ \phi_3 = 0, \ \phi_4 = 0.5, \ \sigma = 0.2, \ \ y_0 = y_{-1} = y_{-2} = y_{-3} = 1 \]
Vector Autoregressions

Now suppose that

- y_t is a $k \times 1$ vector
- ϕ_j is a $k \times k$ matrix and
- w_t is $k \times 1$

Then (27.2) is termed a vector autoregression.

To map this into (27.1), we set

$$x_t = \begin{bmatrix} y_t \\ y_{t-1} \\ y_{t-2} \\ y_{t-3} \end{bmatrix} \quad A = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \phi_4 \\ I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \end{bmatrix} \quad C = \begin{bmatrix} \sigma \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad G = [I \ 0 \ 0 \ 0]$$

where I is the $k \times k$ identity matrix and σ is a $k \times k$ matrix.
Seasonals

We can use (27.1) to represent

1. the *deterministic seasonal* \(y_t = y_{t-4} \)
2. the *indeterministic seasonal* \(y_t = \phi_4 y_{t-4} + w_t \)

In fact, both are special cases of (27.2).

With the deterministic seasonal, the transition matrix becomes

\[
A = \begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

It is easy to check that \(A^4 = I \), which implies that \(x_t \) is strictly periodic with period 4:\(^1\)

\[
x_{t+4} = x_t
\]

Such an \(x_t \) process can be used to model deterministic seasonals in quarterly time series.

The *indeterministic* seasonal produces recurrent, but aperiodic, seasonal fluctuations.

Time Trends

The model \(y_t = at + b \) is known as a *linear time trend*.

We can represent this model in the linear state space form by taking

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \quad C = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \quad G = \begin{bmatrix}
a & b
\end{bmatrix}
\]

and starting at initial condition \(x_0 = [0 \ 1] \).

In fact, it’s possible to use the state-space system to represent polynomial trends of any order.

For instance, we can represent the model \(y_t = at^2 + bt + c \) in the linear state space form by taking

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix} \quad C = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \quad G = \begin{bmatrix}
2a & a + b & c
\end{bmatrix}
\]

and starting at initial condition \(x_0 = [0 \ 0 \ 1] \).

It follows that

\[
A^t = \begin{bmatrix}
1 & t & t(t-1)/2 \\
0 & 1 & t \\
0 & 0 & 1
\end{bmatrix}
\]

Then \(x'_t = [t(t-1)/2 \ t \ 1] \). You can now confirm that \(y_t = Gx_t \) has the correct form.

\(^1\) The eigenvalues of \(A \) are \((1, -1, i, -i)\).
27.2.3 Moving Average Representations

A nonrecursive expression for x_t as a function of $x_0, w_1, w_2, \ldots, w_t$ can be found by using (27.1) repeatedly to obtain

$$x_t = Ax_{t-1} + Cw_t$$
$$= A^2x_{t-2} + ACw_{t-1} + Cw_t$$
$$\vdots$$
$$= \sum_{j=0}^{t-1} A^jCw_{t-j} + A^tx_0$$

Representation (27.4) is a moving average representation. It expresses $\{x_t\}$ as a linear function of

1. current and past values of the process $\{w_t\}$ and
2. the initial condition x_0

As an example of a moving average representation, let the model be

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

You will be able to show that $A^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$ and $A^tC = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Substituting into the moving average representation (27.4), we obtain

$$x_{1t} = \sum_{j=0}^{t-1} w_{t-j} + \begin{bmatrix} 1 & t \end{bmatrix} x_0$$

where x_{1t} is the first entry of x_t.

The first term on the right is a cumulated sum of martingale differences and is therefore a martingale. The second term is a translated linear function of time.

For this reason, x_{1t} is called a martingale with drift.

27.3 Distributions and Moments

27.3.1 Unconditional Moments

Using (27.1), it’s easy to obtain expressions for the (unconditional) means of x_t and y_t.

We’ll explain what unconditional and conditional mean soon.

Letting $\mu_t := \mathbb{E}[x_t]$ and using linearity of expectations, we find that

$$\mu_{t+1} = A\mu_t \quad \text{with} \quad \mu_0 \text{ given} \quad (27.4)$$

Here μ_0 is a primitive given in (27.1).

The variance-covariance matrix of x_t is $\Sigma_t := \mathbb{E}[(x_t - \mu_t)(x_t - \mu_t)']$.

Using $x_{t+1} - \mu_{t+1} = A(x_t - \mu_t) + Cw_{t+1}$, we can determine this matrix recursively via

$$\Sigma_{t+1} = A\Sigma_t A' + CC' \quad \text{with} \quad \Sigma_0 \text{ given} \quad (27.5)$$
As with \(\mu_0 \), the matrix \(\Sigma_0 \) is a primitive given in (27.1).

As a matter of terminology, we will sometimes call

- \(\mu_t \) the *unconditional mean* of \(x_t \)
- \(\Sigma_t \) the *unconditional variance-covariance matrix* of \(x_t \)

This is to distinguish \(\mu_t \) and \(\Sigma_t \) from related objects that use conditioning information, to be defined below.

However, you should be aware that these “unconditional” moments do depend on the initial distribution \(N(\mu_0, \Sigma_0) \).

Moments of the Observations

Using linearity of expectations again we have

\[
E[y_t] = E[Gr_t] = G\mu_t
\]

(27.6)

The variance-covariance matrix of \(y_t \) is easily shown to be

\[
\text{Var}[y_t] = \text{Var}[Gr_t] = G\Sigma_t G'
\]

(27.7)

27.3.2 Distributions

In general, knowing the mean and variance-covariance matrix of a random vector is not quite as good as knowing the full distribution.

However, there are some situations where these moments alone tell us all we need to know.

These are situations in which the mean vector and covariance matrix are *sufficient statistics* for the population distribution.

(Sufficient statistics form a list of objects that characterize a population distribution)

One such situation is when the vector in question is Gaussian (i.e., normally distributed).

This is the case here, given

1. our Gaussian assumptions on the primitives
2. the fact that normality is preserved under linear operations

In fact, it’s well-known that

\[
u \sim N(\bar{u}, S) \quad \text{and} \quad v = a + Bu \implies v \sim N(a + B\bar{u}, BSB')\]

(27.8)

In particular, given our Gaussian assumptions on the primitives and the linearity of (27.1) we can see immediately that both \(x_t \) and \(y_t \) are Gaussian for all \(t \geq 0 \).

Since \(x_t \) is Gaussian, to find the distribution, all we need to do is find its mean and variance-covariance matrix.

But in fact we’ve already done this, in (27.4) and (27.5).

Letting \(\mu_t \) and \(\Sigma_t \) be as defined by these equations, we have

\[
x_t \sim N(\mu_t, \Sigma_t)
\]

(27.9)

By similar reasoning combined with (27.6) and (27.7),

\[
y_t \sim N(G\mu_t, G\Sigma_t G')
\]

(27.10)

\footnote{The correct way to argue this is by induction. Suppose that \(x_t \) is Gaussian. Then (27.1) and (27.8) imply that \(x_{t+1} \) is Gaussian. Since \(x_0 \) is assumed to be Gaussian, it follows that every \(x_t \) is Gaussian. Evidently, this implies that each \(y_t \) is Gaussian.}
27.3.3 Ensemble Interpretations

How should we interpret the distributions defined by (27.9)–(27.10)?

Intuitively, the probabilities in a distribution correspond to relative frequencies in a large population drawn from that distribution.

Let's apply this idea to our setting, focusing on the distribution of \(y_T \) for fixed \(T \).

We can generate independent draws of \(y_T \) by repeatedly simulating the evolution of the system up to time \(T \), using an independent set of shocks each time.

The next figure shows 20 simulations, producing 20 time series for \(\{y_t\} \), and hence 20 draws of \(y_T \).

The system in question is the univariate autoregressive model (27.2). The values of \(y_T \) are represented by black dots in the left-hand figure.

```python
def cross_section_plot(A, C, G, T=20, ymin=-0.8, ymax=1.25, sample_size=20, n=4):
    # Set the time
    ar = LinearStateSpace(A, C, G, mu_0=np.ones(n))
    fig, axes = plt.subplots(1, 2, figsize=(16, 5))
    for ax in axes:
        ax.grid(alpha=0.4)
        ax.set_xlim(ymin, ymax)
        ax.set_ylabel(r'$y_t$', fontsize=12)
        ax.set_xlabel('time', fontsize=12)
        ax.vlines((T,), -1.5, 1.5)
        ax.set_xticks((T,))
        ax.set_xticklabels((r'T',))
        sample = []
        for i in range(sample_size):
            rcolor = random.choice(['c', 'g', 'b', 'k'])
            x, y = ar.simulate(ts_length=T+15)
            y = y.flatten()
            ax.plot(y, color=rcolor, lw=1, alpha=0.5)
            ax.plot((T,), (y[T],), 'ko', alpha=0.5)
            sample.append(y[T])
        y = y.flatten()
        axes[1].set_xlim(ymin, ymax)
        axes[1].set_ylabel(r'$y_t$', fontsize=12)
        axes[1].set_xlabel('relative frequency', fontsize=12)
        axes[1].set_xlabel('relative frequency', fontsize=12)
        axes[1].hist(sample, bins=16, density=True, orientation='horizontal', alpha=0.5)
        plt.show()
```
\[\phi_1, \phi_2, \phi_3, \phi_4 = 0.5, -0.2, 0, 0.5 \]
\[\sigma = 0.1 \]

\[A_2 = \begin{bmatrix} \phi_1, \phi_2, \phi_3, \phi_4 \\ 1, 0, 0, \ 0, 1, 0, \ 0, 0, 1 \end{bmatrix} \]

\[C_2 = \begin{bmatrix} \sigma \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[G_2 = [1, 0, 0, 0] \]

```python
cross_section_plot(A_2, C_2, G_2)
```

In the right-hand figure, these values are converted into a rotated histogram that shows relative frequencies from our sample of 20 \(y_T \)'s.

Here is another figure, this time with 100 observations.

```python
t = 100
cross_section_plot(A_2, C_2, G_2, T=t)
```

Let’s now try with 500,000 observations, showing only the histogram (without rotation)

```python
T = 100
ymin=-0.8
ymax=1.25
```

(continues on next page)
sample_size = 500_000

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))
fig, ax = plt.subplots()
x, y = ar.simulate(sample_size)
mu_x, mu_y, Sigma_x, Sigma_y, Sigma_xy = ar.stationary_distributions()
f_y = norm(loc=float(mu_y), scale=float(np.sqrt(Sigma_y)))
y = y.flatten()
ygrid = np.linspace(ymin, ymax, 150)
ax.hist(y, bins=50, density=True, alpha=0.4)
ax.plot(ygrid, f_y.pdf(ygrid), 'k-', lw=2, alpha=0.8, label=r'true density')
ax.set_xlim(ymin, ymax)
ax.set_xlabel(r'y_t')
ax.set_ylabel('relative frequency')
ax.legend(fontsize=12)
plt.show()

The black line is the population density of y_T calculated from (27.10).
The histogram and population distribution are close, as expected.

By looking at the figures and experimenting with parameters, you will gain a feel for how the population distribution depends on the model primitives listed above, as intermediated by the distribution's sufficient statistics.

Ensemble Means

In the preceding figure, we approximated the population distribution of y_T by

1. generating I sample paths (i.e., time series) where I is a large number
2. recording each observation y^I_T
3. histogramming this sample

27.3. Distributions and Moments
Just as the histogram approximates the population distribution, the *ensemble* or *cross-sectional average*

\[\bar{y}_T := \frac{1}{I} \sum_{i=1}^{I} y_{T}^{i} \]

approximates the expectation \(\mathbb{E}[y_T] = G\mu_T\) (as implied by the law of large numbers).

Here’s a simulation comparing the ensemble averages and population means at time points \(t = 0, \ldots, 50\).

The parameters are the same as for the preceding figures, and the sample size is relatively small (\(I = 20\)).

```python
I = 20
T = 50
ymin = -0.5
ymax = 1.15

ar = LinearStateSpace(A_2, C_2, G_2, mu_0=np.ones(4))

fig, ax = plt.subplots()

ensemble_mean = np.zeros(T)
for i in range(I):
    x, y = ar.simulate(ts_length=T)
    y = y.flatten()
    ax.plot(y, 'c-', lw=0.8, alpha=0.5)
    ensemble_mean = ensemble_mean + y

ensemble_mean = ensemble_mean / I
ax.plot(ensemble_mean, color='b', lw=2, alpha=0.8, label='${\bar{y}_t}$')

m = ar.moment_sequence()

population_means = []
for t in range(T):
    mu_x, mu_y, Sigma_x, Sigma_y = next(m)
    population_means.append(float(mu_y))

ax.plot(population_means, color='g', lw=2, alpha=0.8, label='${G\mu_t}$')
ax.set_ylim(ymin, ymax)
ax.set_xlabel('time', fontsize=12)
ax.set_ylabel('${y_t}$', fontsize=12)
ax.legend(ncol=2)
plt.show()
```
The ensemble mean for x_t is

$$\bar{x}_T := \frac{1}{I} \sum_{i=1}^{I} x_i^T \to \mu_T \quad (I \to \infty)$$

The limit μ_T is a “long-run average”.
(By long-run average we mean the average for an infinite ($I = \infty$) number of sample x_T’s)

Another application of the law of large numbers assures us that

$$\frac{1}{I} \sum_{i=1}^{I} (x_i^T - \bar{x}_T)(x_i^T - \bar{x}_T)' \to \Sigma_T \quad (I \to \infty)$$

27.3.4 Joint Distributions

In the preceding discussion, we looked at the distributions of x_t and y_t in isolation.

This gives us useful information but doesn’t allow us to answer questions like

- what’s the probability that $x_t \geq 0$ for all t?
- what’s the probability that the process $\{y_t\}$ exceeds some value a before falling below b?
- etc., etc.

Such questions concern the joint distributions of these sequences.

To compute the joint distribution of x_0, x_1, \ldots, x_T, recall that joint and conditional densities are linked by the rule

$$p(x, y) = p(y \mid x)p(x) \quad \text{(joint = conditional } \times \text{ marginal)}$$

From this rule we get $p(x_0, x_1) = p(x_1 \mid x_0)p(x_0)$.

The Markov property $p(x_t \mid x_{t-1}, \ldots, x_0) = p(x_t \mid x_{t-1})$ and repeated applications of the preceding rule lead us to

$$p(x_0, x_1, \ldots, x_T) = p(x_0) \prod_{t=0}^{T-1} p(x_{t+1} \mid x_t)$$
The marginal $p(x_0)$ is just the primitive $N(\mu_0, \Sigma_0)$.

In view of (27.1), the conditional densities are

$$p(x_{t+1} \mid x_t) = N(Ax_t, CC')$$

Autocovariance Functions

An important object related to the joint distribution is the *autocovariance function*

$$\Sigma_{t+j,t} := E[(x_{t+j} - \mu_{t+j})(x_t - \mu_t)']$$

(27.11)

Elementary calculations show that

$$\Sigma_{t+j,t} = A^j \Sigma_t$$

(27.12)

Notice that $\Sigma_{t+j,t}$ in general depends on both j, the gap between the two dates, and t, the earlier date.

27.4 Stationarity and Ergodicity

Stationarity and ergodicity are two properties that, when they hold, greatly aid analysis of linear state space models.

Let's start with the intuition.

27.4.1 Visualizing Stability

Let's look at some more time series from the same model that we analyzed above.

This picture shows cross-sectional distributions for y at times T, T', T''.

```python
def cross_plot(A, C, G, steady_state='False', T0=10, T1=50, T2=75, T4=100):
    ar = LinearStateSpace(A, C, G, mu_0=np.ones(4))
    if steady_state == 'True':
        mu_x, mu_y, E_x, E_y, E_yx = ar.stationary_distributions()
        ar_state = LinearStateSpace(A, C, G, mu_0=mu_x, Sigma_0=E_x)
    ymin, ymax = -0.6, 0.6
    fig, ax = plt.subplots()
    ax.grid(alpha=0.4)
    ax.set_ylim(ymin, ymax)
    ax.set_xlabel('$y_t$', fontsize=12)
    ax.set_ylabel('$time$', fontsize=12)
    ax.vlines((T0, T1, T2), -1.5, 1.5)
```

(continues on next page)
Note how the time series “settle down” in the sense that the distributions at T' and T'' are relatively similar to each other — but unlike the distribution at T.

Apparently, the distributions of y_t converge to a fixed long-run distribution as $t \to \infty$.

When such a distribution exists it is called a stationary distribution.

27.4.2 Stationary Distributions

In our setting, a distribution ψ_∞ is said to be stationary for x_t if

$$x_t \sim \psi_\infty \quad \text{and} \quad x_{t+1} = Ax_t + Cw_{t+1} \implies x_{t+1} \sim \psi_\infty$$

Since

1. in the present case, all distributions are Gaussian
2. a Gaussian distribution is pinned down by its mean and variance-covariance matrix
we can restate the definition as follows: ψ_∞ is stationary for x_t if

$$\psi_\infty = N(\mu_\infty, \Sigma_\infty)$$

where μ_∞ and Σ_∞ are fixed points of (27.4) and (27.5) respectively.

27.4.3 Covariance Stationary Processes

Let’s see what happens to the preceding figure if we start x_0 at the stationary distribution.

```python
cross_plot(A_2, C_2, G_2, steady_state='True')
```

Now the differences in the observed distributions at T, T' and T'' come entirely from random fluctuations due to the finite sample size.

By
- our choosing $x_0 \sim N(\mu_\infty, \Sigma_\infty)$
- the definitions of μ_∞ and Σ_∞ as fixed points of (27.4) and (27.5) respectively

we’ve ensured that

$$\mu_t = \mu_\infty \quad \text{and} \quad \Sigma_t = \Sigma_\infty \quad \text{for all } t$$

Moreover, in view of (27.12), the autocovariance function takes the form $\Sigma_{t+j,t} = A^j\Sigma_\infty$, which depends on j but not on t.

This motivates the following definition.

A process $\{x_t\}$ is said to be covariance stationary if
- both μ_t and Σ_t are constant in t
- $\Sigma_{t+j,t}$ depends on the time gap j but not on time t

In our setting, $\{x_t\}$ will be covariance stationary if μ_0, Σ_0, A, C assume values that imply that none of $\mu_t, \Sigma_t, \Sigma_{t+j,t}$ depends on t.

Chapter 27. Linear State Space Models
27.4.4 Conditions for Stationarity

The Globally Stable Case

The difference equation \(\mu_{t+1} = A \mu_t \) is known to have unique fixed point \(\mu_\infty = 0 \) if all eigenvalues of \(A \) have moduli strictly less than unity.

That is, if \(\text{np.abs}(\text{numpy.linalg.eigvals}(A)) < 1 \).all() == True.

The difference equation (27.5) also has a unique fixed point in this case, and, moreover

\[
\mu_t \to \mu_\infty = 0 \quad \text{and} \quad \Sigma_t \to \Sigma_\infty \quad \text{as} \quad t \to \infty
\]

regardless of the initial conditions \(\mu_0 \) and \(\Sigma_0 \).

This is the globally stable case — see these notes for more a theoretical treatment.

However, global stability is more than we need for stationary solutions, and often more than we want.

To illustrate, consider our second order difference equation example.

Here the state is \(x_t = [1 \ y_t \ y_{t-1}]' \).

Because of the constant first component in the state vector, we will never have \(\mu_t \to 0 \).

How can we find stationary solutions that respect a constant state component?

Processes with a Constant State Component

To investigate such a process, suppose that \(A \) and \(C \) take the form

\[
A = \begin{bmatrix} A_1 & a \\ 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} C_1 \\ 0 \end{bmatrix}
\]

where

- \(A_1 \) is an \((n-1) \times (n-1) \) matrix
- \(a \) is an \((n-1) \times 1 \) column vector

Let \(x_t = [x_{1t}' \ 1]' \) where \(x_{1t} \) is \((n-1) \times 1 \).

It follows that

\[
x_{1,t+1} = A_1 x_{1t} + a + C_1 w_{t+1}
\]

Let \(\mu_{1t} = \mathbb{E}[x_{1t}] \) and take expectations on both sides of this expression to get

\[
\mu_{1,t+1} = A_1 \mu_{1t} + a \quad (27.13)
\]

Assume now that the moduli of the eigenvalues of \(A_1 \) are all strictly less than one.

Then (27.13) has a unique stationary solution, namely,

\[
\mu_{1\infty} = (I - A_1)^{-1} a
\]

The stationary value of \(\mu_t \) itself is then \(\mu_\infty := [\mu'_{1\infty} \ 1]' \).

The stationary values of \(\Sigma_t \) and \(\Sigma_{t+j,t} \) satisfy

\[
\Sigma_\infty = A \Sigma_\infty A' + C C'
\]

\[
\Sigma_{t+j,t} = A^j \Sigma_\infty
\]
Notice that here $\Sigma_{t+j,t}$ depends on the time gap j but not on calendar time t.

In conclusion, if

- $x_0 \sim N(\mu_\infty, \Sigma_\infty)$ and
- the moduli of the eigenvalues of A_1 are all strictly less than unity

then the $\{x_t\}$ process is covariance stationary, with constant state component.

Note: If the eigenvalues of A_1 are less than unity in modulus, then (a) starting from any initial value, the mean and variance-covariance matrix both converge to their stationary values; and (b) iterations on (27.5) converge to the fixed point of the *discrete Lyapunov equation* in the first line of (27.14).

27.4.5 Ergodicity

Let's suppose that we're working with a covariance stationary process.

In this case, we know that the ensemble mean will converge to μ_∞ as the sample size I approaches infinity.

Averages over Time

Ensemble averages across simulations are interesting theoretically, but in real life, we usually observe only a single realization $\{x_t, y_t\}_{t=0}^T$.

So now let's take a single realization and form the time-series averages

$$\bar{x} := \frac{1}{T} \sum_{t=1}^{T} x_t \quad \text{and} \quad \bar{y} := \frac{1}{T} \sum_{t=1}^{T} y_t$$

Do these time series averages converge to something interpretable in terms of our basic state-space representation?

The answer depends on something called **ergodicity**.

Ergodicity is the property that time series and ensemble averages coincide.

More formally, ergodicity implies that time series sample averages converge to their expectation under the stationary distribution.

In particular,

- $\frac{1}{T} \sum_{t=1}^{T} x_t \to \mu_\infty$
- $\frac{1}{T} \sum_{t=1}^{T} (x_t - \bar{x}_T)(x_t - \bar{x}_T)' \to \Sigma_\infty$
- $\frac{1}{T} \sum_{t=1}^{T} (x_{t+j} - \bar{x}_T)(x_t - \bar{x}_T)' \to A^j \Sigma_\infty$

In our linear Gaussian setting, any covariance stationary process is also ergodic.
27.5 Noisy Observations

In some settings, the observation equation \(y_t = Gx_t \) is modified to include an error term. Often this error term represents the idea that the true state can only be observed imperfectly.

To include an error term in the observation we introduce

- An IID sequence of \(\ell \times 1 \) random vectors \(v_t \sim N(0, I) \).
- A \(k \times \ell \) matrix \(H \).

and extend the linear state-space system to

\[
x_{t+1} = Ax_t + Cw_{t+1} \\
y_t = Gx_t + Hv_t \\
x_0 \sim N(\mu_0, \Sigma_0)
\]

The sequence \(\{v_t\} \) is assumed to be independent of \(\{w_t\} \).

The process \(\{x_t\} \) is not modified by noise in the observation equation and its moments, distributions and stability properties remain the same.

The unconditional moments of \(y_t \) from (27.6) and (27.7) now become

\[
\mathbb{E}[y_t] = \mathbb{E}[Gx_t + Hv_t] = G\mu_t
\]

(27.14)

The variance-covariance matrix of \(y_t \) is easily shown to be

\[
\text{Var}[y_t] = \text{Var}[Gx_t + Hv_t] = G\Sigma_tG' + HH'
\]

(27.15)

The distribution of \(y_t \) is therefore

\[
y_t \sim N(G\mu_t, G\Sigma_tG' + HH')
\]

27.6 Prediction

The theory of prediction for linear state space systems is elegant and simple.

27.6.1 Forecasting Formulas – Conditional Means

The natural way to predict variables is to use conditional distributions.

For example, the optimal forecast of \(x_{t+1} \) given information known at time \(t \) is

\[
\mathbb{E}_t[x_{t+1}] := \mathbb{E}[x_{t+1} \mid x_t, x_{t-1}, \ldots, x_0] = Ax_t
\]

The right-hand side follows from \(x_{t+1} = Ax_t + Cw_{t+1} \) and the fact that \(w_{t+1} \) is zero mean and independent of \(x_t, x_{t-1}, \ldots, x_0 \).

That \(\mathbb{E}_t[x_{t+1}] = \mathbb{E}[x_{t+1} \mid x_t] \) is an implication of \(\{x_t\} \) having the Markov property.

The one-step-ahead forecast error is

\[
x_{t+1} - \mathbb{E}_t[x_{t+1}] = Cw_{t+1}
\]
The covariance matrix of the forecast error is

\[\mathbb{E}[(x_{t+1} - \mathbb{E}[x_{t+1}])(x_{t+1} - \mathbb{E}[x_{t+1}])'] = CC' \]

More generally, we’d like to compute the \(j \)-step ahead forecasts \(\mathbb{E}_t[x_{t+j}] \) and \(\mathbb{E}_t[y_{t+j}] \).

With a bit of algebra, we obtain

\[x_{t+j} = A^j x_t + A^{j-1} C w_{t+1} + A^{j-2} C w_{t+2} + \cdots + A^0 C w_{t+j} \]

In view of the IID property, current and past state values provide no information about future values of the shock. Hence \(\mathbb{E}_t[w_{t+k}] = \mathbb{E}[w_{t+k}] = 0 \).

It now follows from linearity of expectations that the \(j \)-step ahead forecast of \(x \) is

\[\mathbb{E}_t[x_{t+j}] = A^j x_t \]

The \(j \)-step ahead forecast of \(y \) is therefore

\[\mathbb{E}_t[y_{t+j}] = \mathbb{E}_t[G x_{t+j} + H v_{t+j}] = G A^j x_t \]

27.6.2 Covariance of Prediction Errors

It is useful to obtain the covariance matrix of the vector of \(j \)-step-ahead prediction errors

\[x_{t+j} - \mathbb{E}_t[x_{t+j}] = \sum_{s=0}^{j-1} A^s C w_{t-s+j} \]

(27.16)

Evidently,

\[V_j := \mathbb{E}_t[(x_{t+j} - \mathbb{E}_t[x_{t+j}])(x_{t+j} - \mathbb{E}_t[x_{t+j}])'] = \sum_{k=0}^{j-1} A^k C C' A^k' \]

(27.17)

\(V_j \) defined in (27.17) can be calculated recursively via \(V_1 = CC' \) and

\[V_j = CC' + AV_{j-1}A', \quad j \geq 2 \]

(27.18)

\(V_j \) is the \textit{conditional covariance matrix} of the errors in forecasting \(x_{t+j} \), conditioned on time \(t \) information \(x_t \).

Under particular conditions, \(V_j \) converges to

\[V_\infty = CC' + AV_\infty A' \]

(27.19)

Equation (27.19) is an example of a \textit{discrete Lyapunov} equation in the covariance matrix \(V_\infty \).

A sufficient condition for \(V_j \) to converge is that the eigenvalues of \(A \) be strictly less than one in modulus.

Weaker sufficient conditions for convergence associate eigenvalues equaling or exceeding one in modulus with elements of \(C \) that equal 0.

27.7 Code

Our preceding simulations and calculations are based on code in the file \texttt{lss.py} from the \texttt{QuantEcon.py} package. The code implements a class for handling linear state space models (simulations, calculating moments, etc.).
One Python construct you might not be familiar with is the use of a generator function in the method `moment_sequence()`.

Go back and read the relevant documentation if you’ve forgotten how generator functions work.

Examples of usage are given in the solutions to the exercises.

27.8 Exercises

Exercise 27.8.1

In several contexts, we want to compute forecasts of geometric sums of future random variables governed by the linear state-space system (27.1).

We want the following objects

- Forecast of a geometric sum of future x’s, or $E_t \left[\sum_{j=0}^{\infty} \beta^j x_{t+j} \right]$.
- Forecast of a geometric sum of future y’s, or $E_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right]$.

These objects are important components of some famous and interesting dynamic models. For example,

- if $\{y_t\}$ is a stream of dividends, then $E \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} | x_t \right]$ is a model of a stock price
- if $\{y_t\}$ is the money supply, then $E \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} | x_t \right]$ is a model of the price level

Show that:

$$E_t \left[\sum_{j=0}^{\infty} \beta^j x_{t+j} \right] = [I - \beta A]^{-1} x_t$$

and

$$E_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] = G[I - \beta A]^{-1} x_t$$

what must the modulus for every eigenvalue of A be less than?

Solution to Exercise 27.8.1

Suppose that every eigenvalue of A has modulus strictly less than $\frac{1}{\beta}$.

It then follows that $I + \beta A + \beta^2 A^2 + \cdots = [I - \beta A]^{-1}$.

This leads to our formulas:

- Forecast of a geometric sum of future x’s
 $$E_t \left[\sum_{j=0}^{\infty} \beta^j x_{t+j} \right] = [I + \beta A + \beta^2 A^2 + \cdots] x_t = [I - \beta A]^{-1} x_t$$

- Forecast of a geometric sum of future y’s
\[E_t \left[\sum_{j=0}^{\infty} \beta^j y_{t+j} \right] = G[I + \beta A + \beta^2 A^2 + \cdots] x_t = G[I - \beta A]^{-1} x_t \]
28.1 Overview

This lecture creates non-stochastic and stochastic versions of Paul Samuelson’s celebrated multiplier accelerator model [Sam39].

In doing so, we extend the example of the Solow model class in our second OOP lecture.

Our objectives are to

- provide a more detailed example of OOP and classes
- review a famous model
- review linear difference equations, both deterministic and stochastic

Let's start with some standard imports:
We’ll also use the following for various tasks described below:

```python
from quantecon import LinearStateSpace
import cmath
import math
import sympy
from sympy import Symbol, init_printing
from cmath import sqrt
```

28.1.1 Samuelson’s Model

Samuelson used a *second-order linear difference equation* to represent a model of national output based on three components:

- a *national output identity* asserting that national output or national income is the sum of consumption plus investment plus government purchases.
- a Keynesian *consumption function* asserting that consumption at time t is equal to a constant times national output at time $t - 1$.
- an investment *accelerator* asserting that investment at time t equals a constant called the *accelerator coefficient* times the difference in output between period $t - 1$ and $t - 2$.

Consumption plus investment plus government purchases constitute *aggregate demand*, which automatically calls forth an equal amount of *aggregate supply*.

(To read about linear difference equations see [here](#) or chapter IX of [Sar87].)

Samuelson used the model to analyze how particular values of the marginal propensity to consume and the accelerator coefficient might give rise to transient *business cycles* in national output.

Possible dynamic properties include

- smooth convergence to a constant level of output
- damped business cycles that eventually converge to a constant level of output
- persistent business cycles that neither dampen nor explode

Later we present an extension that adds a random shock to the right side of the national income identity representing random fluctuations in aggregate demand.

This modification makes national output become governed by a second-order *stochastic linear difference equation* that, with appropriate parameter values, gives rise to recurrent irregular business cycles.

(To read about stochastic linear difference equations see chapter XI of [Sar87].)
28.2 Details

Let’s assume that

- \{G_t\} is a sequence of levels of government expenditures – we’ll start by setting \(G_t = G \) for all \(t \).
- \{C_t\} is a sequence of levels of aggregate consumption expenditures, a key endogenous variable in the model.
- \{I_t\} is a sequence of rates of investment, another key endogenous variable.
- \{Y_t\} is a sequence of levels of national income, yet another endogenous variable.
- \(a \) is the marginal propensity to consume in the Keynesian consumption function \(C_t = aY_{t-1} + \gamma \).
- \(b \) is the “accelerator coefficient” in the “investment accelerator” \(I_t = b(Y_{t-1} - Y_{t-2}) \).
- \{\epsilon_t\} is an IID sequence standard normal random variables.
- \(\sigma \geq 0 \) is a “volatility” parameter — setting \(\sigma = 0 \) recovers the non-stochastic case that we’ll start with.

The model combines the consumption function

\[
C_t = aY_{t-1} + \gamma
\]
(28.1)

with the investment accelerator

\[
I_t = b(Y_{t-1} - Y_{t-2})
\]
(28.2)

and the national income identity

\[
Y_t = C_t + I_t + G_t
\]
(28.3)

- The parameter \(a \) is people’s marginal propensity to consume out of income - equation (28.1) asserts that people consume a fraction of \(a \in (0, 1) \) of each additional dollar of income.
- The parameter \(b > 0 \) is the investment accelerator coefficient - equation (28.2) asserts that people invest in physical capital when income is increasing and disinvest when it is decreasing.

Equations (28.1), (28.2), and (28.3) imply the following second-order linear difference equation for national income:

\[
Y_t = (a + b)Y_{t-1} - bY_{t-2} + (\gamma + G_t)
\]

or

\[
Y_t = \rho_1 Y_{t-1} + \rho_2 Y_{t-2} + (\gamma + G_t)
\]
(28.4)

where \(\rho_1 = (a + b) \) and \(\rho_2 = -b \).

To complete the model, we require two initial conditions.

If the model is to generate time series for \(t = 0, \ldots, T \), we require initial values

\[
Y_{-1} = \bar{Y}_{-1}, \quad Y_{-2} = \bar{Y}_{-2}
\]

We’ll ordinarily set the parameters \((a, b) \) so that starting from an arbitrary pair of initial conditions \((\bar{Y}_{-1}, \bar{Y}_{-2}) \), national income \(Y_t \) converges to a constant value as \(t \) becomes large.

We are interested in studying

- the transient fluctuations in \(Y_t \) as it converges to its steady state level
- the rate at which it converges to a steady state level

The deterministic version of the model described so far — meaning that no random shocks hit aggregate demand — has only transient fluctuations.

We can convert the model to one that has persistent irregular fluctuations by adding a random shock to aggregate demand.
28.2.1 Stochastic Version of the Model

We create a random or stochastic version of the model by adding a random process of shocks or disturbances \(\{ \sigma_t \} \) to the right side of equation (28.4), leading to the second-order scalar linear stochastic difference equation:

\[
Y_t = G_t + \alpha(1 - b)Y_{t-1} - abY_{t-2} + \sigma_t
\]

(28.5)

28.2.2 Mathematical Analysis of the Model

To get started, let’s set \(G_t \equiv 0 \), \(\sigma = 0 \), and \(\gamma = 0 \).

Then we can write equation (28.5) as

\[
Y_t = \rho_1 Y_{t-1} + \rho_2 Y_{t-2}
\]

or

\[
Y_{t+2} - \rho_1 Y_{t+1} - \rho_2 Y_t = 0
\]

(28.6)

To discover the properties of the solution of (28.6), it is useful first to form the characteristic polynomial for (28.6):

\[
z^2 - \rho_1 z - \rho_2
\]

(28.7)

where \(z \) is possibly a complex number.

We want to find the two zeros (a.k.a. roots) – namely \(\lambda_1, \lambda_2 \) – of the characteristic polynomial.

These are two special values of \(z \), say \(z = \lambda_1 \) and \(z = \lambda_2 \), such that if we set \(z \) equal to one of these values in expression (28.7), the characteristic polynomial (28.7) equals zero:

\[
z^2 - \rho_1 z - \rho_2 = (z - \lambda_1)(z - \lambda_2) = 0
\]

(28.8)

Equation (28.8) is said to factor the characteristic polynomial.

When the roots are complex, they will occur as a complex conjugate pair.

When the roots are complex, it is convenient to represent them in the polar form

\[
\lambda_1 = re^{i\omega}, \lambda_2 = re^{-i\omega}
\]

where \(r \) is the amplitude of the complex number and \(\omega \) is its angle or phase.

These can also be represented as

\[
\lambda_1 = r(cos(\omega) + i \sin(\omega))
\]

\[
\lambda_2 = r(cos(\omega) - i \sin(\omega))
\]

(To read about the polar form, see here)

Given initial conditions \(Y_{-1}, Y_{-2} \), we want to generate a solution of the difference equation (28.6).

It can be represented as

\[
Y_t = \lambda_1^t c_1 + \lambda_2^t c_2
\]

where \(c_1 \) and \(c_2 \) are constants that depend on the two initial conditions and on \(\rho_1, \rho_2 \).

When the roots are complex, it is useful to pursue the following calculations.
Notice that

\[Y_t = c_1 (re^{i\omega}t) + c_2 (re^{-i\omega}t) \]

\[= c_1 r^t e^{i\omega t} + c_2 r^t e^{-i\omega t} \]

\[= c_1 r^t [\cos(\omega t) + i \sin(\omega t)] + c_2 r^t [\cos(\omega t) - i \sin(\omega t)] \]

\[= (c_1 + c_2) r^t \cos(\omega t) + i(c_1 - c_2) r^t \sin(\omega t) \]

The only way that \(Y_t \) can be a real number for each \(t \) is if \(c_1 + c_2 \) is a real number and \(c_1 - c_2 \) is an imaginary number.

This happens only when \(c_1 \) and \(c_2 \) are complex conjugates, in which case they can be written in the polar forms

\[c_1 = ve^{i\theta}, \quad c_2 = ve^{-i\theta} \]

So we can write

\[Y_t = ve^{i\theta}r^t e^{i\omega t} + ve^{-i\theta}r^t e^{-i\omega t} \]

\[= ve^{i(\omega t + \theta)} + ve^{-i(\omega t + \theta)} \]

\[= 2vr^t \cos(\omega t + \theta) \]

where \(v \) and \(\theta \) are constants that must be chosen to satisfy initial conditions for \(Y_{-1}, Y_{-2} \).

This formula shows that when the roots are complex, \(Y_t \) displays oscillations with period \(\bar{p} = \frac{2\pi}{\omega} \) and damping factor \(r \).

We say that \(\bar{p} \) is the period because in that amount of time the cosine wave \(\cos(\omega t + \theta) \) goes through exactly one complete cycle.

(Draw a cosine function to convince yourself of this please)

Remark: Following [Sam39], we want to choose the parameters \(a, b \) of the model so that the absolute values (of the possibly complex) roots \(\lambda_1, \lambda_2 \) of the characteristic polynomial are both strictly less than one:

\[|\lambda_j| < 1 \quad \text{for } j = 1, 2 \]

Remark: When both roots \(\lambda_1, \lambda_2 \) of the characteristic polynomial have absolute values strictly less than one, the absolute value of the larger one governs the rate of convergence to the steady state of the non stochastic version of the model.

28.2.3 Things This Lecture Does

We write a function to generate simulations of a \(\{Y_t\} \) sequence as a function of time.

The function requires that we put in initial conditions for \(Y_{-1}, Y_{-2} \).

The function checks that \(a, b \) are set so that \(\lambda_1, \lambda_2 \) are less than unity in absolute value (also called “modulus”).

The function also tells us whether the roots are complex, and, if they are complex, returns both their real and complex parts.

If the roots are both real, the function returns their values.

We use our function written to simulate paths that are stochastic (when \(\sigma > 0 \)).

We have written the function in a way that allows us to input \(\{G_t\} \) paths of a few simple forms, e.g.,

- one time jumps in \(G \) at some time
- a permanent jump in \(G \) that occurs at some time

We proceed to use the Samuelson multiplier-accelerator model as a laboratory to make a simple OOP example.

The “state” that determines next period’s \(Y_{t+1} \) is now not just the current value \(Y_t \) but also the once lagged value \(Y_{t-1} \).

This involves a little more bookkeeping than is required in the Solow model class definition.
We use the Samuelson multiplier-accelerator model as a vehicle for teaching how we can gradually add more features to the class.

We want to have a method in the class that automatically generates a simulation, either non-stochastic ($\sigma = 0$) or stochastic ($\sigma > 0$).

We also show how to map the Samuelson model into a simple instance of the LinearStateSpace class described here.

We can use a LinearStateSpace instance to do various things that we did above with our homemade function and class.

Among other things, we show by example that the eigenvalues of the matrix A that we use to form the instance of the LinearStateSpace class for the Samuelson model equal the roots of the characteristic polynomial (28.7) for the Samuelson multiplier accelerator model.

Here is the formula for the matrix A in the linear state space system in the case that government expenditures are a constant G:

$$A = \begin{bmatrix}
1 & 0 & 0 \\
\gamma + G & \rho_1 & \rho_2 \\
0 & 1 & 0
\end{bmatrix}$$

28.3 Implementation

We'll start by drawing an informative graph from page 189 of [Sar87]

```python
def param_plot():
    """This function creates the graph on page 189 of Sargent Macroeconomic Theory, second edition, 1987."
    ""

    fig, ax = plt.subplots(figsize=(10, 6))
    ax.set_aspect('equal')

    # Set axis
    xmin, ymin = -3, -2
    xmax, ymax = -xmin, -ymin
    plt.axis([xmin, xmax, ymin, ymax])

    # Set axis labels
    ax.set(xticks=[], yticks=[])
    ax.set_xlabel(r'$\rho_2$', fontsize=16)
    ax.xaxis.set_label_position('top')
    ax.set_ylabel(r'$\rho_1$', rotation=0, fontsize=16)
    ax.yaxis.set_label_position('right')

    # Draw (t1, t2) points
    p1 = np.linspace(-2, 2, 100)
    ax.plot(p1, -abs(p1) + 1, c='black')
    ax.plot(p1, np.full_like(p1, -1), c='black')
    ax.plot(p1, -(p1**2 / 4), c='black')

    # Turn normal axes off
    for spine in ['left', 'bottom', 'top', 'right']:
        ax.spines[spine].set_visible(False)
```

(continues on next page)
Add arrows to represent axes
axes_arrows = {'arrowstyle': '<|-|>', 'lw': 1.3}
ax.annotate('', xy=(xmin, 0), xytext=(xmax, 0), arrowprops=axes_arrows)
ax.annotate('', xy=(0, ymin), xytext=(0, ymax), arrowprops=axes_arrows)

Annotate the plot with equations
plot_arrowsl = {'arrowstyle': '<|>', 'connectionstyle': 'arc3, rad=-0.2'}
plot_arrowsr = {'arrowstyle': '<|>', 'connectionstyle': 'arc3, rad=0.2'}
ax.annotate(r'\rho_1 + \rho_2 < 1$', xy=(0.5, 0.3), xytext=(0.8, 0.6),
 arrowprops=plot_arrowsl, fontsize='12')
ax.annotate(r'\rho_1 + \rho_2 = 1$', xy=(0.38, 0.6), xytext=(0.6, 0.8),
 arrowprops=plot_arrowsl, fontsize='12')
ax.annotate(r'\rho_2 < 1 + \rho_1$', xy=(-0.5, 0.3), xytext=(-1.3, 0.6),
 arrowprops=plot_arrowsl, fontsize='12')
ax.annotate(r'\rho_2 = 1 + \rho_1$', xy=(-0.38, 0.6), xytext=(-1, 0.8),
 arrowprops=plot_arrowsr, fontsize='12')
ax.annotate(r'\rho_2 = 1 - \rho_1$', xy=(1.5, -1), xytext=(1.8, -1.3),
 arrowprops=plot_arrowsr, fontsize='12')
ax.annotate(r'(\rho_1)^2 + 4\rho_2 = 0$', xy=(1.15, -0.35),
 xytext=(1.5, -0.3), arrowprops=plot_arrowsl, fontsize='12')
ax.annotate(r'(\rho_1)^2 + 4\rho_2 < 0$', xy=(1.4, -0.7),
 xytext=(1.8, -0.6), arrowprops=plot_arrowsr, fontsize='12')

Label categories of solutions
ax.text(1.5, 1, 'Explosive\ngrowth', ha='center', fontsize=16)
ax.text(-1.5, 1, 'Explosive\noscillations', ha='center', fontsize=16)
ax.text(0.05, -1.5, 'Explosive oscillations', ha='center', fontsize=16)
ax.text(0.09, -0.5, 'Damped oscillations', ha='center', fontsize=16)

Add small marker to y-axis
ax.axhline(y=1.005, xmin=0.495, xmax=0.505, c='black')
ax.text(-0.12, -1.12, '-1', fontsize=10)
ax.text(-0.12, 0.98, '1', fontsize=10)

fig

param_plot()

plt.show()
Quantitative Economics with Python

The graph portrays regions in which the \((\lambda_1, \lambda_2)\) root pairs implied by the \((\rho_1 = (a + b), \rho_2 = -b)\) difference equation parameter pairs in the Samuelson model are such that:

- \((\lambda_1, \lambda_2)\) are complex with modulus less than 1 - in this case, the \(\{Y_t\}\) sequence displays damped oscillations.
- \((\lambda_1, \lambda_2)\) are both real, but one is strictly greater than 1 - this leads to explosive growth.
- \((\lambda_1, \lambda_2)\) are both real, but one is strictly less than \(-1\) - this leads to explosive oscillations.
- \((\lambda_1, \lambda_2)\) are both real and both are less than 1 in absolute value - in this case, there is smooth convergence to the steady state without damped cycles.

Later we’ll present the graph with a red mark showing the particular point implied by the setting of \((a, b)\).

28.3.1 Function to Describe Implications of Characteristic Polynomial

```python
def categorize_solution(p1, p2):
    """This function takes values of \(p1\) and \(p2\) and uses them to classify the type of solution """

    discriminant = p1 ** 2 + 4 * p2
    if p2 > 1 + p1 or p2 < -1:
        print('Explosive oscillations')
    elif p1 + p2 > 1:
        print('Explosive growth')
    elif discriminant < 0:
        print('Roots are complex with modulus less than one; 
```

(continues on next page)
therefore damped oscillations')
else:
 print('Roots are real and absolute values are less than one; \ntherefore get smooth convergence to a steady state')

Test the categorize_solution function
categorize_solution(1.3, -.4)

Roots are real and absolute values are less than one; therefore get smooth...-convergence to a steady state

28.3.2 Function for Plotting Paths

A useful function for our work below is

```python
def plot_y(function=None):
    """Function plots path of Y_t""
    plt.subplots(figsize=(10, 6))
    plt.plot(function)
    plt.xlabel('Time $t$')
    plt.ylabel('$Y_t$', rotation=0)
    plt.grid()
    plt.show()
```

28.3.3 Manual or “by hand” Root Calculations

The following function calculates roots of the characteristic polynomial using high school algebra. (We'll calculate the roots in other ways later)

The function also plots a Y_t starting from initial conditions that we set

```python
# This is a 'manual' method
def y_nonstochastic(y_0=100, y_1=80, α=.92, β=.5, γ=10, n=80):
    """Takes values of parameters and computes the roots of characteristic polynomial. It tells whether they are real or complex and whether they are less than unity in absolute value. It also computes a simulation of length n starting from the two given initial conditions for national income """
    roots = []
    p1 = α + β
    p2 = -β
    (continues on next page)```
\begin{verbatim}
print(f'ρ_1 is {ρ1}')
print(f'ρ_2 is {ρ2}')

discriminant = ρ1 ** 2 + 4 * ρ2

if discriminant == 0:
    roots.append(-ρ1 / 2)
    print('Single real root: ')
    print(''.join(str(roots)))
elif discriminant > 0:
    roots.append((-ρ1 + sqrt(discriminant).real) / 2)
    roots.append((-ρ1 - sqrt(discriminant).real) / 2)
    print('Two real roots: ')
    print(''.join(str(roots)))
else:
    roots.append((-ρ1 + sqrt(discriminant)) / 2)
    roots.append((-ρ1 - sqrt(discriminant)) / 2)
    print('Two complex roots: ')
    print(''.join(str(roots)))

if all(abs(root) < 1 for root in roots):
    print('Absolute values of roots are less than one')
else:
    print('Absolute values of roots are not less than one')

def transition(x, t):
    return ρ1 * x[t - 1] + ρ2 * x[t - 2] + γ

y_t = [y_0, y_1]

for t in range(2, n):
    y_t.append(transition(y_t, t))

return y_t

plot_y(y_nonstochastic())
\end{verbatim}

p_1 is 1.42
p_2 is -0.5
Two real roots:
[-0.6459875756256715, -0.7740312423743284]
Absolute values of roots are less than one
28.3.4 Reverse-Engineering Parameters to Generate Damped Cycles

The next cell writes code that takes as inputs the modulus $r$ and phase $\phi$ of a conjugate pair of complex numbers in polar form

$$\lambda_1 = r \exp(i\phi), \quad \lambda_2 = r \exp(-i\phi)$$

- The code assumes that these two complex numbers are the roots of the characteristic polynomial
- It then reverse-engineers $(a, b)$ and $(\rho_1, \rho_2)$, pairs that would generate those roots

```python
code to reverse-engineer a cycle
y_t = r^t (c_1 \cos(\phi t) + c2 \sin(\phi t))
###
def f(r, \phi):

 Takes modulus r and angle \phi of complex number r \exp(j \phi)
 and creates p1 and p2 of characteristic polynomial for which
 r \exp(j \phi) and r \exp(- j \phi) are complex roots.

 Returns the multiplier coefficient a and the accelerator coefficient b
 that verifies those roots.

g1 = cmath.rect(r, \phi) # Generate two complex roots
g2 = cmath.rect(r, -\phi)
p1 = g1 + g2 # Implied p1, p2
p2 = -g1 * g2
b = -p2 # Reverse-engineer a and b that validate these
a = p1 - b
```

(continues on next page)
return ρ1, ρ2, a, b

## Now let's use the function in an example
## Here are the example parameters

r = 0.95
period = 10  # Length of cycle in units of time
ϕ = 2 * math.pi/period

## Apply the function
ρ1, ρ2, a, b = f(r, ϕ)
print(f"a, b = {a}, {b}")
print(f"ρ1, ρ2 = {ρ1}, {ρ2}")

a, b = (0.634632893124001+0j), (0.9024999999999999-0j)
ρ1, ρ2 = (1.537132893124+0j), (-0.9024999999999999+0j)

## Print the real components of ρ1 and ρ2
ρ1 = ρ1.real
ρ2 = ρ2.real
ρ1, ρ2

(1.537132893124, -0.9024999999999999)

28.3.5 Root Finding Using Numpy

Here we'll use numpy to compute the roots of the characteristic polynomial

r1, r2 = np.roots([1, -p1, -p2])
p1 = cmath.polar(r1)
p2 = cmath.polar(r2)
print(f"r, ϕ = {r}, (ϕ)")
print(f"p1, p2 = {p1}, (p2)")
# print(f"g1, g2 = {g1}, (g2)")
print(f"a, b = {a}, (b)")
print(f"ρ1, ρ2 = {ρ1}, (ρ2)")

r, ϕ = 0.95, 0.6283185307179586
p1, p2 = (0.95, 0.6283185307179586), (0.95, -0.6283185307179586)
a, b = (0.634632893124001+0j), (0.9024999999999999-0j)
ρ1, ρ2 = 1.537132893124, -0.9024999999999999
### This method uses numpy to calculate roots ###

```python
def y_nonstochastic(y_0=100, y_1=80, α=.9, β=.8, γ=10, n=80):
 """ Rather than computing the roots of the characteristic polynomial by hand as we did earlier, this function enlists numpy to do the work for us ""

 # Useful constants
 ρ1 = α + β
 ρ2 = -β
 categorize_solution(ρ1, ρ2)

 # Find roots of polynomial
 roots = np.roots([1, -ρ1, -ρ2])
 print(f'Roots are {roots}')

 # Check if real or complex
 if all(isinstance(root, complex) for root in roots):
 print('Roots are complex')
 else:
 print('Roots are real')

 # Check if roots are less than one
 if all(abs(root) < 1 for root in roots):
 print('Roots are less than one')
 else:
 print('Roots are not less than one')

 # Define transition equation
 def transition(x, t):
 return ρ1 * x[t - 1] + ρ2 * x[t - 2] + γ

 # Set initial conditions
 y_t = [y_0, y_1]

 # Generate y_t series
 for t in range(2, n):
 y_t.append(transition(y_t, t))

 return y_t

plot_y(y_nonstochastic())
```

Roots are complex with modulus less than one; therefore damped oscillations
Roots are [0.85+0.27838822j 0.85-0.27838822j]
Roots are complex
Roots are less than one
28.3.6 Reverse-Engineered Complex Roots: Example

The next cell studies the implications of reverse-engineered complex roots.

We'll generate an undamped cycle of period 10

```python
r = 1 # Generates undamped, nonexplosive cycles
period = 10 # Length of cycle in units of time
ϕ = 2 * math.pi / period

Apply the reverse-engineering function f
ρ1, ρ2, a, b = f(r, ϕ)

Drop the imaginary part so that it is a valid input into y_nonstochastic
a = a.real
b = b.real

print(f"a, b = {a}, {b}"")

ytemp = y_nonstochastic(α=a, β=b, y_0=20, y_1=30)
plot_y(ytemp)
```

a, b = 0.6180339887498949, 1.0
Roots are complex with modulus less than one; therefore damped oscillations
Roots are [0.80901699+0.58778525j 0.80901699-0.58778525j]
Roots are complex
Roots are not less than one
28.3.7 Digression: Using Sympy to Find Roots

We can also use sympy to compute analytic formulas for the roots

```python
init_printing()

r1 = Symbol("ρ_1")
r2 = Symbol("ρ_2")
z = Symbol("z")

sympy.solve(z**2 - r1*z - r2, z)
```

\[
\begin{bmatrix}
\frac{\rho_1}{2} - \frac{\sqrt{\rho_1^2 + 4\rho_2}}{2}, & \frac{\rho_1}{2} + \frac{\sqrt{\rho_1^2 + 4\rho_2}}{2}
\end{bmatrix}
\]

```python
a = Symbol("α")
b = Symbol("β")
r1 = a + b
r2 = -b

sympy.solve(z**2 - r1*z - r2, z)
```

\[
\begin{bmatrix}
\frac{\alpha}{2} + \frac{\beta}{2} - \frac{\sqrt{\alpha^2 + 2\alpha\beta + \beta^2 - 4\beta}}{2}, & \frac{\alpha}{2} + \frac{\beta}{2} + \frac{\sqrt{\alpha^2 + 2\alpha\beta + \beta^2 - 4\beta}}{2}
\end{bmatrix}
\]
28.4 Stochastic Shocks

Now we’ll construct some code to simulate the stochastic version of the model that emerges when we add a random shock process to aggregate demand.

```python
def y_stochastic(y_0=0, y_1=0, α=0.8, β=0.2, γ=10, n=100, σ=5):
 """This function takes parameters of a stochastic version of the model and proceeds to analyze the roots of the characteristic polynomial and also generate a simulation. """

 # Useful constants
 ρ1 = α + β
 ρ2 = -β

 # Categorize solution
 categorize_solution(ρ1, ρ2)

 # Find roots of polynomial
 roots = np.roots([1, -ρ1, -ρ2])
 print(roots)

 # Check if real or complex
 if all(isinstance(root, complex) for root in roots):
 print(' Roots are complex')
 else:
 print(' Roots are real')

 # Check if roots are less than one
 if all(abs(root) < 1 for root in roots):
 print(' Roots are less than one')
 else:
 print(' Roots are not less than one')

 # Generate shocks
 ϵ = np.random.normal(0, 1, n)

 # Define transition equation
 def transition(x, t):
 return ρ1 * \n x[t - 1] + ρ2 * x[t - 2] + γ + σ * ϵ[t]

 # Set initial conditions
 y_t = [y_0, y_1]

 # Generate y_t series
 for t in range(2, n):
 y_t.append(transition(y_t, t))

 return y_t

plot_y(y_stochastic())
```

Roots are real and absolute values are less than one; therefore get smooth convergence to a steady state

[0.7236068 0.2763932]

(continues on next page)
Roots are real

Roots are less than one

Let's do a simulation in which there are shocks and the characteristic polynomial has complex roots

```
r = .97
period = 10 # Length of cycle in units of time
ϕ = 2 * math.pi/period

Apply the reverse-engineering function f
p1, p2, a, b = f(r, ϕ)

Drop the imaginary part so that it is a valid input into y_nonstochastic
a = a.real
b = b.real

print(f"a, b = {a}, {b}")
plot_y(y_stochastic(y_0=40, y_1 = 42, α=a, β=b, σ=2, n=100))
```

a, b = 0.6285929690873979, 0.9409000000000001
Roots are complex with modulus less than one; therefore damped oscillations
[0.78474648+0.57015169j 0.78474648-0.57015169j]
Roots are complex
Roots are less than one
28.5 Government Spending

This function computes a response to either a permanent or one-off increase in government expenditures

```python
def y_stochastic_g(y_0=20,
y_1=20,
α=0.8,
β=0.2,
γ=10,
n=100,
σ=2,
g=0,
g_t=0,
duration='permanent'):
 """This program computes a response to a permanent increase in government expenditures that occurs at time 20 """
 # Useful constants
 p1 = α + β
 p2 = -β

 # Categorize solution
categorize_solution(p1, p2)

 # Find roots of polynomial
 roots = np.roots([1, -p1, -p2])
 print(roots)
```

(continues on next page)
# Check if real or complex
if all(isinstance(root, complex) for root in roots):
    print('Roots are complex')
else:
    print('Roots are real')

# Check if roots are less than one
if all(abs(root) < 1 for root in roots):
    print('Roots are less than one')
else:
    print('Roots are not less than one')

# Generate shocks
ε = np.random.normal(0, 1, n)

def transition(x, t, g):
    # Non-stochastic - separated to avoid generating random series
    # when not needed
    if σ == 0:
        return ρ1 * x[t - 1] + ρ2 * x[t - 2] + γ + g
    # Stochastic
    else:
        ϵ = np.random.normal(0, 1, n)
        return ρ1 * x[t - 1] + ρ2 * x[t - 2] + γ + g + σ * ϵ[t]

# Create list and set initial conditions
y_t = [y_0, y_1]

# Generate y_t series
for t in range(2, n):
    # No government spending
    if g == 0:
        y_t.append(transition(y_t, t))
    
    # Government spending (no shock)
    elif g != 0 and duration == None:
        y_t.append(transition(y_t, t))
    
    # Permanent government spending shock
    elif duration == 'permanent':
        if t < g_t:
            y_t.append(transition(y_t, t, g=0))
        else:
            y_t.append(transition(y_t, t, g=g))
    
    # One-off government spending shock
    elif duration == 'one-off':
        if t == g_t:
            y_t.append(transition(y_t, t, g=g))
        else:
            y_t.append(transition(y_t, t, g=0))

return y_t
A permanent government spending shock can be simulated as follows

```python
plot_y(y_stochastic_g(g=10, g_t=20, duration='permanent'))
```

Roots are real and absolute values are less than one; therefore get smooth convergence to a steady state

\([0.7236068, 0.2763932]\)

Roots are real
Roots are less than one

We can also see the response to a one time jump in government expenditures

```python
plot_y(y_stochastic_g(g=500, g_t=50, duration='one-off'))
```

Roots are real and absolute values are less than one; therefore get smooth convergence to a steady state

\([0.7236068, 0.2763932]\)

Roots are real
Roots are less than one
28.6 Wrapping Everything Into a Class

Up to now, we have written functions to do the work.

Now we’ll roll up our sleeves and write a Python class called `Samuelson` for the Samuelson model

```python
class Samuelson:
 r"""This class represents the Samuelson model, otherwise known as the multiple-accelerator model. The model combines the Keynesian multiplier with the accelerator theory of investment.

The path of output is governed by a linear second-order difference equation

.. math::
 Y_t = \alpha (1 + \beta) Y_{t-1} - \alpha \beta Y_{t-2}

Parameters

y_0 : scalar
 Initial condition for \(Y_0 \)
y_1 : scalar
 Initial condition for \(Y_1 \)
\alpha : scalar
 Marginal propensity to consume
\beta : scalar
 Accelerator coefficient
n : int
```

(continues on next page)
Number of iterations
σ : scalar
Volatility parameter. It must be greater than or equal to 0. Set equal to 0 for a non-stochastic model.
g : scalar
Government spending shock
g_t : int
Time at which government spending shock occurs. Must be specified when duration != None.
duration : {None, 'permanent', 'one-off'}
Specifies type of government spending shock. If none, government spending equal to g for all t.

```
def __init__(self,
 y_0=100,
 y_1=50,
 α=1.3,
 β=0.2,
 γ=10,
 n=100,
 σ=0,
 g=0,
 g_t=0,
 duration=None):
 self.y_0, self.y_1, self.α, self.β = y_0, y_1, α, β
 self.n, self.g, self.g_t, self.duration = n, g, g_t, duration
 self.γ, self.σ = γ, σ
 self.p1 = α + β
 self.p2 = -β
 self.roots = np.roots([1, -self.p1, -self.p2])

def root_type(self):
 if all(isinstance(root, complex) for root in self.roots):
 return 'Complex conjugate'
 elif len(self.roots) > 1:
 return 'Double real'
 else:
 return 'Single real'

def root_less_than_one(self):
 if all(abs(root) < 1 for root in self.roots):
 return True

def solution_type(self):
 ρ1, ρ2 = self.p1, self.p2
 discriminant = ρ1 ** 2 + 4 * ρ2
 if ρ2 >= 1 + ρ1 or ρ2 <= -1:
 return 'Explosive oscillations'
 elif ρ1 + ρ2 >= 1:
 return 'Explosive growth'
 elif discriminant < 0:
 return 'Damped oscillations'
 else:
 return 'Oscillatory convergence'
return 'Steady state'

def _transition(self, x, t, g):
 # Non-stochastic - separated to avoid generating random series
 # when not needed
 if self.σ == 0:
 return self.ρ1 * x[t - 1] + self.ρ2 * x[t - 2] + self.γ + g

 # Stochastic
 else:
 ϵ = np.random.normal(0, 1, self.n)
 return self.ρ1 * x[t - 1] + self.ρ2 * x[t - 2] + self.γ + g + self.σ * ϵ[t]

def generate_series(self):
 # Create list and set initial conditions
 y_t = [self.y_0, self.y_1]

 # Generate y_t series
 for t in range(2, self.n):
 # No government spending
 if self.g == 0:
 y_t.append(self._transition(y_t, t))

 # Government spending (no shock)
 elif self.g != 0 and self.duration == None:
 y_t.append(self._transition(y_t, t))

 # Permanent government spending shock
 elif self.duration == 'permanent':
 if t < self.g_t:
 y_t.append(self._transition(y_t, t, g=0))
 else:
 y_t.append(self._transition(y_t, t, g=self.g))

 # One-off government spending shock
 elif self.duration == 'one-off':
 if t == self.g_t:
 y_t.append(self._transition(y_t, t, g=self.g))
 else:
 y_t.append(self._transition(y_t, t, g=0))

 return y_t

def summary(self):
 print('Summary

 Root type: ' + self.root_type() + '
 Solution type: ' + self.solution_type() + '
 Roots: ' + str(self.roots))

 if self.root_less_than_one() == True:
 print('Absolute value of roots is less than one')
 else:
 print('Absolute value of roots is not less than one')

(continues on next page)
if self.σ > 0:
 print('Stochastic series with σ = ' + str(self.σ))
else:
 print('Non-stochastic series')

if self.g != 0:
 print('Government spending equal to ' + str(self.g))

if self.duration != None:
 print(self.duration.capitalize() +
 ' government spending shock at t = ' + str(self.g_t))

def plot(self):
 fig, ax = plt.subplots(figsize=(10, 6))
 ax.plot(self.generate_series())
 ax.set(xlabel='Iteration', xlim=(0, self.n))
 ax.grid()

 # Add parameter values to plot
 paramstr = f'$\alpha=' + str(self.α) + '$
 $\beta=' + str(self.β) + '$
 $\gamma=' + str(self.γ) + '$
 $\sigma=' + str(self.σ) + '$
 $\rho_1=' + str(self.ρ1) + '$
 $\rho_2=' + str(self.ρ2) + '$' +
 props = dict(fc='white', pad=10, alpha=0.5)
 ax.text(0.87, 0.05, paramstr, transform=ax.transAxes,
 fontsize=12, bbox=props, va='bottom')

 return fig

def param_plot(self):
 # Uses the param_plot() function defined earlier (it is then able
 # to be used standalone or as part of the model)
 fig = param_plot()
 ax = fig.gca()

 # Add λ values to legend
 for i, root in enumerate(self.roots):
 if isinstance(root, complex):
 # Need to fill operator for positive as string is split apart
 operator = ['+', '']
 label = rf'$\lambda_{i+1} = \{\text{real:}.2f\} \{\text{operator[i]}\}'
 $\lambda_{i+1} = \{\text{real:}.2f\}$
 else:
 label = rf'$\lambda_{i+1} = \{\text{real:}.2f\}$'
 ax.scatter(self.ρ1, self.ρ2, 100, 'red', '+',
 label=label) # dummy to add to legend

 # Add ρ pair to plot
 ax.scatter(self.ρ1, self.ρ2, 100, 'red', '+',
 label=r'$\rho_1, \rho_2 = \{\text{real:}.2f\}$', zorder=5)

 plt.legend(fontsize=12, loc=3)

 return fig
28.6.1 Illustration of Samuelson Class

Now we’ll put our Samuelson class to work on an example

```python
sam = Samuelson(\alpha=0.8, \beta=0.5, \sigma=2, g=10, g_t=20, duration='permanent')
sam.summary()
```

```
Summary
--------------------
Root type: Complex conjugate
Solution type: Damped oscillations
Roots: [0.65+0.27838822j 0.65-0.27838822j]
Absolute value of roots is less than one
Stochastic series with \sigma = 2
Government spending equal to 10
Permanent government spending shock at t = 20
```

```python
sam.plot()
plt.show()
```
28.6.2 Using the Graph

We’ll use our graph to show where the roots lie and how their location is consistent with the behavior of the path just graphed.

The red + sign shows the location of the roots

```python
sam.param_plot()
plt.show()
```

![Graph showing roots and their locations]

Equation:
\[\lambda_1 = 0.65 + 0.28i \]
\[\lambda_2 = 0.65 - 0.28i \]
\[(\rho_1, \rho_2) \]

28.7 Using the LinearStateSpace Class

It turns out that we can use the QuantEcon.py LinearStateSpace class to do much of the work that we have done from scratch above.

Here is how we map the Samuelson model into an instance of a LinearStateSpace class

```python
"""This script maps the Samuelson model in the the
`LinearStateSpace` class
"""
\[ \alpha = 0.8 \]
\[ \beta = 0.9 \]
\[ \rho_1 = \alpha + \beta \]
\[ \rho_2 = -\beta \]
\[ \gamma = 10 \]
\[ \sigma = 1 \]
```
\begin{verbatim}
g = 10
n = 100
A = [[1, 0, 0],
 [\gamma + g, 1, 0],
 [0, 1, 0]]
G = [[\gamma + g, \rho_1, \rho_2],
 [\gamma, \alpha, 0],
 [0, \beta, -\beta]]
mu_0 = [1, 100, 50]
C = np.zeros((3,1))
C[1] = \sigma # stochastic

sam_t = LinearStateSpace(A, C, G, mu_0=
mu_0)
x, y = sam_t.simulate(ts_length=n)

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
titles = ['Output (Y_t)', 'Consumption (C_t)', 'Investment (I_t)']
colors = ['darkblue', 'red', 'purple']
for ax, series, title, color in zip(axes, y, titles, colors):
 ax.plot(series, color=color)
 ax.set(title=title, xlim=(0, n))
 ax.grid()

axes[-1].set_xlabel('Iteration')

plt.show()
\end{verbatim}
28.7.1 Other Methods in the LinearStateSpace Class

Let’s plot impulse response functions for the instance of the Samuelson model using a method in the LinearStateSpace class.

```
imres = sam_t.impulse_response()
imres = np.asarray(imres)
y1 = imres[:, :, 0]
y2 = imres[:, :, 1]
y1.shape
```

```
(2, 6, 1)
```

Now let’s compute the zeros of the characteristic polynomial by simply calculating the eigenvalues of A.

```
A = np.asarray(A)
w, v = np.linalg.eig(A)
print(w)
```

```
[0.85+0.42130749j 0.85-0.42130749j 1. +0.j]
```
28.7.2 Inheriting Methods from LinearStateSpace

We could also create a subclass of LinearStateSpace (inherting all its methods and attributes) to add more functions to use

```python
class SamuelsonLSS(LinearStateSpace):

    
    This subclass creates a Samuelson multiplier-accelerator model as a linear state space system.
    
    def __init__(self,
        y_0=100,  
        y_1=50,  
        α=0.8,  
        β=0.9,  
        γ=10,   
        σ=1,    
        g=10):
        self.α, self.β = α, β
        self.y_0, self.y_1, self.g = y_0, y_1, g
        self.γ, self.σ = γ, σ

        # Define initial conditions
        self.μ_0 = [1, y_0, y_1]
        self.p1 = α + β
        self.p2 = -β

        # Define transition matrix
        self.A = [[1, 0, 0],  
                   [γ + g, self.p1, self.p2],  
                   [0, 1, 0]]

        # Define output matrix
        self.G = [[γ + g, self.p1, self.p2],  
                   [γ, α, 0],  
                   [0, β, -β]]

        self.C = np.zeros((3, 1))
        self.C[1] = σ  # stochastic

        # Initialize LSS with parameters from Samuelson model
        LinearStateSpace.__init__(self, self.A, self.C, self.G, mu_0=self.μ_0)

    def plot_simulation(self, ts_length=100, stationary=True):
        
        # Temporarily store original parameters
        temp_mu = self.mu_0
        temp_Sigma = self.Sigma_0

        # Set distribution parameters equal to their stationary values for simulation
        if stationary == True:
            try:
                self.mu_x, self.mu_y, self.Sigma_x, self.Sigma_y, self.Sigma_yx = 
```
self.stationary_distributions()
self.mu_0 = self.mu_x
self.Sigma_0 = self.Sigma_x

Exception where no convergence achieved when calculating stationary distributions
except ValueError:
 print('Stationary distribution does not exist')

x, y = self.simulate(ts_length)

fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
titles = ['Output (Y_t)', 'Consumption (C_t)', 'Investment (I_t)']
for ax, series, title, color in zip(axes, y, titles, colors):
 ax.plot(series, color=color)
 ax.set(title=title, xlim=(0, n))
 ax.grid()

axes[-1].set_xlabel('Iteration')

Reset distribution parameters to their initial values
self.mu_0 = temp_mu
self.Sigma_0 = temp_Sigma

return fig
def plot_irf(self, j=5):
 x, y = self.impulse_response(j)

 # Reshape into 3 x j matrix for plotting purposes
 yimf = np.array(y).flatten().reshape(j+1, 3).T

 fig, axes = plt.subplots(3, 1, sharex=True, figsize=(12, 8))
 labels = ['Y_t', 'C_t', 'I_t']
 colors = ['darkblue', 'red', 'purple']
 for ax, series, label, color in zip(axes, yimf, labels, colors):
 ax.plot(series, color=color)
 ax.set_xlim=(0, j)
 ax.set_ylabel(label, rotation=0, fontsize=14, labelpad=10)
 ax.grid()

 axes[0].set_title('Impulse Response Functions')
 axes[-1].set_xlabel('Iteration')

 return fig
def multipliers(self, j=5):
 x, y = self.impulse_response(j)

 return np.sum(np.array(y).flatten().reshape(j+1, 3), axis=0)
28.7.3 Illustrations

Let's show how we can use the `SamuelsonLSS`

```python
samlss = SamuelsonLSS()

samlss.plot_simulation(100, stationary=False)
plt.show()

samlss.plot_simulation(100, stationary=True)
plt.show()
```

![Graphs of Output, Consumption, and Investment](attachment:image.png)
Quantitative Economics with Python

```
samlss.plot_irf(100)
plt.show()
```
28.8 Pure Multiplier Model

Let's shut down the accelerator by setting $b = 0$ to get a pure multiplier model

- the absence of cycles gives an idea about why Samuelson included the accelerator

```python
pure_multiplier = SamuelsonLSS(α=0.95, β=0)
pure_multiplier.plot_simulation()
```
Output (Y_t)

Consumption (C_t)

Investment (I_t)

Output (Y_t)

Consumption (C_t)

Investment (I_t)
pure_multiplier = SamuelsonLSS(α=0.8, β=0)

pure_multiplier.plot_simulation()
pure_multiplier.plot_irf(100)
28.8. Pure Multiplier Model
28.9 Summary

In this lecture, we wrote functions and classes to represent non-stochastic and stochastic versions of the Samuelson (1939) multiplier-accelerator model, described in [Sam39].

We saw that different parameter values led to different output paths, which could either be stationary, explosive, or oscillating.

We also were able to represent the model using the `QuantEcon.py LinearStateSpace` class.
29.1 Overview

Previously we learned about linear scalar-valued stochastic processes (AR(1) models).

Now we generalize these linear models slightly by allowing the multiplicative coefficient to be stochastic.

Such processes are known as Kesten processes after German–American mathematician Harry Kesten (1931–2019)

Although simple to write down, Kesten processes are interesting for at least two reasons:

1. A number of significant economic processes are or can be described as Kesten processes.
2. Kesten processes generate interesting dynamics, including, in some cases, heavy-tailed cross-sectional distributions.

We will discuss these issues as we go along.

Let's start with some imports:
The following two lines are only added to avoid a FutureWarning caused by compatibility issues between pandas and matplotlib.

```python
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
```

Additional technical background related to this lecture can be found in the monograph of [BDM+16].

29.2 Kesten Processes

A Kesten process is a stochastic process of the form

$$X_{t+1} = a_{t+1} X_t + \eta_{t+1}$$

(29.1)

where \(\{a_t\}_{t \geq 1}\) and \(\{\eta_t\}_{t \geq 1}\) are IID sequences.

We are interested in the dynamics of \(\{X_t\}_{t \geq 0}\) when \(X_0\) is given.

We will focus on the nonnegative scalar case, where \(X_t\) takes values in \(\mathbb{R}_+\).

In particular, we will assume that

- the initial condition \(X_0\) is nonnegative,
- \(\{a_t\}_{t \geq 1}\) is a nonnegative IID stochastic process and
- \(\{\eta_t\}_{t \geq 1}\) is another nonnegative IID stochastic process, independent of the first.

29.2.1 Example: GARCH Volatility

The GARCH model is common in financial applications, where time series such as asset returns exhibit time varying volatility.

For example, consider the following plot of daily returns on the Nasdaq Composite Index for the period 1st January 2006 to 1st November 2019.

```python
import yfinance as yf
import pandas as pd

s = yf.download('^IXIC', '2006-1-1', '2019-11-1')['Adj Close']

r = s.pct_change()

fig, ax = plt.subplots()

ax.plot(r, alpha=0.7)

ax.set_ylabel('returns', fontsize=12)

ax.set_xlabel('date', fontsize=12)

plt.show()
```

[*********************100%************************] 1 of 1 completed
Notice how the series exhibits bursts of volatility (high variance) and then settles down again.

GARCH models can replicate this feature.

The GARCH(1, 1) volatility process takes the form

\[\sigma_{t+1}^2 = \alpha_0 + \sigma_t^2(\alpha_1 \xi_{t+1}^2 + \beta) \]

(29.2)

where \(\{\xi_t\} \) is IID with \(\mathbb{E}\xi_t^2 = 1 \) and all parameters are positive.

Returns on a given asset are then modeled as

\[r_t = \sigma_t \zeta_t \]

(29.3)

where \(\{\zeta_t\} \) is again IID and independent of \(\{\xi_t\} \).

The volatility sequence \(\{\sigma_t^2\} \), which drives the dynamics of returns, is a Kesten process.

29.2.2 Example: Wealth Dynamics

Suppose that a given household saves a fixed fraction \(s \) of its current wealth in every period.

The household earns labor income \(y_t \) at the start of time \(t \).

Wealth then evolves according to

\[w_{t+1} = R_{t+1}sw_t + y_{t+1} \]

(29.4)

where \(\{R_t\} \) is the gross rate of return on assets.

If \(\{R_t\} \) and \(\{y_t\} \) are both IID, then (29.4) is a Kesten process.
29.2.3 Stationarity

In earlier lectures, such as the one on AR(1) processes, we introduced the notion of a stationary distribution.

In the present context, we can define a stationary distribution as follows:

The distribution \(F^* \) on \(\mathbb{R} \) is called stationary for the Kesten process (29.1) if

\[
X_t \sim F^* \implies a_{t+1}X_t + \eta_{t+1} \sim F^*
\]

(29.5)

In other words, if the current state \(X_t \) has distribution \(F^* \), then so does the next period state \(X_{t+1} \).

We can write this alternatively as

\[
F^*(y) = \int \mathbb{P}\{a_{t+1}x + \eta_{t+1} \leq y\}F^*(dx)
\]

for all \(y \geq 0 \).

(29.6)

The left hand side is the distribution of the next period state when the current state is drawn from \(F^* \).

The equality in (29.6) states that this distribution is unchanged.

29.2.4 Cross-Sectional Interpretation

There is an important cross-sectional interpretation of stationary distributions, discussed previously but worth repeating here.

Suppose, for example, that we are interested in the wealth distribution — that is, the current distribution of wealth across households in a given country.

Suppose further that

- the wealth of each household evolves independently according to (29.4),
- \(F^* \) is a stationary distribution for this stochastic process and
- there are many households.

Then \(F^* \) is a steady state for the cross-sectional wealth distribution in this country.

In other words, if \(F^* \) is the current wealth distribution then it will remain so in subsequent periods, ceteris paribus.

To see this, suppose that \(F^* \) is the current wealth distribution.

What is the fraction of households with wealth less than \(y \) next period?

To obtain this, we sum the probability that wealth is less than \(y \) tomorrow, given that current wealth is \(w \), weighted by the fraction of households with wealth \(w \).

Noting that the fraction of households with wealth in interval \(dw \) is \(F^*(dw) \), we get

\[
\int \mathbb{P}\{R_{t+1}sw + y_{t+1} \leq y\}F^*(dw)
\]

By the definition of stationarity and the assumption that \(F^* \) is stationary for the wealth process, this is just \(F^*(y) \).

Hence the fraction of households with wealth in \([0, y]\) is the same next period as it is this period.

Since \(y \) was chosen arbitrarily, the distribution is unchanged.
29.2.5 Conditions for Stationarity

The Kesten process $X_{t+1} = a_{t+1}X_t + \eta_{t+1}$ does not always have a stationary distribution. For example, if $a_t \equiv \eta_t \equiv 1$ for all t, then $X_t = X_0 + t$, which diverges to infinity. To prevent this kind of divergence, we require that $\{a_t\}$ is strictly less than 1 most of the time.

In particular, if

$$\mathbb{E} \ln a_t < 0 \quad \text{and} \quad \mathbb{E}\eta_t < \infty$$

(29.7)

then a unique stationary distribution exists on \mathbb{R}_+.

- See, for example, theorem 2.1.3 of [BDM+16], which provides slightly weaker conditions.

As one application of this result, we see that the wealth process (29.4) will have a unique stationary distribution whenever labor income has finite mean and $\mathbb{E} \ln R_t + \ln s < 0$.

29.3 Heavy Tails

Under certain conditions, the stationary distribution of a Kesten process has a Pareto tail.

(See our earlier lecture on heavy-tailed distributions for background.)

This fact is significant for economics because of the prevalence of Pareto-tailed distributions.

29.3.1 The Kesten–Goldie Theorem

To state the conditions under which the stationary distribution of a Kesten process has a Pareto tail, we first recall that a random variable is called nonarithmetic if its distribution is not concentrated on \{…, −2t, −t, 0, t, 2t, …\} for any $t \geq 0$.

For example, any random variable with a density is nonarithmetic.

The famous Kesten–Goldie Theorem (see, e.g., [BDM+16], theorem 2.4.4) states that if

1. the stationarity conditions in (29.7) hold,
2. the random variable a_t is positive with probability one and nonarithmetic,
3. $\mathbb{P}\{a_t x + \eta_t = x\} < 1$ for all $x \in \mathbb{R}_+$ and
4. there exists a positive constant α such that

$$\mathbb{E}a_t^{\alpha} = 1, \quad \mathbb{E}\eta_t^{\alpha} < \infty, \quad \text{and} \quad \mathbb{E}[a_t^{\alpha+1}] < \infty$$

then the stationary distribution of the Kesten process has a Pareto tail with tail index α.

More precisely, if F^* is the unique stationary distribution and $X^* \sim F^*$, then

$$\lim_{x \to \infty} x^{\alpha} \mathbb{P}\{X^* > x\} = c$$

for some positive constant c.

29.3. Heavy Tails
29.3.2 Intuition

Later we will illustrate the Kesten–Goldie Theorem using rank-size plots.

Prior to doing so, we can give the following intuition for the conditions.

Two important conditions are that $\mathbb{E} \ln a_t < 0$, so the model is stationary, and $\mathbb{E} a_t^\alpha = 1$ for some $\alpha > 0$.

The first condition implies that the distribution of a_t has a large amount of probability mass below 1.

The second condition implies that the distribution of a_t has at least some probability mass at or above 1.

The first condition gives us existence of the stationary condition.

The second condition means that the current state can be expanded by a_t.

If this occurs for several concurrent periods, the effects compound each other, since a_t is multiplicative.

This leads to spikes in the time series, which fill out the extreme right hand tail of the distribution.

The spikes in the time series are visible in the following simulation, which generates of 10 paths when a_t and b_t are lognormal.

```python
mu = -0.5
sigma = 1.0

def kesten_ts(ts_length=100):
    x = np.zeros(ts_length)
    for t in range(ts_length-1):
        a = np.exp(mu + sigma * np.random.randn())
        b = np.exp(np.random.randn())
        x[t+1] = a * x[t] + b
    return x

fig, ax = plt.subplots()
num_paths = 10
np.random.seed(12)

for i in range(num_paths):
    ax.plot(kesten_ts())

ax.set(xlabel='time', ylabel='$X_t$')
plt.show()
```
29.4 Application: Firm Dynamics

As noted in our lecture on heavy tails, for common measures of firm size such as revenue or employment, the US firm size distribution exhibits a Pareto tail (see, e.g., [Axt01], [Gab16]).

Let us try to explain this rather striking fact using the Kesten–Goldie Theorem.

29.4.1 Gibrat’s Law

It was postulated many years ago by Robert Gibrat [Gib31] that firm size evolves according to a simple rule whereby size next period is proportional to current size.

This is now known as Gibrat’s law of proportional growth.

We can express this idea by stating that a suitably defined measure s_t of firm size obeys

$$\frac{s_{t+1}}{s_t} = a_{t+1}$$

(29.8)

for some positive IID sequence $\{a_t\}$.

One implication of Gibrat’s law is that the growth rate of individual firms does not depend on their size.

However, over the last few decades, research contradicting Gibrat’s law has accumulated in the literature.

For example, it is commonly found that, on average,

1. small firms grow faster than large firms (see, e.g., [Eva87] and [Hal87]) and
2. the growth rate of small firms is more volatile than that of large firms [DRS89].

On the other hand, Gibrat’s law is generally found to be a reasonable approximation for large firms [Eva87].

We can accommodate these empirical findings by modifying (29.8) to

$$s_{t+1} = a_{t+1} s_t + b_{t+1}$$

(29.9)

where $\{a_t\}$ and $\{b_t\}$ are both IID and independent of each other.
In the exercises you are asked to show that (29.9) is more consistent with the empirical findings presented above than Gibrat’s law in (29.8).

29.4.2 Heavy Tails

So what has this to do with Pareto tails?

The answer is that (29.9) is a Kesten process.

If the conditions of the Kesten–Goldie Theorem are satisfied, then the firm size distribution is predicted to have heavy tails — which is exactly what we see in the data.

In the exercises below we explore this idea further, generalizing the firm size dynamics and examining the corresponding rank-size plots.

We also try to illustrate why the Pareto tail finding is significant for quantitative analysis.

29.5 Exercises

Exercise 29.5.1

Simulate and plot 15 years of daily returns (consider each year as having 250 working days) using the GARCH(1, 1) process in (29.2)–(29.3).

Take ξ_t and ζ_t to be independent and standard normal.

Set $\alpha_0 = 0.00001$, $\alpha_1 = 0.1$, $\beta = 0.9$ and $\sigma_0 = 0$.

Compare visually with the Nasdaq Composite Index returns *shown above*.

While the time path differs, you should see bursts of high volatility.

Solution to Exercise 29.5.1

Here is one solution:

```python
a_0 = 1e-5
a_1 = 0.1
β = 0.9

years = 15
days = years * 250

def garch_ts(ts_length=days):
    σ2 = 0
    r = np.zeros(ts_length)
    for t in range(ts_length-1):
        ξ = np.random.randn()
        σ2 = a_0 + σ2 * (a_1 * ξ**2 + β)
        r[t] = np.sqrt(σ2) * np.random.randn()
    return r

fig, ax = plt.subplots()
```

(continues on next page)
Exercise 29.5.2

In our discussion of firm dynamics, it was claimed that (29.9) is more consistent with the empirical literature than Gibrat’s law in (29.8).

(The empirical literature was reviewed immediately above (29.9).)

In what sense is this true (or false)?

Solution to Exercise 29.5.2

The empirical findings are that

1. small firms grow faster than large firms and
2. the growth rate of small firms is more volatile than that of large firms.

Also, Gibrat’s law is generally found to be a reasonable approximation for large firms than for small firms

The claim is that the dynamics in (29.9) are more consistent with points 1-2 than Gibrat’s law.

To see why, we rewrite (29.9) in terms of growth dynamics:

\[
\frac{s_{t+1}}{s_t} = a_{t+1} + \frac{b_{t+1}}{s_t}
\]

(29.10)

Taking \(s_t = s\) as given, the mean and variance of firm growth are

\[\mathbb{E}a + \frac{\mathbb{E}b}{s}\] and \[\mathbb{V}a + \frac{\mathbb{V}b}{s^2}\]
Both of these decline with firm size \(s \), consistent with the data. Moreover, the law of motion (29.10) clearly approaches Gibrat’s law (29.8) as \(s \) gets large.

Exercise 29.5.3

Consider an arbitrary Kesten process as given in (29.1).

Suppose that \(\{a_t\} \) is lognormal with parameters \((\mu, \sigma) \).

In other words, each \(a_t \) has the same distribution as \(\exp(\mu + \sigma Z) \) when \(Z \) is standard normal.

Suppose further that \(\mathbb{E}\eta_t^r < \infty \) for every \(r > 0 \), as would be the case if, say, \(\eta_t \) is also lognormal.

Show that the conditions of the Kesten–Goldie theorem are satisfied if and only if \(\mu < 0 \).

Obtain the value of \(\alpha \) that makes the Kesten–Goldie conditions hold.

Solution to Exercise 29.5.3

Since \(a_t \) has a density it is nonarithmetic.

Since \(a_t \) has the same density as \(a = \exp(\mu + \sigma Z) \) when \(Z \) is standard normal, we have

\[
\mathbb{E}\ln a_t = \mathbb{E}(\mu + \sigma Z) = \mu,
\]

and since \(\eta_t \) has finite moments of all orders, the stationarity condition holds if and only if \(\mu < 0 \).

Given the properties of the lognormal distribution (which has finite moments of all orders), the only other condition in doubt is existence of a positive constant \(\alpha \) such that \(\mathbb{E}a_t^\alpha = 1 \).

This is equivalent to the statement

\[
\exp(\alpha \mu + \frac{\alpha^2 \sigma^2}{2}) = 1.
\]

Solving for \(\alpha \) gives \(\alpha = -2\mu/\sigma^2 \).

Exercise 29.5.4

One unrealistic aspect of the firm dynamics specified in (29.9) is that it ignores entry and exit.

In any given period and in any given market, we observe significant numbers of firms entering and exiting the market.

Empirical discussion of this can be found in a famous paper by Hugo Hopenhayn [Hop92].

In the same paper, Hopenhayn builds a model of entry and exit that incorporates profit maximization by firms and market clearing quantities, wages and prices.

In his model, a stationary equilibrium occurs when the number of entrants equals the number of exiting firms.

In this setting, firm dynamics can be expressed as

\[
s_{t+1} = e_{t+1} \mathbb{1}\{s_t < \bar{s}\} + (a_{t+1}s_t + b_{t+1})\mathbb{1}\{s_t \geq \bar{s}\}
\]

(29.11)

Here

- the state variable \(s_t \) represents productivity (which is a proxy for output and hence firm size),
- the IID sequence \(\{e_t\} \) is thought of as a productivity draw for a new entrant and
• the variable \bar{s} is a threshold value that we take as given, although it is determined endogenously in Hopenhayn’s model.

The idea behind (29.11) is that firms stay in the market as long as their productivity s_t remains at or above \bar{s}.

• In this case, their productivity updates according to (29.9).

Firms choose to exit when their productivity s_t falls below \bar{s}.

• In this case, they are replaced by a new firm with productivity e_{t+1}.

What can we say about dynamics?

Although (29.11) is not a Kesten process, it does update in the same way as a Kesten process when s_t is large. So perhaps its stationary distribution still has Pareto tails?

Your task is to investigate this question via simulation and rank-size plots.

The approach will be to

1. generate M draws of s_T when M and T are large and
2. plot the largest 1,000 of the resulting draws in a rank-size plot.

(The distribution of s_T will be close to the stationary distribution when T is large.)

In the simulation, assume that

• each of a_t, b_t and c_t is lognormal,

• the parameters are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_a</td>
<td>-0.5</td>
</tr>
<tr>
<td>σ_a</td>
<td>0.1</td>
</tr>
<tr>
<td>μ_b</td>
<td>0.0</td>
</tr>
<tr>
<td>σ_b</td>
<td>0.5</td>
</tr>
<tr>
<td>μ_e</td>
<td>0.0</td>
</tr>
<tr>
<td>σ_e</td>
<td>0.5</td>
</tr>
<tr>
<td>s_{bar}</td>
<td>1.0</td>
</tr>
<tr>
<td>T</td>
<td>500</td>
</tr>
<tr>
<td>M</td>
<td>1×10^6</td>
</tr>
<tr>
<td>s_{init}</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Solution to Exercise 29.5.4

Here’s one solution. First we generate the observations:

```python
from numba import njit, prange
from numpy.random import randn

@njit(parallel=True)
def generate_draws($\mu_a$=-0.5, $\sigma_a$=0.1, $\mu_b$=0.0, $\sigma_b$=0.5, $\mu_e$=0.0, $\sigma_e$=0.5, $s_{\text{bar}}$=1.0, $T$=500, $M$=1_000_000, $s_{\text{init}}$=1.0):
    # implementation of the simulation
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```plaintext
M = 1_000_000,
s_init = 1.0):

draws = np.empty(M)
for m in prange(M):
    s = s_init
    for t in range(T):
        if s < s_bar:
            new_s = np.exp(μ_e + σ_e * randn())
        else:
            a = np.exp(μ_a + σ_a * randn())
            b = np.exp(μ_b + σ_b * randn())
            new_s = a * s + b
            s = new_s
    draws[m] = s

return draws

data = generate_draws()
```

Now we produce the rank-size plot:

```plaintext
fig, ax = plt.subplots()

rank_data, size_data = qe.rank_size(data, c=0.01)
a.x.loglog(rank_data, size_data, 'o', markersize=3.0, alpha=0.5)
a.x.set_xlabel("log rank")
a.x.set_ylabel("log size")

plt.show()
```

The plot produces a straight line, consistent with a Pareto tail.
30.1 Overview

This notebook gives an introduction to wealth distribution dynamics, with a focus on

- modeling and computing the wealth distribution via simulation,
- measures of inequality such as the Lorenz curve and Gini coefficient, and
- how inequality is affected by the properties of wage income and returns on assets.

One interesting property of the wealth distribution we discuss is Pareto tails. The wealth distribution in many countries exhibits a Pareto tail

- See this lecture for a definition.
- For a review of the empirical evidence, see, for example, [BB18].

This is consistent with high concentration of wealth amongst the richest households.

It also gives us a way to quantify such concentration, in terms of the tail index.

One question of interest is whether or not we can replicate Pareto tails from a relatively simple model.
30.1.1 A Note on Assumptions

The evolution of wealth for any given household depends on their savings behavior. Modeling such behavior will form an important part of this lecture series. However, in this particular lecture, we will be content with rather ad hoc (but plausible) savings rules. We do this to more easily explore the implications of different specifications of income dynamics and investment returns. At the same time, all of the techniques discussed here can be plugged into models that use optimization to obtain savings rules.

We will use the following imports.

```python
@matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
import quantecon as qe
from numba import njit, float64, prange
from numba.experimental import jitclass
```

30.2 Lorenz Curves and the Gini Coefficient

Before we investigate wealth dynamics, we briefly review some measures of inequality.

30.2.1 Lorenz Curves

One popular graphical measure of inequality is the Lorenz curve. The package QuantEcon.py, already imported above, contains a function to compute Lorenz curves. To illustrate, suppose that

```python
n = 10_000  # size of sample
w = np.exp(np.random.randn(n))  # lognormal draws
```

is data representing the wealth of 10,000 households.

We can compute and plot the Lorenz curve as follows:

```python
f_vals, l_vals = qe.lorenz_curve(w)
fig, ax = plt.subplots()
ax.plot(f_vals, l_vals, label='Lorenz curve, lognormal sample')
ax.plot(f_vals, f_vals, label='Lorenz curve, equality')
av.legend()
plt.show()
```
This curve can be understood as follows: if point \((x, y)\) lies on the curve, it means that, collectively, the bottom \((100x)\%\) of the population holds \((100y)\%\) of the wealth.

The “equality” line is the 45 degree line (which might not be exactly 45 degrees in the figure, depending on the aspect ratio).

A sample that produces this line exhibits perfect equality.

The other line in the figure is the Lorenz curve for the lognormal sample, which deviates significantly from perfect equality.

For example, the bottom 80% of the population holds around 40% of total wealth.

Here is another example, which shows how the Lorenz curve shifts as the underlying distribution changes.

We generate 10,000 observations using the Pareto distribution with a range of parameters, and then compute the Lorenz curve corresponding to each set of observations.

```python
a_vals = (1, 2, 5)  # Pareto tail index
n = 10_000  # size of each sample
fig, ax = plt.subplots()
for a in a_vals:
    u = np.random.uniform(size=n)
    y = u**(-1/a)  # distributed as Pareto with tail index a
    f_vals, l_vals = qe.lorenz_curve(y)
    ax.plot(f_vals, l_vals, label=f'$a = {a}$')
ax.plot(f_vals, f_vals, label='equality')
ax.legend()
plt.show()
```
You can see that, as the tail parameter of the Pareto distribution increases, inequality decreases. This is to be expected, because a higher tail index implies less weight in the tail of the Pareto distribution.

30.2.2 The Gini Coefficient

The definition and interpretation of the Gini coefficient can be found on the corresponding Wikipedia page. A value of 0 indicates perfect equality (corresponding the case where the Lorenz curve matches the 45 degree line) and a value of 1 indicates complete inequality (all wealth held by the richest household).

The QuantEcon.py library contains a function to calculate the Gini coefficient.

We can test it on the Weibull distribution with parameter \(a \), where the Gini coefficient is known to be

\[
G = 1 - 2^{-1/a}
\]

Let’s see if the Gini coefficient computed from a simulated sample matches this at each fixed value of \(a \).

```python
a_vals = range(1, 20)
ginis = []
ginis_theoretical = []
n = 100

fig, ax = plt.subplots()
for a in a_vals:
    y = np.random.weibull(a, size=n)
    ginis.append(qe.gini_coefficient(y))
    ginis_theoretical.append(1 - 2**(-1/a))
ax.plot(a_vals, ginis, label='estimated gini coefficient')
ax.plot(a_vals, ginis_theoretical, label='theoretical gini coefficient')
ax.legend()
ax.set_xlabel("Weibull parameter $a$")
ax.set_ylabel("Gini coefficient")
plt.show()
```
The simulation shows that the fit is good.

30.3 A Model of Wealth Dynamics

Having discussed inequality measures, let us now turn to wealth dynamics.

The model we will study is

\[
 w_{t+1} = (1 + r_{t+1}) s(w_t) + y_{t+1}
\]

(30.1)

where

- \(w_t \) is wealth at time \(t \) for a given household,
- \(r_t \) is the rate of return of financial assets,
- \(y_t \) is current non-financial (e.g., labor) income and
- \(s(w_t) \) is current wealth net of consumption

Letting \(\{ z_t \} \) be a correlated state process of the form

\[
 z_{t+1} = a z_t + b + \sigma_z \epsilon_{t+1}
\]

we'll assume that

\[
 R_t := 1 + r_t = c_r \exp(z_t) + \exp(\mu_r + \sigma_r \xi_t)
\]

and

\[
 y_t = c_y \exp(z_t) + \exp(\mu_y + \sigma_y \zeta_t)
\]

Here \(\{ (\epsilon_t, \xi_t, \zeta_t) \} \) is IID and standard normal in \(\mathbb{R}^3 \).

The value of \(c_r \) should be close to zero, since rates of return on assets do not exhibit large trends.

When we simulate a population of households, we will assume all shocks are idiosyncratic (i.e., specific to individual households and independent across them).
Regarding the savings function \(s \), our default model will be

\[
s(w) = s_0 w \cdot 1\{w \geq \hat{w}\}
\]

(30.2)

where \(s_0 \) is a positive constant.

Thus, for \(w < \hat{w} \), the household saves nothing. For \(w \geq \hat{w} \), the household saves a fraction \(s_0 \) of their wealth.

We are using something akin to a fixed savings rate model, while acknowledging that low wealth households tend to save very little.

30.4 Implementation

Here’s some type information to help Numba.

```python
wealth_dynamics_data = [
    ('w_hat', float64), # savings parameter
    ('s_0', float64), # savings parameter
    ('c_y', float64), # labor income parameter
    ('\mu_y', float64), # labor income parameter
    ('c_r', float64), # rate of return parameter
    ('\mu_r', float64), # rate of return parameter
    ('c', float64), # aggregate shock parameter
    ('b', float64), # aggregate shock parameter
    ('z_mean', float64), # mean of z process
    ('z_var', float64), # variance of z process
    ('y_mean', float64), # mean of y process
    ('R_mean', float64) # mean of R process
]
```

Here’s a class that stores instance data and implements methods that update the aggregate state and household wealth.

```python
@jitclass(wealth_dynamics_data)
class WealthDynamics:
    def __init__(self,
        w_hat=1.0,
        s_0=0.75,
        c_y=1.0,
        \mu_y=1.0,
        c_r=0.05,
        \mu_r=0.1,
        \sigma_r=0.5,
        a=0.5,
        b=0.0,
        \sigma_z=0.1):
        self.w_hat, self.s_0 = w_hat, s_0
        self.c_y, self.\mu_y, self.\sigma_y = c_y, \mu_y, \sigma_y
        self.c_r, self.\mu_r, self.\sigma_r = c_r, \mu_r, \sigma_r
        self.a, self.b, self.\sigma_z = a, b, \sigma_z
```

(continues on next page)
Record stationary moments
self.z_mean = b / (1 - a)
self.z_var = c_z**2 / (1 - a**2)
exp_z_mean = np.exp(self.z_mean + self.z_var / 2)
self.R_mean = c_r * exp_z_mean + np.exp(μ_r + σ_r**2 / 2)
self.y_mean = c_y * exp_z_mean + np.exp(μ_y + σ_y**2 / 2)

Test a stability condition that ensures wealth does not diverge
to infinity.
a = self.R_mean * self.s_0
if a > 1:
 raise ValueError("Stability condition failed.")

def parameters(self):
 ""
 Collect and return parameters.
 ""
 parameters = (self.w_hat, self.s_0,
 self.c_y, self.μ_y, self.σ_y,
 self.c_r, self.μ_r, self.σ_r,
 self.a, self.b, self.σ_z)
 return parameters

def update_states(self, w, z):
 ""
 Update one period, given current wealth w and persistent state z.
 ""
 # Simplify names
 params = self.parameters()
 w_hat, s_0, c_y, μ_y, σ_y, c_r, μ_r, σ_r, a, b, σ_z = params
 zp = a * z + b + σ_z * np.random.randn()

 # Update wealth
 y = c_y * np.exp(zp) + np.exp(μ_y + σ_y * np.random.randn())
 wp = y
 if w >= w_hat:
 R = c_r * np.exp(zp) + np.exp(μ_r + σ_r * np.random.randn())
 wp += R * s_0 * w
 return wp, zp

Here’s function to simulate the time series of wealth for in individual households.

@njit
def wealth_time_series(wdy, w_0, n):
 ""
 Generate a single time series of length n for wealth given initial value w_0.
 The initial persistent state z_0 for each household is drawn from the stationary distribution of the AR(1) process.
 ""
 * wdy: an instance of WealthDynamics
 * w_0: scalar
 * n: int

(continues on next page)
Nowhere's function to simulate a cross section of households forward in time.

Note the use of parallelization to speed up computation.

```python
@njit(parallel=True)
def update_cross_section(wdy, w_distribution, shift_length=500):
    
    Shifts a cross-section of household forward in time

    * wdy: an instance of WealthDynamics
    * w_distribution: array_like, represents current cross-section

    Takes a current distribution of wealth values as w_distribution
    and updates each w_t in w_distribution to w_{t+j}, where
    j = shift_length.

    Returns the new distribution.

    
    new_distribution = np.empty_like(w_distribution)
    
    # Update each household
    for i in prange(len(new_distribution)):
        z = wdy.z_mean + np.sqrt(wdy.z_var) * np.random.randn()
        w = w_distribution[i]
        for t in range(shift_length-1):
            w, z = wdy.update_states(w, z)
        new_distribution[i] = w
    return new_distribution
```

Parallelization is very effective in the function above because the time path of each household can be calculated independently once the path for the aggregate state is known.
30.5 Applications

Let’s try simulating the model at different parameter values and investigate the implications for the wealth distribution.

30.5.1 Time Series

Let’s look at the wealth dynamics of an individual household.

```python
wdy = WealthDynamics()

# Time series parameters

# Plotting the time series

fig, ax = plt.subplots()
ax.plot(w)
plt.show()
```

Notice the large spikes in wealth over time.

Such spikes are similar to what we observed in time series when *we studied Kesten processes*.

30.5.2 Inequality Measures

Let’s look at how inequality varies with returns on financial assets.

The next function generates a cross section and then computes the Lorenz curve and Gini coefficient.

```python
def generate_lorenz_and_gini(wdy, num_households=100_000, T=500):
    """
    Generate the Lorenz curve data and gini coefficient corresponding to a
    WealthDynamics mode by simulating num_households forward to time T.
    """
    ψ_0 = np.full(num_households, wdy.y_mean)
    z_0 = wdy.z_mean
    (continues on next page)"""
```
Now we investigate how the Lorenz curves associated with the wealth distribution change as return to savings varies. The code below plots Lorenz curves for three different values of μ_r.

If you are running this yourself, note that it will take one or two minutes to execute.

This is unavoidable because we are executing a CPU intensive task.

In fact the code, which is JIT compiled and parallelized, runs extremely fast relative to the number of computations.

The Lorenz curve shifts downwards as returns on financial income rise, indicating a rise in inequality.

We will look at this again via the Gini coefficient immediately below, but first consider the following image of our system resources when the code above is executing:

Notice how effectively Numba has implemented multithreading for this routine: all 8 CPUs on our workstation are running at maximum capacity (even though four of them are virtual).

Since the code is both efficiently JIT compiled and fully parallelized, it’s close to impossible to make this sequence of tasks run faster without changing hardware.
Now let's check the Gini coefficient.

```python
def gini_coefficient(mu_r_vals):
    # code for calculating the Gini coefficient

fig, ax = plt.subplots()
ax.plot(mu_r_vals, gini_coefficient, label='Gini coefficient')
ax.set_xlabel(r'$\mu_r$')
ax.legend()
plt.show()
```

![Graph showing the Gini coefficient](image)

30.5. Applications
Once again, we see that inequality increases as returns on financial income rise.

Let’s finish this section by investigating what happens when we change the volatility term \(\sigma_r \) in financial returns.

```python
fig, ax = plt.subplots()
σ_r_vals = (0.35, 0.45, 0.52)
gini_vals = []
for σ_r in σ_r_vals:
    wdy = WealthDynamics(σ_r=σ_r)
    gv, (f_vals, l_vals) = generate_lorenz_and_gini(wdy)
    ax.plot(f_vals, l_vals, label=f'\psi^* at \sigma_r = {σ_r:.2f}')
    gini_vals.append(gv)
ax.plot(f_vals, f_vals, label='equality')
ax.legend(loc='upper left')
plt.show()
```

We see that greater volatility has the effect of increasing inequality in this model.

30.6 Exercises

Exercise 30.6.1

For a wealth or income distribution with Pareto tail, a higher tail index suggests lower inequality.

Indeed, it is possible to prove that the Gini coefficient of the Pareto distribution with tail index \(a \) is \(1/(2a - 1) \).

To the extent that you can, confirm this by simulation.

In particular, generate a plot of the Gini coefficient against the tail index using both the theoretical value just given and the value computed from a sample via `qe.gini_coefficient`.

For the values of the tail index, use \(a_{vals} = np.linspace(1, 10, 25) \).

Use sample of size 1,000 for each \(a \) and the sampling method for generating Pareto draws employed in the discussion of Lorenz curves for the Pareto distribution.
To the extent that you can, interpret the monotone relationship between the Gini index and a.

Solution to Exercise 30.6.1

Here is one solution, which produces a good match between theory and simulation.

```python
a_vals = np.linspace(1, 10, 25)  # Pareto tail index
ginis = np.empty_like(a_vals)

n = 1000  # size of each sample
fig, ax = plt.subplots()
for i, a in enumerate(a_vals):
    y = np.random.uniform(size=n)**(-1/a)
    ginis[i] = qe.gini_coefficient(y)
ax.plot(a_vals, ginis, label='sampled')
ax.plot(a_vals, 1/(2*a_vals - 1), label='theoretical')
ax.legend()
plt.show()
```

In general, for a Pareto distribution, a higher tail index implies less weight in the right hand tail. This means less extreme values for wealth and hence more equality. More equality translates to a lower Gini index.

Exercise 30.6.2

The wealth process (30.1) is similar to a *Kesten process*. This is because, according to (30.2), savings is constant for all wealth levels above \hat{w}. When savings is constant, the wealth process has the same quasi-linear structure as a Kesten process, with multiplicative and additive shocks. The Kesten–Goldie theorem tells us that Kesten processes have Pareto tails under a range of parameterizations.
The theorem does not directly apply here, since savings is not always constant and since the multiplicative and additive terms in (30.1) are not IID.

At the same time, given the similarities, perhaps Pareto tails will arise.

To test this, run a simulation that generates a cross-section of wealth and generate a rank-size plot.

If you like, you can use the function `rank_size` from the `quantecon` library (documentation here).

In viewing the plot, remember that Pareto tails generate a straight line. Is this what you see?

For sample size and initial conditions, use

```python
num_households = 250_000
T = 500  # shift forward T periods
ψ_0 = np.full(num_households, wdy.y_mean)  # initial distribution
z_0 = wdy.z_mean
ψ_star = update_cross_section(wdy, ψ_0, shift_length=T)
```

Solution to Exercise 30.6.2

First let's generate the distribution:

```python
num_households = 250_000
T = 500  # how far to shift forward in time
ψ_0 = np.full(num_households, wdy.y_mean)
z_0 = wdy.z_mean
ψ_star = update_cross_section(wdy, ψ_0, shift_length=T)
```

Now let's see the rank-size plot:

```python
fig, ax = plt.subplots()
rank_data, size_data = qe.rank_size(ψ_star, c=0.001)
ax.loglog(rank_data, size_data, 'o', markersize=3.0, alpha=0.5)
ax.set_xlabel("log rank")
ax.set_ylabel("log size")
plt.show()
```
Quantitative Economics with Python

30.6. Exercises
CHAPTER THIRTYONE

A FIRST LOOK AT THE KALMAN FILTER

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
```

31.1 Overview

This lecture provides a simple and intuitive introduction to the Kalman filter, for those who either

- have heard of the Kalman filter but don't know how it works, or
- know the Kalman filter equations, but don’t know where they come from

For additional (more advanced) reading on the Kalman filter, see

- [LS18], section 2.7
- [AM05]

The second reference presents a comprehensive treatment of the Kalman filter.

Required knowledge: Familiarity with matrix manipulations, multivariate normal distributions, covariance matrices, etc.

We'll need the following imports:

```python
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  # set default figure size
from scipy import linalg
import numpy as np
```

(continues on next page)
import matplotlib.cm as cm
def quantecon Kalman, LinearStateSpace
def scipy.stats norm
def scipy.integrate quad
def numpy.random multivariate_normal
def scipy.linalg eigvals

31.2 The Basic Idea

The Kalman filter has many applications in economics, but for now let’s pretend that we are rocket scientists.

A missile has been launched from country Y and our mission is to track it.

Let $x \in \mathbb{R}^2$ denote the current location of the missile—a pair indicating latitude-longitude coordinates on a map.

At the present moment in time, the precise location x is unknown, but we do have some beliefs about x.

One way to summarize our knowledge is a point prediction \hat{x}

- But what if the President wants to know the probability that the missile is currently over the Sea of Japan?
- Then it is better to summarize our initial beliefs with a bivariate probability density p

$$\int_E p(x)dx$$ indicates the probability that we attach to the missile being in region E.

The density p is called our prior for the random variable x.

To keep things tractable in our example, we assume that our prior is Gaussian.

In particular, we take

$$p = N(\hat{x}, \Sigma)$$

where \hat{x} is the mean of the distribution and Σ is a 2×2 covariance matrix. In our simulations, we will suppose that

$$\hat{x} = \begin{pmatrix} 0.2 \\ -0.2 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 0.4 & 0.3 \\ 0.3 & 0.45 \end{pmatrix}$$

This density $p(x)$ is shown below as a contour map, with the center of the red ellipse being equal to \hat{x}.
```python
y_grid = np.linspace(-3.1, 1.7, 100)
X, Y = np.meshgrid(x_grid, y_grid)

def bivariate_normal(x, y, σ_x=1.0, σ_y=1.0, μ_x=0.0, μ_y=0.0, σ_xy=0.0):
    """Compute and return the probability density function of bivariate normal
distribution of normal random variables x and y

Parameters
---------
x : array_like(float)
    Random variable
y : array_like(float)
    Random variable
σ_x : array_like(float)
    Standard deviation of random variable x
σ_y : array_like(float)
    Standard deviation of random variable y
μ_x : scalar(float)
    Mean value of random variable x
μ_y : scalar(float)
    Mean value of random variable y
σ_xy : array_like(float)
    Covariance of random variables x and y
"""

x_μ = x - μ_x
y_μ = y - μ_y
ρ = σ_xy / (σ_x * σ_y)
z = x_μ**2 / σ_x**2 + y_μ**2 / σ_y**2 - 2 * ρ * x_μ * y_μ / (σ_x * σ_y)
denom = 2 * np.pi * σ_x * σ_y * np.sqrt(1 - ρ**2)
return np.exp(-z / (2 * (1 - ρ**2))) / denom

def gen_gaussian_plot_vals(μ, C):
    """Z values for plotting the bivariate Gaussian N(μ, C)"
    m_x, m_y = float(μ[0]), float(μ[1])
    s_x, s_y = np.sqrt(C[0, 0]), np.sqrt(C[1, 1])
    s_xy = C[0, 1]
    return bivariate_normal(X, Y, s_x, s_y, m_x, m_y, s_xy)

# Plot the figure

fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
ax.contourf(X, Y, Z, 6, alpha=0.6, cmap=cm.jet)
cs = ax.contour(X, Y, Z, 6, colors="black")
```

(continues on next page)
31.2.1 The Filtering Step

We are now presented with some good news and some bad news.

The good news is that the missile has been located by our sensors, which report that the current location is $y = (2.3, -1.9)$.

The next figure shows the original prior $p(x)$ and the new reported location y.
The bad news is that our sensors are imprecise.

In particular, we should interpret the output of our sensor not as $y = x$, but rather as

$$y = Gx + v, \quad \text{where} \quad v \sim N(0, R) \quad (31.3)$$

Here G and R are 2×2 matrices with R positive definite. Both are assumed known, and the noise term v is assumed to be independent of x.

How then should we combine our prior $p(x) = N(\hat{x}, \Sigma)$ and this new information y to improve our understanding of the location of the missile?

As you may have guessed, the answer is to use Bayes’ theorem, which tells us to update our prior $p(x)$ to $p(x | y)$ via

$$p(x | y) = \frac{p(y | x) p(x)}{p(y)}$$

where $p(y) = \int p(y | x) p(x) dx$.

In solving for $p(x | y)$, we observe that

- $p(x) = N(\hat{x}, \Sigma)$.
- In view of (31.3), the conditional density $p(y | x)$ is $N(Gx, R)$.
- $p(y)$ does not depend on x, and enters into the calculations only as a normalizing constant.
Because we are in a linear and Gaussian framework, the updated density can be computed by calculating population linear regressions.

In particular, the solution is known\(^1\) to be

\[
p(x \mid y) = N(\hat{x}^F, \Sigma^F)
\]

where

\[
\hat{x}^F := \hat{x} + \Sigma G' (G \Sigma G' + R)^{-1} (y - G \hat{x}) \quad \text{and} \quad \Sigma^F := \Sigma - \Sigma G' (G \Sigma G' + R)^{-1} G \Sigma
\]

Here \(\Sigma G' (G \Sigma G' + R)^{-1}\) is the matrix of population regression coefficients of the hidden object \(x - \hat{x}\) on the surprise \(y - G \hat{x}\).

This new density \(p(x \mid y) = N(\hat{x}^F, \Sigma^F)\) is shown in the next figure via contour lines and the color map.

The original density is left in as contour lines for comparison

```python
fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
new_Z = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0]), float(y[1]), "$y$", fontsize=20, color="black")

plt.show()
```

\(^1\) See, for example, page 93 of [Bis06]. To get from his expressions to the ones used above, you will also need to apply the Woodbury matrix identity.
Our new density twists the prior \(p(x) \) in a direction determined by the new information \(y - G\hat{x} \).

In generating the figure, we set \(G \) to the identity matrix and \(R = 0.5\Sigma \) for \(\Sigma \) defined in (31.2).

31.2.2 The Forecast Step

What have we achieved so far?

We have obtained probabilities for the current location of the state (missile) given prior and current information.

This is called “filtering” rather than forecasting because we are filtering out noise rather than looking into the future.

- \(p(x \mid y) = N(\hat{x}^F, \Sigma^F) \) is called the *filtering distribution*.

But now let’s suppose that we are given another task: to predict the location of the missile after one unit of time (whatever that may be) has elapsed.

To do this we need a model of how the state evolves.

Let’s suppose that we have one, and that it’s linear and Gaussian. In particular,

\[
x_{t+1} = Ax_t + w_{t+1}, \quad \text{where} \quad w_t \sim N(0, Q)
\]

(31.5)

Our aim is to combine this law of motion and our current distribution \(p(x \mid y) = N(\hat{x}^F, \Sigma^F) \) to come up with a new *predictive* distribution for the location in one unit of time.
In view of \((31.5)\), all we have to do is introduce a random vector \(x^F \sim N(\hat{x}^F, \Sigma^F)\) and work out the distribution of \(Ax^F + w\) where \(w\) is independent of \(x^F\) and has distribution \(N(0, Q)\).

Since linear combinations of Gaussians are Gaussian, \(Ax^F + w\) is Gaussian.

Elementary calculations and the expressions in \((31.4)\) tell us that

\[
\mathbb{E}[Ax^F + w] = A\mathbb{E}x^F + \mathbb{E}w = A\hat{x}^F = A\hat{x} + A\Sigma G'(G\Sigma G' + R)^{-1}(y - G\hat{x})
\]

and

\[
\text{Var}[Ax^F + w] = A\text{Var}[x^F]A' + Q = A\Sigma A' + Q = A\Sigma A' - A\Sigma G'(G\Sigma G' + R)^{-1}G\Sigma A' + Q
\]

The matrix \(A\Sigma G'(G\Sigma G' + R)^{-1}\) is often written as \(K_{\Sigma}\) and called the Kalman gain.

- The subscript \(\Sigma\) has been added to remind us that \(K_{\Sigma}\) depends on \(\Sigma\), but not \(y\) or \(\hat{x}\).

Using this notation, we can summarize our results as follows.

Our updated prediction is the density \(N(\hat{x}_{\text{new}}, \Sigma_{\text{new}})\) where

\[
\hat{x}_{\text{new}} := A\hat{x} + K_{\Sigma}(y - G\hat{x})
\]

\[
\Sigma_{\text{new}} := A\Sigma A' - K_{\Sigma}G\Sigma A' + Q
\]

- The density \(p_{\text{new}}(x) = N(\hat{x}_{\text{new}}, \Sigma_{\text{new}})\) is called the predictive distribution

The predictive distribution is the new density shown in the following figure, where the update has used parameters.

\[
A = \begin{pmatrix}
1.2 & 0.0 \\
0.0 & -0.2
\end{pmatrix}, \quad Q = 0.3 \Sigma
\]

```python
fig, ax = plt.subplots(figsize=(10, 8))
ax.grid()

# Density 1
Z = gen_gaussian_plot_vals(x_hat, Sigma)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)

# Density 2
M = Sigma * G.T * linalg.inv(G * Sigma * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Sigma_F = Sigma - M * G * Sigma
Z_F = gen_gaussian_plot_vals(x_hat_F, Sigma_F)
cs2 = ax.contour(X, Y, Z_F, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)

# Density 3
new_x_hat = A * x_hat_F
new_Sigma = A * Sigma_F * A.T + Q
new_Z = gen_gaussian_plot_vals(new_x_hat, new_Sigma)
cs3 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs3, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0]), float(y[1]), "$Sy$", fontsize=20, color="black")

plt.show()
```
31.2.3 The Recursive Procedure

Let’s look back at what we’ve done.

We started the current period with a prior \(p(x) \) for the location \(x \) of the missile.

We then used the current measurement \(y \) to update to \(p(x | y) \).

Finally, we used the law of motion (31.5) for \(\{x_t\} \) to update to \(p_{new}(x) \).

If we now step into the next period, we are ready to go round again, taking \(p_{new}(x) \) as the current prior.

Swapping notation \(p_t(x) \) for \(p(x) \) and \(p_{t+1}(x) \) for \(p_{new}(x) \), the full recursive procedure is:

1. Start the current period with prior \(p_t(x) = N(\hat{x}_t, \Sigma_t) \).
2. Observe current measurement \(y_t \).
3. Compute the filtering distribution \(p_t(x | y) = N(\hat{x}_t^F, \Sigma_t^F) \) from \(p_t(x) \) and \(y_t \), applying Bayes rule and the conditional distribution (31.3).
4. Compute the predictive distribution \(p_{t+1}(x) = N(\hat{x}_{t+1}, \Sigma_{t+1}) \) from the filtering distribution and (31.5).
5. Increment \(t \) by one and go to step 1.
Repeating (31.6), the dynamics for \(\hat{x}_t \) and \(\Sigma_t \) are as follows

\[
\hat{x}_{t+1} = A\hat{x}_t + K\Sigma_t(y_t - G\hat{x}_t) \\
\Sigma_{t+1} = A\Sigma_tA' - K\Sigma_tG\Sigma_tA' + Q
\]

These are the standard dynamic equations for the Kalman filter (see, for example, [LS18], page 58).

31.3 Convergence

The matrix \(\Sigma_t \) is a measure of the uncertainty of our prediction \(\hat{x}_t \) of \(x_t \).

Apart from special cases, this uncertainty will never be fully resolved, regardless of how much time elapses.

One reason is that our prediction \(\hat{x}_t \) is made based on information available at \(t - 1 \), not \(t \).

Even if we know the precise value of \(x_{t-1} \) (which we don’t), the transition equation (31.5) implies that \(x_t = Ax_{t-1} + w_t \).

Since the shock \(w_t \) is not observable at \(t-1 \), any time \(t-1 \) prediction of \(x_t \) will incur some error (unless \(w_t \) is degenerate).

However, it is certainly possible that \(\Sigma_t \) converges to a constant matrix as \(t \to \infty \).

To study this topic, let’s expand the second equation in (31.6):

\[
\Sigma_{t+1} = A\Sigma_tA' - A\Sigma_tG'(G\Sigma_tG' + R)^{-1}G\Sigma_tA' + Q
\]

(31.6)

This is a nonlinear difference equation in \(\Sigma_t \).

A fixed point of (31.6) is a constant matrix \(\Sigma \) such that

\[
\Sigma = A\Sigma A' - A\Sigma G'(G\Sigma G' + R)^{-1}G\Sigma A' + Q
\]

(31.7)

Equation (31.6) is known as a discrete-time Riccati difference equation.

Equation (31.7) is known as a **discrete-time algebraic Riccati equation**.

Conditions under which a fixed point exists and the sequence \{\(\Sigma_t \)\} converges to it are discussed in [AHMS96] and [AM05], chapter 4.

A sufficient (but not necessary) condition is that all the eigenvalues \(\lambda_i \) of \(A \) satisfy \(|\lambda_i| < 1 \) (cf. e.g., [AM05], p. 77).

(This strong condition assures that the unconditional distribution of \(x_t \) converges as \(t \to +\infty \).)

In this case, for any initial choice of \(\Sigma_0 \) that is both non-negative and symmetric, the sequence \{\(\Sigma_t \)\} in (31.6) converges to a non-negative symmetric matrix \(\Sigma \) that solves (31.7).

31.4 Implementation

The class **Kalman** from the **QuantEcon.py** package implements the Kalman filter

- Instance data consists of:
 - the moments \((\hat{x}_t, \Sigma_t) \) of the current prior.
 - An instance of the **LinearStateSpace** class from **QuantEcon.py**.

The latter represents a linear state space model of the form

\[
x_{t+1} = Ax_t + Cw_{t+1} \\
y_t = Gx_t + Hv_t
\]
where the shocks \(w_t \) and \(v_t \) are IID standard normals.

To connect this with the notation of this lecture we set

\[
Q := CC' \quad \text{and} \quad R := HH'
\]

- The class \texttt{Kalman} from the \texttt{QuantEcon.py} package has a number of methods, some that we will wait to use until we study more advanced applications in subsequent lectures.

- Methods pertinent for this lecture are:
 - \texttt{prior_to_filtered}, which updates \((\hat{x}_t, \Sigma_t)\) to \((\hat{x}_F^t, \Sigma_F^t)\)
 - \texttt{filtered_to_forecast}, which updates the filtering distribution to the predictive distribution – which becomes the new prior \((\hat{x}_{t+1}, \Sigma_{t+1})\)
 - \texttt{update}, which combines the last two methods
 - \texttt{stationary_values}, which computes the solution to (31.7) and the corresponding (stationary) Kalman gain

You can view the program on GitHub.

31.5 Exercises

Exercise 31.5.1

Consider the following simple application of the Kalman filter, loosely based on [LS18], section 2.9.2.

Suppose that

- all variables are scalars
- the hidden state \(\{x_t\} \) is in fact constant, equal to some \(\theta \in \mathbb{R} \) unknown to the modeler

State dynamics are therefore given by (31.5) with \(A = 1, Q = 0 \) and \(x_0 = \theta \).

The measurement equation is \(y_t = \theta + v_t \) where \(v_t \) is \(N(0, 1) \) and IID.

The task of this exercise is to simulate the model and, using the code from \texttt{kalman.py}, plot the first five predictive densities \(p_t(x) = N(\hat{x}_t, \Sigma_t) \).

As shown in [LS18], sections 2.9.1–2.9.2, these distributions asymptotically put all mass on the unknown value \(\theta \).

In the simulation, take \(\theta = 10, \hat{x}_0 = 8 \) and \(\Sigma_0 = 1 \).

Your figure should – modulo randomness – look something like this

Solution to Exercise 31.5.1

```python
# Parameters
θ = 10  # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=θ)

# Set prior, initialize kalman filter
x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)
```

(continues on next page)
First 5 densities when $\theta = 10.0$
Draw observations of y from state space model

\[N = 5 \]
\[x, y = ss.\text{simulate}(N) \]
\[y = y.\text{flatten()} \]

Set up plot

\[\text{fig, ax = plt.subplots(figsize=(10,8))} \]
\[\text{xgrid = np.linspace(\theta - 5, \theta + 2, 200)} \]

\text{for i in range(N):}

\[\text{# Record the current predicted mean and variance} \]
\[\text{m, v = [float(z) for z in \text{kalman.x_hat, kalman.Sigma}]} \]

\[\text{# Plot, update filter} \]
\[\text{ax.plot(xgrid, norm.pdf(xgrid, loc=m, scale=np.sqrt(v)), label='t={i}')} \]
\[\text{kalman.update(y[i])} \]

\[\text{ax.set_title('First \{N\} densities when $\theta = \{\theta:.1f\}$')} \]
\[\text{ax.legend(loc='upper left')} \]
\[\text{plt.show()} \]
Exercise 31.5.2

The preceding figure gives some support to the idea that probability mass converges to θ.

To get a better idea, choose a small $\epsilon > 0$ and calculate

$$z_t := 1 - \int_{\theta-\epsilon}^{\theta+\epsilon} p_t(x) \, dx$$

for $t = 0, 1, 2, \ldots, T$.

Plot z_t against T, setting $\epsilon = 0.1$ and $T = 600$.

Your figure should show error erratically declining something like this

Solution to Exercise 31.5.2

```python
epsilon = 0.1
theta = 10  # Constant value of state x_t
A, C, G, H = 1, 0, 1, 1
ss = LinearStateSpace(A, C, G, H, mu_0=theta)
```
x_hat_0, Σ_0 = 8, 1
kalman = Kalman(ss, x_hat_0, Σ_0)

T = 600
z = np.empty(T)
x, y = ss.simulate(T)
y = y.flatten()

for t in range(T):
 # Record the current predicted mean and variance and plot their densities
 m, v = [float(temp) for temp in (kalman.x_hat, kalman.Sigma)]
 f = lambda x: norm.pdf(x, loc=m, scale=np.sqrt(v))
 integral, error = quad(f, θ - ϵ, θ + ϵ)
 z[t] = 1 - integral
 kalman.update(y[t])

fig, ax = plt.subplots(figsize=(9, 7))
ax.set_ylim(0, 1)
ax.set_xlim(0, T)
ax.plot(range(T), z)
ax.fill_between(range(T), np.zeros(T), z, color="blue", alpha=0.2)
plt.show()
Exercise 31.5.3

As discussed above, if the shock sequence \(\{w_t\} \) is not degenerate, then it is not in general possible to predict \(x_t \) without error at time \(t - 1 \) (and this would be the case even if we could observe \(x_{t-1} \)).

Let’s now compare the prediction \(\hat{x}_t \) made by the Kalman filter against a competitor who is allowed to observe \(x_{t-1} \).

This competitor will use the conditional expectation \(\mathbb{E}[x_t | x_{t-1}] \), which in this case is \(Ax_{t-1} \).

The conditional expectation is known to be the optimal prediction method in terms of minimizing mean squared error.

(More precisely, the minimizer of \(\mathbb{E} \|x_t - g(x_{t-1})\|^2 \) with respect to \(g \) is \(g^*(x_{t-1}) := \mathbb{E}[x_t | x_{t-1}] \))

Thus we are comparing the Kalman filter against a competitor who has more information (in the sense of being able to observe the latent state) and behaves optimally in terms of minimizing squared error.

Our horse race will be assessed in terms of squared error.

In particular, your task is to generate a graph plotting observations of both \(\|x_t - Ax_{t-1}\|^2 \) and \(\|x_t - \hat{x}_t\|^2 \) against \(t \) for \(t = 1, \ldots, 50 \).

For the parameters, set \(G = I, R = 0.5I \) and \(Q = 0.3I \), where \(I \) is the \(2 \times 2 \) identity.

Set

\[
A = \begin{pmatrix} 0.5 & 0.4 \\ 0.6 & 0.3 \end{pmatrix}
\]

To initialize the prior density, set

\[
\Sigma_0 = \begin{pmatrix} 0.9 & 0.3 \\ 0.3 & 0.9 \end{pmatrix}
\]

and \(\hat{x}_0 = (8, 8) \).

Finally, set \(x_0 = (0, 0) \).

You should end up with a figure similar to the following (modulo randomness)

Observe how, after an initial learning period, the Kalman filter performs quite well, even relative to the competitor who predicts optimally with knowledge of the latent state.

Solution to Exercise 31.5.3

```python
# Define A, C, G, H
G = np.identity(2)
H = np.sqrt(0.5) * np.identity(2)
A = [[0.5, 0.4],
     [0.6, 0.3]]
C = np.sqrt(0.3) * np.identity(2)

# Set up state space mode, initial value x_0 set to zero
ss = LinearStateSpace(A, C, G, H, mu_0 = np.zeros(2))

# Define the prior density
Sigma = [[0.9, 0.3],
         [0.3, 0.9]]
```

(continues on next page)
Σ = np.array(Σ)
x_hat = np.array([8, 8])

Initialize the Kalman filter
kn = Kalman(ss, x_hat, Σ)

Print eigenvalues of A
print("Eigenvalues of A:")
print(eigvals(A))

Print stationary Σ
S, K = kn.stationary_values()
print("Stationary prediction error variance:")
print(S)

Generate the plot
T = 50
x, y = ss.simulate(T)
e1 = np.empty(T-1)
e2 = np.empty(T-1)

for t in range(1, T):
 kn.update(y[:,t])
 e1[t-1] = np.sum((x[:, t] - kn.x_hat.flatten())**2)
Quantitative Economics with Python

(continued from previous page)

\[e2[t-1] = \text{np.sum}(x[:, t] - A \otimes x[:, t-1])**2 \]

fig, ax = plt.subplots(figsize=(9,6))
ax.plot(range(1, T), e1, 'k-', lw=2, alpha=0.6, label='Kalman filter error')
ax.plot(range(1, T), e2, 'g-', lw=2, alpha=0.6, label='Conditional expectation error')
ax.legend()
plt.show()

Eigenvalues of A:
[0.9+0.j -0.1+0.j]
Stationary prediction error variance:
[[0.40329108 0.1050718]
 [0.1050718 0.41061709]]

Exercise 31.5.4
Try varying the coefficient 0.3 in \(Q = 0.3I \) up and down.
Observe how the diagonal values in the stationary solution \(\Sigma \) (see (31.7)) increase and decrease in line with this coefficient.
The interpretation is that more randomness in the law of motion for \(x_t \) causes more (permanent) uncertainty in prediction.
32.1 Overview

The shortest path problem is a classic problem in mathematics and computer science with applications in

- Economics (sequential decision making, analysis of social networks, etc.)
- Operations research and transportation
- Robotics and artificial intelligence
- Telecommunication network design and routing
- etc., etc.

Variations of the methods we discuss in this lecture are used millions of times every day, in applications such as

- Google Maps
- routing packets on the internet

For us, the shortest path problem also provides a nice introduction to the logic of dynamic programming. Dynamic programming is an extremely powerful optimization technique that we apply in many lectures on this site.

The only scientific library we’ll need in what follows is NumPy:

```python
import numpy as np
```
32.2 Outline of the Problem

The shortest path problem is one of finding how to traverse a graph from one specified node to another at minimum cost. Consider the following graph

![Graph](image)

We wish to travel from node (vertex) A to node G at minimum cost

- Arrows (edges) indicate the movements we can take.
- Numbers on edges indicate the cost of traveling that edge.

(Graphs such as the one above are called weighted directed graphs.)

Possible interpretations of the graph include

- Minimum cost for supplier to reach a destination.
- Routing of packets on the internet (minimize time).
- Etc., etc.

For this simple graph, a quick scan of the edges shows that the optimal paths are

- A, C, F, G at cost 8
- A, D, F, G at cost 8
32.2. Outline of the Problem
32.3 Finding Least-Cost Paths

For large graphs, we need a systematic solution.

Let \(J(v) \) denote the minimum cost-to-go from node \(v \), understood as the total cost from \(v \) if we take the best route.

Suppose that we know \(J(v) \) for each node \(v \), as shown below for the graph from the preceding example.

\[
J(v) = \min_{w \in F_v} \{ c(v, w) + J(w) \}
\]

Note that \(J(G) = 0 \).

The best path can now be found as follows

1. Start at node \(v = A \)
2. From current node \(v \), move to any node that solves

\[
\min_{w \in F_v} \{ c(v, w) + J(w) \}
\]

where

- \(F_v \) is the set of nodes that can be reached from \(v \) in one step.
- \(c(v, w) \) is the cost of traveling from \(v \) to \(w \).

Hence, if we know the function \(J \), then finding the best path is almost trivial.

But how can we find the cost-to-go function \(J \)?

Some thought will convince you that, for every node \(v \), the function \(J \) satisfies

\[
J(v) = \min_{w \in F_v} \{ c(v, w) + J(w) \}
\]

This is known as the Bellman equation, after the mathematician Richard Bellman.

The Bellman equation can be thought of as a restriction that \(J \) must satisfy.

What we want to do now is use this restriction to compute \(J \).
32.4 Solving for Minimum Cost-to-Go

Let’s look at an algorithm for computing J and then think about how to implement it.

32.4.1 The Algorithm

The standard algorithm for finding J is to start an initial guess and then iterate.

This is a standard approach to solving nonlinear equations, often called the method of successive approximations.

Our initial guess will be

$$J_0(v) = 0 \text{ for all } v$$

Now

1. Set $n = 0$
2. Set $J_{n+1}(v) = \min_{w \in F_v} \{ c(v, w) + J_n(w) \}$ for all v
3. If J_{n+1} and J_n are not equal then increment n, go to 2

This sequence converges to J.

Although we omit the proof, we’ll prove similar claims in our other lectures on dynamic programming.

32.4.2 Implementation

Having an algorithm is a good start, but we also need to think about how to implement it on a computer.

First, for the cost function c, we’ll implement it as a matrix Q, where a typical element is

$$Q(v, w) = \begin{cases}
 c(v, w) & \text{if } w \in F_v \\
 +\infty & \text{otherwise}
\end{cases}$$

In this context Q is usually called the distance matrix.

We’re also numbering the nodes now, with $A = 0$, so, for example

$$Q(1, 2) = \text{the cost of traveling from B to C}$$

For example, for the simple graph above, we set

```python
from numpy import inf
Q = np.array([[inf, 1, 5, 3, inf, inf, inf],
              [inf, inf, inf, 9, 6, inf, inf],
              [inf, inf, inf, inf, 2, inf, inf],
              [inf, inf, inf, inf, 4, 8],
              [inf, inf, inf, inf, inf, 4],
              [inf, inf, inf, inf, inf, inf],
              [inf, inf, inf, inf, inf, 0]])
```

Notice that the cost of staying still (on the principle diagonal) is set to

- `np.inf` for non-destination nodes — moving on is required.
- 0 for the destination node — here is where we stop.
For the sequence of approximations \(\{J_n\} \) of the cost-to-go functions, we can use NumPy arrays.

Let’s try with this example and see how we go:

```python
nodes = range(7)  # Nodes = 0, 1, ..., 6
J = np.zeros_like(nodes, dtype=int)  # Initial guess
next_J = np.empty_like(nodes, dtype=int)  # Stores updated guess

max_iter = 500
i = 0

while i < max_iter:
    for v in nodes:
        # minimize Q[v, w] + J[w] over all choices of w
        lowest_cost = inf
        for w in nodes:
            cost = Q[v, w] + J[w]
            if cost < lowest_cost:
                lowest_cost = cost
                next_J[v] = lowest_cost
        if np.equal(next_J, J).all():
            break
    else:
        J[:] = next_J  # Copy contents of next_J to J
    i += 1

print("The cost-to-go function is", J)
```

This matches with the numbers we obtained by inspection above.

But, importantly, we now have a methodology for tackling large graphs.

32.5 Exercises

Exercise 32.5.1

The text below describes a weighted directed graph.

The line `node0, node1 0.04, node8 11.11, node14 72.21` means that from node0 we can go to

- node1 at cost 0.04
- node8 at cost 11.11
- node14 at cost 72.21

No other nodes can be reached directly from node0.

Other lines have a similar interpretation.

Your task is to use the algorithm given above to find the optimal path and its cost.

Note: You will be dealing with floating point numbers now, rather than integers, so consider replacing `np.equal()` with `np.allclose()`.
%file graph.txt
node0, node1 0.04, node8 11.11, node14 72.21
node1, node46 1247.25, node6 20.59, node13 64.94
node2, node66 54.18, node31 166.80, node45 1561.45
node3, node20 133.65, node6 2.06, node11 42.43
node4, node75 3706.67, node5 0.73, node7 1.02
node5, node45 1382.97, node7 3.33, node11 34.54
node6, node31 63.17, node9 0.72, node10 13.10
node7, node50 478.14, node9 3.15, node10 5.85
node8, node69 577.91, node11 7.45, node12 3.18
node9, node70 2454.28, node13 4.42, node20 16.53
node10, node89 5352.79, node12 1.87, node16 25.16
node11, node48 4961.32, node17 37.55, node20 65.08
node12, node75 3706.67, node5 0.73, node7 1.02
node13, node60 2135.95, node38 236.33, node40 475.33
node14, node67 1878.96, node16 2.70, node24 38.65
node15, node94 4961.32, node18 37.55, node20 65.08
node16, node36 392.92, node19 3.49, node28 170.04
node17, node76 783.29, node22 24.78, node23 26.45
node18, node91 3363.17, node23 16.23, node28 50.84
node19, node26 20.09, node19 3.49, node28 170.04
node20, node98 3523.33, node24 9.81, node33 145.80
node21, node56 626.04, node28 36.65, node31 27.06
node22, node72 1447.22, node39 136.32, node40 124.22
node23, node52 336.73, node26 2.66, node33 22.37
node24, node66 875.19, node26 1.80, node28 14.25
node25, node70 1343.63, node32 36.58, node35 45.55
node26, node47 135.78, node27 0.01, node42 122.00
node27, node65 480.55, node35 48.10, node43 246.24
node28, node82 2538.18, node34 21.79, node36 15.52
node29, node64 635.52, node32 4.22, node33 12.61
node30, node98 2616.03, node33 5.61, node35 13.95
node31, node98 3523.33, node24 9.81, node33 145.80
node32, node98 626.04, node28 36.65, node31 27.06
node33, node31 1854.73, node41 3.23, node47 111.54
node34, node73 1075.38, node42 51.52, node48 129.45
node35, node52 17.57, node41 2.09, node50 78.81
node36, node71 1171.60, node54 101.08, node57 260.46
node37, node75 269.97, node38 0.36, node46 80.49
node38, node93 1737.85, node40 1.79, node42 8.78
node39, node50 39.88, node40 0.95, node41 1.34
node40, node75 548.68, node47 28.57, node54 53.46
node41, node53 18.23, node46 0.28, node54 162.24
node42, node59 141.86, node47 10.08, node72 437.49
node43, node98 2984.83, node54 95.06, node60 116.23
node44, node41 807.39, node46 1.56, node47 2.14
node45, node58 79.93, node47 3.68, node49 15.51
node46, node52 22.68, node57 27.50, node67 65.48
node47, node50 2.82, node56 49.31, node61 172.64
node48, node99 2564.12, node59 34.52, node60 66.44
node49, node78 53.79, node50 0.51, node56 10.89
node50, node85 251.76, node53 1.38, node55 20.10
node51, node98 2110.67, node59 23.67, node60 73.79
node52, node94 1471.80, node64 102.41, node66 123.03
node53, node72 22.85, node56 4.33, node67 88.35
node54, node88 967.59, node59 24.30, node73 238.61
node55, node84 86.09, node57 2.13, node64 60.80

(continues on next page)
Overwriting graph.txt

Solution to Exercise 32.5.1

First let's write a function that reads in the graph data above and builds a distance matrix.

```python
def read_graph_data(num_nodes, destination_node):
    # Read the graph data here
    # Return the distance matrix
```
In addition, let’s write

1. a “Bellman operator” function that takes a distance matrix and current guess of J and returns an updated guess of J, and
2. a function that takes a distance matrix and returns a cost-to-go function.

We’ll use the algorithm described above.

The minimization step is vectorized to make it faster.

```python
def map_graph_to_distance_matrix(in_file):
    # First let’s set of the distance matrix $Q$ with inf everywhere
    Q = np.full((num_nodes, num_nodes), np.inf)

    # Now we read in the data and modify $Q$
    infile = open(in_file)
    for line in infile:
        elements = line.split(',')
        node = elements.pop(0)
        node = int(node[4:])  # convert node description to integer
        if node != destination_node:
            for element in elements:
                destination, cost = element.split()
                destination = int(destination[4:])
                Q[node, destination] = float(cost)
                Q[destination_node, destination_node] = 0

    infile.close()
    return Q
```

We used `np.allclose()` rather than testing exact equality because we are dealing with floating point numbers now.

```python
def bellman(J, Q):
    num_nodes = Q.shape[0]
    next_J = np.empty_like(J)
    for v in range(num_nodes):
        next_J[v] = np.min(Q[v, :] + J)
    return next_J

def compute_cost_to_go(Q):
    num_nodes = Q.shape[0]
    J = np.zeros(num_nodes)  # Initial guess
    max_iter = 500
    i = 0

    while i < max_iter:
        next_J = bellman(J, Q)
        if np.allclose(next_J, J):
            break
        else:
            J[:] = next_J  # Copy contents of next_J to J
            i += 1

    return(J)
```

32.5. Exercises
Finally, here’s a function that uses the cost-to-go function to obtain the optimal path (and its cost).

```python
def print_best_path(J, Q):
    sum_costs = 0
    current_node = 0
    while current_node != destination_node:
        print(current_node)
        # Move to the next node and increment costs
        next_node = np.argmin(Q[current_node, :) + J)
        sum_costs += Q[current_node, next_node]
        current_node = next_node

    print(destination_node)
    print('Cost: ', sum_costs)
```

Okay, now we have the necessary functions, let’s call them to do the job we were assigned.

```python
Q = map_graph_to_distance_matrix('graph.txt')
J = compute_cost_to_go(Q)
print_best_path(J, Q)
```

The total cost of the path should agree with $J[0]$ so let’s check this.

```plaintext
J[0]
```

```
160.55
```
Part V

Search
CHAPTER
THIRTYTHREE

JOB SEARCH I: THE MCCALL SEARCH MODEL

Contents

• Job Search I: The McCall Search Model
 – Overview
 – The McCall Model
 – Computing an Optimal Policy: Take 1
 – Computing an Optimal Policy: Take 2
 – Exercises

“Questioning a McCall worker is like having a conversation with an out-of-work friend: ‘Maybe you are setting your sights too high’, or ‘Why did you quit your old job before you had a new one lined up?’ This is real social science: an attempt to model, to understand, human behavior by visualizing the situation people find themselves in, the options they face and the pros and cons as they themselves see them.” – Robert E. Lucas, Jr.

In addition to what’s in Anaconda, this lecture will need the following libraries:

```
!pip install quantecon
```

33.1 Overview

The McCall search model [McC70] helped transform economists’ way of thinking about labor markets.

To clarify notions such as “involuntary” unemployment, McCall modeled the decision problem of an unemployed worker in terms of factors including

• current and likely future wages
• impatience
• unemployment compensation

To solve the decision problem McCall used dynamic programming.

Here we set up McCall’s model and use dynamic programming to analyze it.

As we’ll see, McCall’s model is not only interesting in its own right but also an excellent vehicle for learning dynamic programming.
Let's start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  # set default figure size
import numpy as np
from numba import jit, float64
from numba.experimental import jitclass
import quantecon as qe
from quantecon.distributions import BetaBinomial
```

33.2 The McCall Model

At the beginning of each period, a worker who was unemployed last period receives one job offer to work this period at all subsequent periods at a wage w_t.

The wage offer w_t is a nonnegative function of some underlying state s_t:

$$w_t = w(s_t) \quad \text{where} \quad s_t \in S$$

Here you should think of state process $\{s_t\}$ as some underlying, unspecified random factor that determines wages.

(Introducing an exogenous stochastic state process is a standard way for economists to inject randomness into their models.)

In this lecture, we adopt the following simple environment:

- $\{s_t\}$ is IID, with $q(s)$ being the probability of observing state s in S at each point in time,
- the agent observes s_t at the start of t and hence knows $w_t = w(s_t)$,
- the set S is finite.

(In later lectures, we shall relax some of these assumptions.)

At time t, our agent has two choices:

1. Accept the offer and work permanently at constant wage w_t.
2. Reject the offer, receive unemployment compensation c, and reconsider next period.

The agent is infinitely lived and aims to maximize the expected discounted sum of earnings

$$E \sum_{t=0}^{\infty} \beta^t y_t$$

The constant β lies in $(0, 1)$ and is called a discount factor.

The smaller is β, the more the agent discounts future utilities relative to current utility.

The variable y_t is income, equal to

- his/her wage w_t when employed
- unemployment compensation c when unemployed

The worker knows that $\{s_t\}$ is IID with common distribution q and uses knowledge when he or she computes mathematical expectations of various random variables that are functions of s_t.

33.2.1 A Trade-Off

The worker faces a trade-off:

- Waiting too long for a good offer is costly, since the future is discounted.
- Accepting too early is costly, since better offers might arrive in the future.

To decide optimally in the face of this trade-off, we use dynamic programming. Dynamic programming can be thought of as a two-step procedure that

1. first assigns values to “states”
2. then deduces optimal actions given those values

We’ll go through these steps in turn.

33.2.2 The Value Function

In order optimally to trade-off current and future rewards, we think about two things:

1. current payoffs that arise from making alternative choices
2. different states that those choices take us to next period (in this case, either employment or unemployment)

To assess these two aspects of the decision problem, we assign expected discounted values to states.

This leads us to construct an instance of the celebrated value function of dynamic programming.

Definitions of value functions typically begin with the word “let”.

Thus, let $v^*(s)$ be the optimal value of the problem when $s \in S$ for a previously unemployed worker who, starting this period, has just received an offer to work forever at wage $w(s)$ and who is yet to decide whether to accept or reject the offer.

Thus, the function $v^*(s)$ is the maximum value of objective (34.1) for a previously unemployed worker who has offer $w(s)$ in hand and has yet to choose whether to accept it.

Notice that $v^*(s)$ is part of the solution of the problem, so it isn’t obvious that it is a good idea to start working on the problem by focusing on $v^*(s)$.

There is a chicken and egg problem: we don’t know how to compute $v^*(s)$ because we don’t yet know what decisions are optimal and what aren’t!

But it turns out to be a really good idea by asking what properties the optimal value function $v^*(s)$ must have in order it to qualify as an optimal value function.

Think of v^* as a function that assigns to each possible state s the maximal expected discounted income stream that can be obtained with that offer in hand.

A crucial observation is that the optimal value function v^* must satisfy functional equation

$$v^*(s) = \max \left\{ \frac{w(s)}{1 - \beta}, c + \beta \sum_{s' \in S} v^*(s') q(s') \right\}$$

for every possible s in S.

Notice how the function $v^*(s)$ appears on both the right and left sides of equation (33.1) – that is why it is called a functional equation, i.e., an equation that restricts a function.

This important equation is a version of a Bellman equation, an equation that is ubiquitous in economic dynamics and other fields involving planning over time.
The intuition behind it is as follows:

- the first term inside the max operation is the lifetime payoff from accepting current offer, since
 \[
 \frac{w(s)}{1 - \beta} = w(s) + \beta w(s) + \beta^2 w(s) + \ldots
 \]

- the second term inside the max operation is the lifetime payoff from rejecting the current offer and then behaving optimally in all subsequent periods

If we optimize and pick the best of these two options, we obtain maximal lifetime value from today, given current state \(s\). But this is precisely \(v^*(s)\), which is the l.h.s. of (33.1).

33.2.3 The Optimal Policy

Suppose for now that we are able to solve (33.1) for the unknown function \(v^*\).

Once we have this function in hand we can figure out how behave optimally (i.e., to choose whether to accept and reject \(w(s)\)).

All we have to do is select the maximal choice on the r.h.s. of (33.1).

The optimal action in state \(s\) can be thought of as a part of a policy that maps a state into an action.

Given any \(s\), we can read off the corresponding best choice (accept or reject) by picking the max on the r.h.s. of (33.1).

Thus, we have a map from \(\mathbb{R}\) to \(\{0, 1\}\), with 1 meaning accept and 0 meaning reject.

We can write the policy as follows

\[
\sigma(s) := 1\left\{ \frac{w(s)}{1 - \beta} \geq c + \beta \sum_{s' \in S} v^*(s')q(s') \right\}
\]

Here \(1\{P\} = 1\) if statement \(P\) is true and equals 0 otherwise.

We can also write this as

\[
\sigma(s) := 1\{w(s) \geq \bar{w}\}
\]

where

\[
\bar{w} := (1 - \beta) \left\{ c + \beta \sum_{s'} v^*(s')q(s') \right\}
\]

(33.2)

Here \(\bar{w}\) (called the reservation wage) is a constant that depends on \(\beta, c\), and the wage probability distribution induced by \(q(s)\) and \(w(s)\).

The agent should accept offer \(w(s)\) if and only if it exceeds the reservation wage.

In view of (33.2), we can compute this reservation wage if we can compute the value function.

33.3 Computing an Optimal Policy: Take 1

To put the above ideas into action, we need to compute the value function at each possible state \(s \in S\).

Let's suppose that \(S = \{1, \ldots, n\}\).

The value function is then represented by the vector \(v^* = (v^*(i))_{i=1}^n\).
In view of (33.1), this vector satisfies the nonlinear system of equations

\[v^*(i) = \max \left\{ \frac{w(i)}{1 - \beta}, c + \beta \sum_{1 \leq j \leq n} v^*(j)q(j) \right\} \text{ for } i = 1, \ldots, n \]

(33.3)

33.3.1 The Algorithm

To compute the vector \(v^*(i), i = 1, \ldots, n \), we use successive approximations:

Step 1: pick an arbitrary initial guess \(v \in \mathbb{R}^n \).

Step 2: compute a new vector \(v' \in \mathbb{R}^n \) via

\[v'(i) = \max \left\{ \frac{w(i)}{1 - \beta}, c + \beta \sum_{1 \leq j \leq n} v(j)q(j) \right\} \text{ for } i = 1, \ldots, n \]

(33.4)

Step 3: calculate a measure of a discrepancy between \(v \) and \(v' \), such as \(\max_i |v(i) - v'(i)| \).

Step 4: if the deviation is larger than some fixed tolerance, set \(v = v' \) and go to step 2, else continue.

Step 5: return \(v \).

For a small tolerance, the returned function \(v \) is a close approximation to the value function \(v^* \).

The theory below elaborates on this point.

33.3.2 Fixed Point Theory

What’s the mathematics behind these ideas?

First, one defines a mapping \(T \) from \(\mathbb{R}^n \) to itself via

\[(Tv)(i) = \max \left\{ \frac{w(i)}{1 - \beta}, c + \beta \sum_{1 \leq j \leq n} v(j)q(j) \right\} \text{ for } i = 1, \ldots, n \]

(33.5)

(A new vector \(Tv \) is obtained a given vector \(v \) by evaluating the r.h.s. at each \(i \).)

The element \(v_k \) in the sequence \(\{v_k\} \) of successive approximations corresponds to \(T^kv \).

- This is \(T \) applied \(k \) times, starting at the initial guess \(v \).

One can show that the conditions of the Banach fixed point theorem are satisfied by \(T \) on \(\mathbb{R}^n \).

One implication is that \(T \) has a unique fixed point \(\bar{v} \in \mathbb{R}^n \).

- The fixed point is a unique vector \(\bar{v} \) that satisfies \(T\bar{v} = \bar{v} \).

Moreover, it’s immediate from the definition of \(T \) that this fixed point is \(v^* \).

A second implication of the Banach contraction mapping theorem is that \(\{T^kv\} \) converges to the fixed point \(v^* \) regardless of the initial \(v \in \mathbb{R}^n \).
33.3.3 Implementation

Our default for the probability distribution \(q \) of the state process is a Beta-binomial.

\[
\begin{align*}
n, a, b &= 50, 200, 100 \quad \# \text{default parameters} \\
q_{\text{default}} &= \text{BetaBinomial}(n, a, b).pdf() \quad \# \text{default choice of } q
\end{align*}
\]

Our default set of values for wages will be

\[
\begin{align*}
w_{\text{min}}, w_{\text{max}} &= 10, 60 \\
w_{\text{default}} &= \text{np.linspace}(w_{\text{min}}, w_{\text{max}}, n+1)
\end{align*}
\]

Here’s a plot of probabilities of different wage outcomes:

```python
fig, ax = plt.subplots()
ax.plot(w_default, q_default, '-o', label='$q(w(i))$')
ax.set_xlabel('wages')
ax.set_ylabel('probabilities')
plt.show()
```

We are going to use Numba to accelerate our code.

- See, in particular, the discussion of `@jitclass` in our lecture on Numba.

The following helps Numba by providing some information about types

```python
mccall_data = [
    ('c', float64),   # unemployment compensation
    ('\beta', float64), # discount factor
    ('w', float64[:]), # array of wage values, \( w[i] = \text{wage at state } i \)
    ('q', float64[:])  # array of probabilities
]
```

Here’s a class that stores the data and computes values of state-action pairs, i.e., values associated with pairs consisting of the current state and alternative feasible actions that occur inside the maximum bracket on the right hand side of Bellman equation (33.4).
Default parameter values are embedded in the class.

```python
@jitclass(mccall_data)
class McCallModel:
    def __init__(self, c=25, β=0.99, w=w_default, q=q_default):
        self.c, self.β = c, β
        self.w, self.q = w_default, q_default

    def state_action_values(self, i, v):
        """The values of state-action pairs."
        c, β, w, q = self.c, self.β, self.w, self.q
        # Evaluate value for each state-action pair
        # Consider action = accept or reject the current offer
        accept = w[i] / (1 - β)
        reject = c + β * np.sum(v * q)
        return np.array([accept, reject])

Based on these defaults, let’s try plotting the first few approximate value functions in the sequence \( \{ T^k v \} \).
We will start from guess \( v \) given by \( v(i) = w(i)/(1 - \beta) \), which is the value of accepting \( w(i) \).
Here’s a function to implement this:

```python
def plot_value_function_seq(mcm, ax, num_plots=6):
 """Plot a sequence of value functions.
 * mcm is an instance of McCallModel
 * ax is an axes object that implements a plot method.
 """
 n = len(mcm.w)
 v = mcm.w / (1 - mcm.β)
 v_next = np.empty_like(v)
 for i in range(num_plots):
 ax.plot(mcm.w, v, 'o', alpha=0.4, label=f"iterate {i}")
 # Update guess
 for i in range(n):
 v_next[i] = np.max(mcm.state_action_values(i, v))
 v[:] = v_next # copy contents into v
 ax.legend(loc='lower right')
```

Now let’s create an instance of McCallModel and watch iterations \( T^k v \) converge from below:

```python
mcm = McCallModel()
fig, ax = plt.subplots()
ax.set_xlabel('wage')
ax.set_ylabel('value')
```

(continues on next page)
You can see that convergence is occurring: successive iterates are getting closer together.

Here’s a more serious iteration effort to compute the limit, which continues until a discrepancy between successive iterates is below tol.

Once we obtain a good approximation to the limit, we will use it to calculate the reservation wage.

We’ll be using JIT compilation via Numba to turbocharge our loops.

```python
@jit(nopython=True)
def compute_reservation_wage(mcm, max_iter=500, tol=1e-6):
 # Simplify names
 c, β, w, q = mcm.c, mcm.β, mcm.w, mcm.q
 # == First compute the value function ==#
 n = len(w)
 v = w / (1 - β) # initial guess
 v_next = np.empty_like(v)
 j = 0
 error = tol + 1
 while j < max_iter and error > tol:
 for i in range(n):
 v_next[i] = np.max(mcm.state_action_values(i, v))
 error = np.max(np.abs(v_next - v))
 j += 1
 v[:] = v_next # copy contents into v
```

(continues on next page)
# == Now compute the reservation wage == #

```python
return (1 - β) * (c + β * np.sum(v * q))
```

The next line computes the reservation wage at default parameters

```python
compute_reservation_wage(mcm)
```

```
47.316499710024964
```

### 33.3.4 Comparative Statics

Now that we know how to compute the reservation wage, let's see how it varies with parameters.

In particular, let’s look at what happens when we change $\beta$ and $c$.

```python
grid_size = 25
R = np.empty((grid_size, grid_size))
c_vals = np.linspace(10.0, 30.0, grid_size)
β_vals = np.linspace(0.9, 0.99, grid_size)

for i, c in enumerate(c_vals):
 for j, β in enumerate(β_vals):
 mcm = McCallModel(c=c, β=β)
 R[i, j] = compute_reservation_wage(mcm)
```

```python
fig, ax = plt.subplots()

cs1 = ax.contourf(c_vals, β_vals, R.T, alpha=0.75)
ctr1 = ax.contour(c_vals, β_vals, R.T)

plt.clabel ctr1, inline=1, fontsize=13
plt.colorbar(cs1, ax=ax)

ax.set_title("reservation wage")
ax.set_xlabel("c", fontsize=16)
ax.set_ylabel("β", fontsize=16)

ax.ticklabel_format(useOffset=False)

plt.show()
```
As expected, the reservation wage increases both with patience and with unemployment compensation.

### 33.4 Computing an Optimal Policy: Take 2

The approach to dynamic programming just described is standard and broadly applicable. But for our McCall search model there’s also an easier way that circumvents the need to compute the value function. Let $h$ denote the continuation value:

$$h = c + \beta \sum_{s'} v^*(s') q(s')$$  \hspace{1cm} (33.6)

The Bellman equation can now be written as

$$v^*(s') = \max \left\{ \frac{w(s')}{1 - \beta}, h \right\}$$

Substituting this last equation into (33.6) gives

$$h = c + \beta \sum_{s' \in S} \max \left\{ \frac{w(s')}{1 - \beta}, h \right\} q(s')$$  \hspace{1cm} (33.7)

This is a nonlinear equation that we can solve for $h$.

As before, we will use successive approximations:

- Step 1: pick an initial guess $h$.
- Step 2: compute the update $h'$ via

$$h' = c + \beta \sum_{s' \in S} \max \left\{ \frac{w(s')}{1 - \beta}, h \right\} q(s')$$  \hspace{1cm} (33.8)

- Step 3: calculate the deviation $|h - h'|$. 

Step 4: if the deviation is larger than some fixed tolerance, set $h = h'$ and go to step 2, else return $h$.

One can again use the Banach contraction mapping theorem to show that this process always converges.

The big difference here, however, is that we're iterating on a scalar $h$, rather than an $n$-vector, $v(i), i = 1, \ldots, n$.

Here's an implementation:

```python
@jit(nopython=True)
def compute_reservation_wage_two(mcm, max_iter=500, tol=1e-5):
 # Simplify names
 c, β, w, q = mcm.c, mcm.β, mcm.w, mcm.q

 # == First compute h == #
 h = np.sum(w * q) / (1 - β)
 i = 0
 error = tol + 1
 while i < max_iter and error > tol:
 s = np.maximum(w / (1 - β), h)
 h_next = c + β * np.sum(s * q)
 error = np.abs(h_next - h)
 i += 1
 h = h_next

 # == Now compute the reservation wage == #
 return (1 - β) * h
```

You can use this code to solve the exercise below.

## 33.5 Exercises

### Exercise 33.5.1

Compute the average duration of unemployment when $\beta = 0.99$ and $c$ takes the following values

```python
c_vals = np.linspace(10, 40, 25)
```

That is, start a worker off as unemployed, compute a reservation wage given the parameters, and then simulate to see how long it takes the worker to accept.

Repeat a large number of times and take the average.

Plot mean unemployment duration as a function of $c$ in `c_vals`.

### Solution to Exercise 33.5.1

Here's one solution
cdf = np.cumsum(q_default)

@jit(nopython=True)
def compute_stopping_time(w_bar, seed=1234):
    np.random.seed(seed)
    t = 1
    while True:
        # Generate a wage draw
        w = w_default[qe.random.draw(cdf)]
        # Stop when the draw is above the reservation wage
        if w >= w_bar:
            stopping_time = t
            break
        else:
            t += 1
    return stopping_time

@jit(nopython=True)
def compute_mean_stopping_time(w_bar, num_reps=100000):
    obs = np.empty(num_reps)
    for i in range(num_reps):
        obs[i] = compute_stopping_time(w_bar, seed=i)
    return obs.mean()

c_vals = np.linspace(10, 40, 25)
stop_times = np.empty_like(c_vals)
for i, c in enumerate(c_vals):
    mcm = McCallModel(c=c)
    w_bar = compute_reservation_wage_two(mcm)
    stop_times[i] = compute_mean_stopping_time(w_bar)

fig, ax = plt.subplots()
ax.plot(c_vals, stop_times, label="mean unemployment duration")
ax.set(xlabel="unemployment compensation", ylabel="months")
ax.legend()

plt.show()
Exercise 33.5.2

The purpose of this exercise is to show how to replace the discrete wage offer distribution used above with a continuous distribution.

This is a significant topic because many convenient distributions are continuous (i.e., have a density).

Fortunately, the theory changes little in our simple model.

Recall that $h$ in (33.6) denotes the value of not accepting a job in this period but then behaving optimally in all subsequent periods:

To shift to a continuous offer distribution, we can replace (33.6) by

$$h = c + \beta \int v'(s')q(s')ds'. \tag{33.9}$$

Equation (33.7) becomes

$$h = c + \beta \max \left\{ \frac{w(s')}{1-\beta}, h \right\} q(s')ds'. \tag{33.10}$$

The aim is to solve this nonlinear equation by iteration, and from it obtain the reservation wage.

Try to carry this out, setting

- the state sequence $\{s_t\}$ to be IID and standard normal and
- the wage function to be $w(s) = \exp(\mu + \sigma s)$.

You will need to implement a new version of the McCallModel class that assumes a lognormal wage distribution.

Calculate the integral by Monte Carlo, by averaging over a large number of wage draws.

For default parameters, use $c=25$, $\beta=0.99$, $\sigma=0.5$, $\mu=2.5$.

Once your code is working, investigate how the reservation wage changes with $c$ and $\beta$.

---

Solution to Exercise 33.5.2
Here is one solution:

```python
mccall_data_continuous = [
 ('c', float64), # unemployment compensation
 ('β', float64), # discount factor
 ('σ', float64), # scale parameter in lognormal distribution
 ('μ', float64), # location parameter in lognormal distribution
 ('w_draws', float64[:]) # draws of wages for Monte Carlo
]

@jitclass(mccall_data_continuous)
class McCallModelContinuous:
 def __init__(self, c=25, β=0.99, σ=0.5, μ=2.5, mc_size=1000):
 self.c, self.β, self.σ, self.μ = c, β, σ, μ

 # Draw and store shocks
 np.random.seed(1234)
 s = np.random.randn(mc_size)
 self.w_draws = np.exp(μ + σ * s)

@jit(nopython=True)
def compute_reservation_wage_continuous(mcmc, max_iter=500, tol=1e-5):
 c, β, σ, μ, w_draws = mcmc.c, mcmc.β, mcmc.σ, mcmc.μ, mcmc.w_draws
 h = np.mean(w_draws) / (1 - β) # initial guess
 i = 0
 error = tol + 1
 while i < max_iter and error > tol:
 integral = np.mean(np.maximum(w_draws / (1 - β), h))
 h_next = c + β * integral
 error = np.abs(h_next - h)
 i += 1
 h = h_next

 # == Now compute the reservation wage ==#
 return (1 - β) * h
```

Now we investigate how the reservation wage changes with $c$ and $β$.

We will do this using a contour plot.

```python
grid_size = 25
R = np.empty((grid_size, grid_size))

for i, c in enumerate(c_vals):
 for j, β in enumerate(β_vals):
 mcmc = McCallModelContinuous(c=c, β=β)
```
R[i, j] = compute_reservation_wage_continuous(mcmc)

fig, ax = plt.subplots()

cs1 = ax.contourf(c_vals, β_vals, R.T, alpha=0.75)
ctrl1 = ax.contour(c_vals, β_vals, R.T)

plt.clabel(ctrl1, inline=1, fontsize=13)
plt.colorbar(cs1, ax=ax)

ax.set_title("reservation wage")
ax.set_xlabel("$c$", fontsize=16)
ax.set_ylabel("$\beta$", fontsize=16)
ax.ticklabel_format(useOffset=False)

plt.show()
In addition to what’s in Anaconda, this lecture will need the following libraries:

```
pip install quantecon
```

### 34.1 Overview

Previously we looked at the McCall job search model \([\text{McC70}]\) as a way of understanding unemployment and worker decisions.

One unrealistic feature of the model is that every job is permanent.

In this lecture, we extend the McCall model by introducing job separation.

Once separation enters the picture, the agent comes to view

- the loss of a job as a capital loss, and
- a spell of unemployment as an investment in searching for an acceptable job

The other minor addition is that a utility function will be included to make worker preferences slightly more sophisticated.

We’ll need the following imports

```
matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
```

(continues on next page)
from numba import njit, float64
from numba.experimental import jitclass
from quantecon.distributions import BetaBinomial

34.2 The Model

The model is similar to the baseline McCall job search model.

It concerns the life of an infinitely lived worker and

1. the opportunities he or she (let’s say he to save one character) has to work at different wages
2. exogenous events that destroy his current job
3. his decision making process while unemployed

The worker can be in one of two states: employed or unemployed.

He wants to maximize

$$\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(y_t) \tag{34.1}$$

At this stage the only difference from the baseline model is that we’ve added some flexibility to preferences by introducing a utility function $u$.

It satisfies $u' > 0$ and $u'' < 0$.

34.2.1 The Wage Process

For now we will drop the separation of state process and wage process that we maintained for the baseline model.

In particular, we simply suppose that wage offers $\{w_t\}$ are IID with common distribution $q$.

The set of possible wage values is denoted by $\mathbb{W}$.

(Later we will go back to having a separate state process $\{s_t\}$ driving random outcomes, since this formulation is usually convenient in more sophisticated models.)

34.2.2 Timing and Decisions

At the start of each period, the agent can be either

1. unemployed or
2. employed at some existing wage level $w_e$.

At the start of a given period, the current wage offer $w_t$ is observed.

If currently employed, the worker

1. receives utility $u(w_e)$ and
2. is fired with some (small) probability $\alpha$. 
If currently unemployed, the worker either accepts or rejects the current offer $w_t$.
If he accepts, then he begins work immediately at wage $w_t$.
If he rejects, then he receives unemployment compensation $c$.
The process then repeats.

Note: We do not allow for job search while employed—this topic is taken up in a later lecture.

### 34.3 Solving the Model

We drop time subscripts in what follows and primes denote next period values.

Let

- $v(w_e)$ be total lifetime value accruing to a worker who enters the current period employed with existing wage $w_e$
- $h(w)$ be total lifetime value accruing to a worker who who enters the current period unemployed and receives wage offer $w$.

Here value means the value of the objective function (34.1) when the worker makes optimal decisions at all future points in time.

Our first aim is to obtain these functions.

#### 34.3.1 The Bellman Equations

Suppose for now that the worker can calculate the functions $v$ and $h$ and use them in his decision making.

Then $v$ and $h$ should satisfy

\[
v(w_e) = u(w_e) + \beta \left( (1 - \alpha)v(w_e) + \alpha \sum_{w' \in \mathbb{W}} h(w')q(w') \right)
\] (34.2)

and

\[
h(w) = \max \left\{ v(w), u(c) + \beta \sum_{w' \in \mathbb{W}} h(w')q(w') \right\}
\] (34.3)

Equation (34.2) expresses the value of being employed at wage $w_e$ in terms of

- current reward $u(w_e)$ plus
- discounted expected reward tomorrow, given the $\alpha$ probability of being fired

Equation (34.3) expresses the value of being unemployed with offer $w$ in hand as a maximum over the value of two options: accept or reject the current offer.

Accepting transitions the worker to employment and hence yields reward $v(w)$.
Rejecting leads to unemployment compensation and unemployment tomorrow.

Equations (34.2) and (34.3) are the Bellman equations for this model.
They provide enough information to solve for both $v$ and $h$. 
34.3.2 A Simplifying Transformation

Rather than jumping straight into solving these equations, let’s see if we can simplify them somewhat.

(This process will be analogous to our second pass at the plain vanilla McCall model, where we simplified the Bellman equation.)

First, let

\[ d := \sum_{w' \in \mathbb{W}} h(w')q(w') \]  

be the expected value of unemployment tomorrow.

We can now write (34.3) as

\[ h(w) = \max \{v(w), u(c) + \beta d\} \]

or, shifting time forward one period

\[ \sum_{w' \in \mathbb{W}} h(w')q(w') = \sum_{w' \in \mathbb{W}} \max \{v(w'), u(c) + \beta d\} q(w') \]

Using (34.4) again now gives

\[ d = \sum_{w' \in \mathbb{W}} \max \{v(w'), u(c) + \beta d\} q(w') \]  

Finally, (34.2) can now be rewritten as

\[ v(w) = u(w) + \beta \left[(1 - \alpha)v(w) + \alpha d\right] \]  

In the last expression, we wrote \( w_e \) as \( w \) to make the notation simpler.

34.3.3 The Reservation Wage

Suppose we can use (34.5) and (34.6) to solve for \( d \) and \( v \).

(We will do this soon.)

We can then determine optimal behavior for the worker.

From (34.3), we see that an unemployed agent accepts current offer \( w \) if \( v(w) \geq u(c) + \beta d \).

This means precisely that the value of accepting is higher than the expected value of rejecting.

It is clear that \( v \) is (at least weakly) increasing in \( w \), since the agent is never made worse off by a higher wage offer.

Hence, we can express the optimal choice as accepting wage offer \( w \) if and only if

\[ w \geq \bar{w} \quad \text{where} \quad \bar{w} \text{ solves } v(\bar{w}) = u(c) + \beta d \]

34.3.4 Solving the Bellman Equations

We’ll use the same iterative approach to solving the Bellman equations that we adopted in the first job search lecture.

Here this amounts to

1. make guesses for \( d \) and \( v \)
2. plug these guesses into the right-hand sides of (34.5) and (34.6)
3. update the left-hand sides from this rule and then repeat

In other words, we are iterating using the rules

\[
d_{n+1} = \sum_{w' \in \mathbb{W}} \max \{v_n(w'), u(c) + \beta d_n\} q(w')
\]  

(34.7)

\[
v_{n+1}(w) = u(w) + \beta [(1 - \alpha)v_n(w) + \alpha d_n]
\]  

(34.8)

starting from some initial conditions \(d_0, v_0\).

As before, the system always converges to the true solutions—in this case, the \(v\) and \(d\) that solve (34.5) and (34.6).

(A proof can be obtained via the Banach contraction mapping theorem.)

### 34.4 Implementation

Let’s implement this iterative process.

In the code, you’ll see that we use a class to store the various parameters and other objects associated with a given model.

This helps to tidy up the code and provides an object that’s easy to pass to functions.

The default utility function is a CRRA utility function

```
@njit
def u(c, σ=2.0):
 return (c**σ(1 - σ) - 1) / (1 - σ)
```

Also, here’s a default wage distribution, based around the BetaBinomial distribution:

```
n = 60 # n possible outcomes for w
w_default = np.linspace(10, 20, n) # wages between 10 and 20
a, b = 600, 400 # shape parameters
dist = BetaBinomial(n-1, a, b)
q_default = dist.pdf()
```

Here’s our jitted class for the McCall model with separation.

```
mccall_data = [
 ('α', float64), # job separation rate
 ('β', float64), # discount factor
 ('c', float64), # unemployment compensation
 ('w', float64[:]), # list of wage values
 ('q', float64[:]) # pmf of random variable w
]

@jitclass(mccall_data)
class McCallModel:

 Stores the parameters and functions associated with a given model.

 def __init__(self, α=0.2, β=0.98, c=6.0, w=w_default, q=q_default):
 self.α, self.β, self.c, self.w, self.q = α, β, c, w, q
```

(continues on next page)
def update(self, v, d):
    α, β, c, w, q = self.α, self.β, self.c, self.w, self.q
    v_new = np.empty_like(v)
    for i in range(len(w)):
        v_new[i] = u(w[i]) + β * ((1 - α) * v[i] + α * d)
    d_new = np.sum(np.maximum(v, u(c) + β * d) * q)
    return v_new, d_new

Now we iterate until successive realizations are closer together than some small tolerance level.

We then return the current iterate as an approximate solution.

@njit
def solve_model(mcm, tol=1e-5, max_iter=2000):
    ""
    Iterates to convergence on the Bellman equations
    * mcm is an instance of McCallModel
    ""
    v = np.ones_like(mcm.w)  # Initial guess of v
    d = 1  # Initial guess of d
    i = 0
    error = tol + 1
    while error > tol and i < max_iter:
        v_new, d_new = mcm.update(v, d)
        error_1 = np.max(np.abs(v_new - v))
        error_2 = np.abs(d_new - d)
        error = max(error_1, error_2)
        v = v_new
        d = d_new
        i += 1
    return v, d

34.4.1 The Reservation Wage: First Pass

The optimal choice of the agent is summarized by the reservation wage.

As discussed above, the reservation wage is the \( \bar{w} \) that solves \( v(\bar{w}) = h \) where \( h := u(c) + \beta d \) is the continuation value. Let's compare \( v \) and \( h \) to see what they look like.

We'll use the default parameterizations found in the code above.

mcm = McCallModel()
v, d = solve_model(mcm)
h = u(mcm.c) + mcm.β * d

(continues on next page)
The value $v$ is increasing because higher $w$ generates a higher wage flow conditional on staying employed.

### 34.4.2 The Reservation Wage: Computation

Here’s a function `compute_reservation_wage` that takes an instance of `McCallModel` and returns the associated reservation wage.

```python
@njit
def compute_reservation_wage(mcm):

 Computes the reservation wage of an instance of the McCall model
 by finding the smallest w such that v(w) >= h.

 If no such w exists, then w_bar is set to np.inf.

 v, d = solve_model(mcm)
 h = u(mcm.c) + mcm.β * d

 w_bar = np.inf
 for i, wage in enumerate(mcm.w):
 if v[i] > h:
 w_bar = wage
 break
```

(continues on next page)
return \ w_{\text{bar}}

Next we will investigate how the reservation wage varies with parameters.

### 34.5 Impact of Parameters

In each instance below, we'll show you a figure and then ask you to reproduce it in the exercises.

#### 34.5.1 The Reservation Wage and Unemployment Compensation

First, let's look at how $\tilde{w}$ varies with unemployment compensation.

In the figure below, we use the default parameters in the `McCallModel` class, apart from $c$ (which takes the values given on the horizontal axis)

![Graph showing $\tilde{w}$ as a function of $c$.](image)

As expected, higher unemployment compensation causes the worker to hold out for higher wages.

In effect, the cost of continuing job search is reduced.
34.5.2 The Reservation Wage and Discounting

Next, let’s investigate how \( \bar{w} \) varies with the discount factor.

The next figure plots the reservation wage associated with different values of \( \beta \).

![Graph showing the reservation wage as a function of the discount factor.]

Again, the results are intuitive: More patient workers will hold out for higher wages.

34.5.3 The Reservation Wage and Job Destruction

Finally, let’s look at how \( \bar{w} \) varies with the job separation rate \( \alpha \).

Higher \( \alpha \) translates to a greater chance that a worker will face termination in each period once employed.

Once more, the results are in line with our intuition.

If the separation rate is high, then the benefit of holding out for a higher wage falls.

Hence the reservation wage is lower.

34.6 Exercises

Exercise 34.6.1

Reproduce all the reservation wage figures shown above.

Regarding the values on the horizontal axis, use
grid_size = 25

c_vals = np.linspace(2, 12, grid_size)  # unemployment compensation
beta_vals = np.linspace(0.8, 0.99, grid_size)  # discount factors
alpha_vals = np.linspace(0.05, 0.5, grid_size)  # separation rate

Solution to Exercise 34.6.1

Here's the first figure.

mcm = McCallModel()
w_bar_vals = np.empty_like(c_vals)

fig, ax = plt.subplots()

for i, c in enumerate(c_vals):
    mcm.c = c
    w_bar = compute_reservation_wage(mcm)
    w_bar_vals[i] = w_bar

ax.set(xlabel='unemployment compensation',
       ylabel='reservation wage')
ax.plot(c_vals, w_bar_vals, label=r'$\bar w$ as a function of $c$')
ax.legend()
plt.show()
Here's the second one.

```python
fig, ax = plt.subplots()
for i, β in enumerate(beta_vals):
 mcm.β = β
 w_bar = compute_reservation_wage(mcm)
 w_bar_vals[i] = w_bar

ax.set(xlabel='discount factor', ylabel='reservation wage')
ax.plot(beta_vals, w_bar_vals, label=r'\bar{w} as a function of β')
ax.legend()
plt.show()
```

Here's the third.

34.6. Exercises 621
fig, ax = plt.subplots()

for i, α in enumerate(alpha_vals):
    mcm.α = α
    w_bar = compute_reservation_wage(mcm)
    w_bar_vals[i] = w_bar

ax.set(xlabel='separation rate', ylabel='reservation wage')
ax.plot(alpha_vals, w_bar_vals, label=r'$\bar{w}$ as a function of $\alpha$')
ax.legend()
plt.show()}
CHAPTER
THIRTYFIVE

JOB SEARCH III: FITTED VALUE FUNCTION ITERATION

35.1 Overview

In this lecture we again study the McCall job search model with separation, but now with a continuous wage distribution. While we already considered continuous wage distributions briefly in the exercises of the first job search lecture, the change was relatively trivial in that case.

This is because we were able to reduce the problem to solving for a single scalar value (the continuation value).

Here, with separation, the change is less trivial, since a continuous wage distribution leads to an uncountably infinite state space.

The infinite state space leads to additional challenges, particularly when it comes to applying value function iteration (VFI). These challenges will lead us to modify VFI by adding an interpolation step.

The combination of VFI and this interpolation step is called fitted value function iteration (fitted VFI).

Fitted VFI is very common in practice, so we will take some time to work through the details.

We will use the following imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
```

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
!pip install interpolation
```
35.2 The Algorithm

The model is the same as the McCall model with job separation we studied before, except that the wage offer distribution is continuous.

We are going to start with the two Bellman equations we obtained for the model with job separation after a simplifying transformation.

Modified to accommodate continuous wage draws, they take the following form:

\[
d = \int \max\{v(w'), u(c) + \beta d\} q(w') dw'
\]

(35.1)

and

\[
v(w) = u(w) + \beta [(1 - \alpha)v(w) + \alpha d]
\]

(35.2)

The unknowns here are the function \( v \) and the scalar \( d \).

The difference between these and the pair of Bellman equations we previously worked on are

1. in (35.1), what used to be a sum over a finite number of wage values is an integral over an infinite set.
2. The function \( v \) in (35.2) is defined over all \( w \in \mathbb{R}_+ \).

The function \( q \) in (35.1) is the density of the wage offer distribution.

Its support is taken as equal to \( \mathbb{R}_+ \).

35.2.1 Value Function Iteration

In theory, we should now proceed as follows:

1. Begin with a guess \( v, d \) for the solutions to (35.1)–(35.2).
2. Plug \( v, d \) into the right hand side of (35.1)–(35.2) and compute the left hand side to obtain updates \( v', d' \)
3. Unless some stopping condition is satisfied, set \( (v, d) = (v', d') \) and go to step 2.

However, there is a problem we must confront before we implement this procedure: The iterates of the value function can neither be calculated exactly nor stored on a computer.

To see the issue, consider (35.2).

Even if \( v \) is a known function, the only way to store its update \( v' \) is to record its value \( v'(w) \) for every \( w \in \mathbb{R}_+ \).

Clearly, this is impossible.
35.2.2 Fitted Value Function Iteration

What we will do instead is use fitted value function iteration.

The procedure is as follows:

Let a current guess $v$ be given.

Now we record the value of the function $v'$ at only finitely many “grid” points $w_1 < w_2 < \cdots < w_I$ and then reconstruct $v'$ from this information when required.

More precisely, the algorithm will be

1. Begin with an array $v$ representing the values of an initial guess of the value function on some grid points $\{w_i\}$.
2. Build a function $v$ on the state space $\mathbb{R}_+$ by interpolation or approximation, based on $v$ and $\{w_i\}$.
3. Obtain and record the samples of the updated function $v'(w_i)$ on each grid point $w_i$.
4. Unless some stopping condition is satisfied, take this as the new array and go to step 1.

How should we go about step 2?

This is a problem of function approximation, and there are many ways to approach it.

What’s important here is that the function approximation scheme must not only produce a good approximation to each $v$, but also that it combines well with the broader iteration algorithm described above.

One good choice from both respects is continuous piecewise linear interpolation.

This method

1. combines well with value function iteration (see, e.g., [Gor95] or [Sta08]) and
2. preserves useful shape properties such as monotonicity and concavity/convexity.

Linear interpolation will be implemented using a JIT-aware Python interpolation library called interpolation.py.

The next figure illustrates piecewise linear interpolation of an arbitrary function on grid points 0, 0.2, 0.4, 0.6, 0.8, 1.

```python
import numpy as np
import matplotlib.pyplot as plt

def f(x):
 y1 = 2 * np.cos(6 * x) + np.sin(14 * x)
 return y1 + 2.5

c_grid = np.linspace(0, 1, 6)
f_grid = np.linspace(0, 1, 150)

def Af(x):
 return interp(c_grid, f(c_grid), x)

fig, ax = plt.subplots()
ax.plot(f_grid, f(f_grid), 'b-', label='true function')
ax.plot(f_grid, Af(f_grid), 'g-', label='linear approximation')
ax.vlines(c_grid, c_grid * 0, f(c_grid), linestyle='dashed', alpha=0.5)
ax.legend(loc="upper center")
ax.set(xlim=(0, 1), ylim=(0, 6))
plt.show()
```
35.3 Implementation

The first step is to build a jitted class for the McCall model with separation and a continuous wage offer distribution.

We will take the utility function to be the log function for this application, with \( u(c) = \ln c \).

We will adopt the lognormal distribution for wages, with \( w = \exp(\mu + \sigma z) \) when \( z \) is standard normal and \( \mu, \sigma \) are parameters.

```python
@njit
def lognormal_draws(n=1000, mu=2.5, sigma=0.5, seed=1234):
 np.random.seed(seed)
 z = np.random.randn(n)
 w_draws = np.exp(mu + sigma * z)
 return w_draws
```

Here’s our class.

```python
mccall_data_continuous = [
 ('c', float64), # unemployment compensation
 ('\alpha', float64), # job separation rate
 ('\beta', float64), # discount factor
 ('w_grid', float64[:]), # grid of points for fitted VFI
 ('w_draws', float64[:]) # draws of wages for Monte Carlo
]

@jitclass(mccall_data_continuous)
class McCallModelContinuous:
 def __init__(self,
 c=1,
 \alpha=0.1,
 \beta=0.96,
 grid_min=1e-10,
 grid_max=5,
```
grid_size=100,
   w_draws=lognormal_draws()):

    self.c, self.a, self.β = c, a, β
    self.w_grid = np.linspace(grid_min, grid_max, grid_size)
    self.w_draws = w_draws

def update(self, v, d):
    # Simplify names
    c, α, β = self.c, self.a, self.β
    w = self.w_grid
    u = lambda x: np.log(x)

    # Interpolate array represented value function
    vf = lambda x: interp(w, v, x)

    # Update d using Monte Carlo to evaluate integral
    d_new = np.mean(np.maximum(vf(self.w_draws), u(c) + β * d))

    # Update v
    v_new = u(w) + β * ((1 - α) * v + α * d)

    return v_new, d_new

We then return the current iterate as an approximate solution.

@njit
def solve_model(mcm, tol=1e-5, max_iter=2000):
    ""
    Iterates to convergence on the Bellman equations
    * mcm is an instance of McCallModel
    ""

    v = np.ones_like(mcm.w_grid)  # Initial guess of v
    d = 1                        # Initial guess of d
    i = 0
    error = tol + 1

    while error > tol and i < max_iter:
        v_new, d_new = mcm.update(v, d)
        error_1 = np.max(np.abs(v_new - v))
        error_2 = np.abs(d_new - d)
        error = max(error_1, error_2)
        v = v_new
        d = d_new
        i += 1

    return v, d

Here’s a function compute_reservation_wage that takes an instance of McCallModelContinuous and returns the associated reservation wage.

If \( v(w) < h \) for all \( w \), then the function returns np.inf
@njit
def compute_reservation_wage(mcm):
    
    """
    Computes the reservation wage of an instance of the McCall model
    by finding the smallest w such that v(w) \geq h.
    """
    u = lambda x: np.log(x)
    v, d = solve_model(mcm)
    h = u(mcm.c) + mcm.\beta \times d
    w_bar = np.inf
    for i, wage in enumerate(mcm.w_grid):
        if v[i] > h:
            w_bar = wage
            break
    return w_bar

The exercises ask you to explore the solution and how it changes with parameters.

35.4 Exercises

Exercise 35.4.1

Use the code above to explore what happens to the reservation wage when the wage parameter \( \mu \) changes.

Use the default parameters and \( \mu \) in \texttt{mu_vals = np.linspace(0.0, 2.0, 15)}.

Is the impact on the reservation wage as you expected?

Solution to Exercise 35.4.1

Here is one solution

```python
mcm = McCallModelContinuous()
mu_vals = np.linspace(0.0, 2.0, 15)
w_bar_vals = np.empty_like(mu_vals)

fig, ax = plt.subplots()

for i, m in enumerate(mu_vals):
 mcm.w_draws = lognormal_draws(\mu=m)
 w_bar = compute_reservation_wage(mcm)
 w_bar_vals[i] = w_bar

ax.set(xlabel='mean', ylabel='reservation wage')
ax.plot(mu_vals, w_bar_vals, label=r'\\bar{w} as a function of \$\mu\$')
ax.legend()

plt.show()
```
Not surprisingly, the agent is more inclined to wait when the distribution of offers shifts to the right.

**Exercise 35.4.2**

Let us now consider how the agent responds to an increase in volatility.

To try to understand this, compute the reservation wage when the wage offer distribution is uniform on \((m - s, m + s)\) and \(s\) varies.

The idea here is that we are holding the mean constant and spreading the support.

(This is a form of *mean-preserving spread*.)

Use \( s\_vals = \text{np.linspace}(1.0, 2.0, 15) \) and \( m = 2.0 \).

State how you expect the reservation wage to vary with \( s \).

Now compute it. Is this as you expected?

**Solution to Exercise 35.4.2**

Here is one solution

```python
mcm = McCallModelContinuous()
s_vals = np.linspace(1.0, 2.0, 15)
m = 2.0
w_bar_vals = np.empty_like(s_vals)

fig, ax = plt.subplots()

for i, s in enumerate(s_vals):
a, b = m - s, m + s
mcm.w_draws = np.random.uniform(low=a, high=b, size=10_000)
w_bar = computeReservationWage(mcm)
w_bar_vals[i] = w_bar
```

(continues on next page)
The reservation wage increases with volatility.

One might think that higher volatility would make the agent more inclined to take a given offer, since doing so represents certainty and waiting represents risk.

But job search is like holding an option: the worker is only exposed to upside risk (since, in a free market, no one can force them to take a bad offer).

More volatility means higher upside potential, which encourages the agent to wait.
CHAPTER
THIRTY-SIX

JOB SEARCH IV: CORRELATED WAGE OFFERS

Contents

- Job Search IV: Correlated Wage Offers
  - Overview
  - The Model
  - Implementation
  - Unemployment Duration
  - Exercises

In addition to what's in Anaconda, this lecture will need the following libraries:

|pip install quantecon
|pip install interpolation

36.1 Overview

In this lecture we solve a McCall style job search model with persistent and transitory components to wages.

In other words, we relax the unrealistic assumption that randomness in wages is independent over time.

At the same time, we will go back to assuming that jobs are permanent and no separation occurs.

This is to keep the model relatively simple as we study the impact of correlation.

We will use the following imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import quantecon as qe
from interpolation import interp
from numpy.random import randn
from numba import njit, prange, float64
from numba.experimental import jitclass
```
36.2 The Model

Wages at each point in time are given by

\[ w_t = \exp(z_t) + y_t \]

where

\[ y_t \sim \exp(\mu + s\zeta_t) \quad \text{and} \quad z_{t+1} = d + \rho z_t + \sigma \epsilon_{t+1} \]

Here \( \{\zeta_t\} \) and \( \{\epsilon_t\} \) are both IID and standard normal.

Here \( \{y_t\} \) is a transitory component and \( \{z_t\} \) is persistent.

As before, the worker can either

1. accept an offer and work permanently at that wage, or
2. take unemployment compensation \( c \) and wait till next period.

The value function satisfies the Bellman equation

\[ v^*(w, z) = \max \left\{ u(w) \frac{1}{1 - \beta}, u(c) + \beta \mathbb{E}_z v^*(w', z') \right\} \]

In this express, \( u \) is a utility function and \( \mathbb{E}_z \) is expectation of next period variables given current \( z \).

The variable \( z \) enters as a state in the Bellman equation because its current value helps predict future wages.

36.2.1 A Simplification

There is a way that we can reduce dimensionality in this problem, which greatly accelerates computation.

To start, let \( f^* \) be the continuation value function, defined by

\[ f^*(z) := u(c) + \beta \mathbb{E}_z v^*(w', z') \]

The Bellman equation can now be written

\[ v^*(w, z) = \max \left\{ u(w) \frac{1}{1 - \beta}, f^*(z) \right\} \]

Combining the last two expressions, we see that the continuation value function satisfies

\[ f^*(z) = u(c) + \beta \mathbb{E}_z \max \left\{ u(w') \frac{1}{1 - \beta}, f^*(z') \right\} \]

We’ll solve this functional equation for \( f^* \) by introducing the operator

\[ Qf(z) = u(c) + \beta \mathbb{E}_z \max \left\{ u(w') \frac{1}{1 - \beta}, f(z') \right\} \]

By construction, \( f^* \) is a fixed point of \( Q \), in the sense that \( Qf^* = f^* \).

Under mild assumptions, it can be shown that \( Q \) is a contraction mapping over a suitable space of continuous functions on \( \mathbb{R} \).

By Banach’s contraction mapping theorem, this means that \( f^* \) is the unique fixed point and we can calculate it by iterating with \( Q \) from any reasonable initial condition.
Once we have $f^*$, we can solve the search problem by stopping when the reward for accepting exceeds the continuation value, or

$$u(w) \frac{1}{1 - \beta} \geq f^*(z)$$

For utility we take $u(c) = \ln(c)$.

The reservation wage is the wage where equality holds in the last expression.

That is,

$$\bar{w}(z) := \exp(f^*(z)(1 - \beta)) \quad (36.1)$$

Our main aim is to solve for the reservation rule and study its properties and implications.

### 36.3 Implementation

Let $f$ be our initial guess of $f^*$.

When we iterate, we use the fitted value function iteration algorithm.

In particular, $f$ and all subsequent iterates are stored as a vector of values on a grid.

These points are interpolated into a function as required, using piecewise linear interpolation.

The integral in the definition of $Qf$ is calculated by Monte Carlo.

The following list helps Numba by providing some type information about the data we will work with.

```python
job_search_data = [
 ('μ', float64), # transient shock log mean
 ('s', float64), # transient shock log variance
 ('d', float64), # shift coefficient of persistent state
 ('ρ', float64), # correlation coefficient of persistent state
 ('σ', float64), # state volatility
 ('β', float64), # discount factor
 ('c', float64), # unemployment compensation
 ('z_grid', float64[:]), # grid over the state space
 ('e_draws', float64[:]) # Monte Carlo draws for integration
]
```

Here's a class that stores the data and the right hand side of the Bellman equation.

Default parameter values are embedded in the class.

```python
@jitclass(job_search_data)
class JobSearch:
 def __init__(self, μ=0.0, # transient shock log mean
 s=1.0, # transient shock log variance
 d=0.0, # shift coefficient of persistent state
 ρ=0.9, # correlation coefficient of persistent state
 σ=0.1, # state volatility
 β=0.98, # discount factor
 c=5, # unemployment compensation
 mc_size=1000, # (continues on next page)
```
Next we implement the $Q$ operator.

```python
@njit(parallel=True)
def Q(js, f_in, f_out):

 # Apply the operator Q.

 * js is an instance of JobSearch
 * f_in and f_out are arrays that represent f and Qf respectively

 μ, s, d, ρ, σ, β, c = js.parameters()
 M = js.e_draws.shape[1]

 for i in prange(len(js.z_grid)):
 z = js.z_grid[i]
 expectation = 0.0
 for m in range(M):
 e1, e2 = js.e_draws[:, m]
 z_next = d + ρ * z + σ * e1
 go_val = interp(js.z_grid, f_in, z_next) # f(z')
 y_next = np.exp(μ + s * e2) # y' draw
 w_next = np.exp(z_next) + y_next # w' draw
 stop_val = np.log(w_next) / (1 - β)
 expectation += max(stop_val, go_val)
 expectation = expectation / M
 f_out[i] = np.log(c) + β * expectation
```

Here’s a function to compute an approximation to the fixed point of $Q$.

```python
def compute_fixed_point(js,
```

(continues on next page)
Let's try generating an instance and solving the model.

```python
js = JobSearch()
ge.tic()
f_star = compute_fixed_point(js, verbose=True)
ge.toc()
```

Error at iteration 25 is 0.6540143893175951.
Error at iteration 50 is 0.12643184012380004.
Error at iteration 75 is 0.030376323858035903.
Error at iteration 100 is 0.007581959253954551.
Error at iteration 125 is 0.0019085682645538782.

Error at iteration 150 is 0.00048173786846916755.
Error at iteration 175 is 0.000121400125664195.

Converged in 179 iterations.
TOC: Elapsed: 0:00:2.17

2.177238941192627

Next we will compute and plot the reservation wage function defined in (36.1).
\[
res\_wage\_function = \text{np.exp}(f\_star \times (1 - js.\beta))
\]

```python
fig, ax = plt.subplots()
ax.plot(js.z_grid, res_wage_function, label="reservation wage given z")
ax.set(xlabel="z", ylabel="wage")
ax.legend()
plt.show()
```

Notice that the reservation wage is increasing in the current state \( z \).

This is because a higher state leads the agent to predict higher future wages, increasing the option value of waiting.

Let’s try changing unemployment compensation and look at its impact on the reservation wage:

```python
c_vals = 1, 2, 3
fig, ax = plt.subplots()

for c in c_vals:
 js = JobSearch(c=c)
 f_star = compute_fixed_point(js, verbose=False)
 res_wage_function = np.exp(f_star * (1 - js.\beta))
 ax.plot(js.z_grid, res_wage_function, label=rf"$\bar{w} at $c = {c}$")

ax.set(xlabel="z", ylabel="wage")
ax.legend()
plt.show()
```
As expected, higher unemployment compensation shifts the reservation wage up at all state values.

### 36.4 Unemployment Duration

Next we study how mean unemployment duration varies with unemployment compensation.

For simplicity we’ll fix the initial state at $z_t = 0$.

```python
def compute_unemployment_duration(js, seed=1234):
 f_star = compute_fixed_point(js, verbose=False)
 μ, s, d, ρ, σ, β, c = js.parameters()
 z_grid = js.z_grid
 np.random.seed(seed)

 @njit
def f_star_function(z):
 return interp(z_grid, f_star, z)

 @njit
def draw_tau(t_max=10_000):
 z = 0
 t = 0
 unemployed = True
 while unemployed and t < t_max:
 # draw current wage
 y = np.exp(μ + s * np.random.randn())
 w = np.exp(z) + y
 res_wage = np.exp(f_star_function(z) * (1 - β))
 # if optimal to stop, record t
 if w >= res_wage:
 unemployed = False
 τ = t
 # else increment data and state
```

(continues on next page)
else:
    z = ρ * z + d + σ * np.random.randn()
    t += 1
return τ

@njit(parallel=True)
def compute_expected_tau(num_reps=100_000):
    sum_value = 0
    for i in prange(num_reps):
        sum_value += draw_tau()
    return sum_value / num_reps

return compute_expected_tau()

Let’s test this out with some possible values for unemployment compensation.

c_vals = np.linspace(1.0, 10.0, 8)
durations = np.empty_like(c_vals)
for i, c in enumerate(c_vals):
    js = JobSearch(c=c)
    τ = compute_unemployment_duration(js)
durations[i] = τ

Here is a plot of the results.

fig, ax = plt.subplots()
ax.plot(c_vals, durations)
ax.set_xlabel("unemployment compensation")
ax.set_ylabel("mean unemployment duration")
plt.show()

Not surprisingly, unemployment duration increases when unemployment compensation is higher. This is because the value of waiting increases with unemployment compensation.
36.5 Exercises

Exercise 36.5.1
Investigate how mean unemployment duration varies with the discount factor $\beta$.

- What is your prior expectation?
- Do your results match up?

Solution to Exercise 36.5.1

Here is one solution

```python
beta_vals = np.linspace(0.94, 0.99, 8)
durations = np.empty_like(beta_vals)
for i, β in enumerate(beta_vals):
 js = JobSearch(β=β)
 τ = compute_unemployment_duration(js)
 durations[i] = τ

fig, ax = plt.subplots()
ax.plot(beta_vals, durations)
ax.set_xlabel(r'β')
ax.set_ylabel("mean unemployment duration")
plt.show()
```

The figure shows that more patient individuals tend to wait longer before accepting an offer.
In addition to what’s in Anaconda, this lecture will need the following libraries:

```python
!pip install quantecon
```

## 37.1 Overview

Next, we study a computational problem concerning career and job choices. The model is originally due to Derek Neal [Nea99].

This exposition draws on the presentation in [LS18], section 6.5.

We begin with some imports:

```python
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import quantecon as qe
from numba import njit, prange
from quantecon.distributions import BetaBinomial
from scipy.special import binom, beta
from mpl_toolkits.mplot3d.axes3d import Axes3D
from matplotlib import cm
```
### 37.1.1 Model Features

- Career and job within career both chosen to maximize expected discounted wage flow.
- Infinite horizon dynamic programming with two state variables.

### 37.2 Model

In what follows we distinguish between a career and a job, where

- a career is understood to be a general field encompassing many possible jobs, and
- a job is understood to be a position with a particular firm

For workers, wages can be decomposed into the contribution of job and career

\[ w_t = \theta_t + \epsilon_t, \]

- \( \theta_t \) is the contribution of career at time \( t \)
- \( \epsilon_t \) is the contribution of the job at time \( t \)

At the start of time \( t \), a worker has the following options

- retain a current (career, job) pair \((\theta_t, \epsilon_t)\) — referred to hereafter as “stay put”
- retain a current career \( \theta_t \) but redraw a job \( \epsilon_t \) — referred to hereafter as “new job”
- redraw both a career \( \theta_t \) and a job \( \epsilon_t \) — referred to hereafter as “new life”

Draws of \( \theta \) and \( \epsilon \) are independent of each other and past values, with

- \( \theta_t \sim F \)
- \( \epsilon_t \sim G \)

Notice that the worker does not have the option to retain a job but redraw a career — starting a new career always requires starting a new job.

A young worker aims to maximize the expected sum of discounted wages

\[
\mathbb{E} \sum_{t=0}^{\infty} \beta^t w_t
\]

subject to the choice restrictions specified above.

Let \( v(\theta, \epsilon) \) denote the value function, which is the maximum of (37.1) overall feasible (career, job) policies, given the initial state \((\theta, \epsilon)\).

The value function obeys

\[
v(\theta, \epsilon) = \max\{I, II, III\}
\]

where

\[
I = \theta + \epsilon + \beta v(\theta, \epsilon)
\]
\[
II = \theta + \int \epsilon' G(d\epsilon') + \beta \int v(\theta, \epsilon') G(d\epsilon')
\]
\[
III = \int \theta' F(d\theta') + \int \epsilon' G(d\epsilon') + \beta \int \int v(\theta', \epsilon') G(d\epsilon') F(d\theta')
\]

Evidently \( I, II \) and \( III \) correspond to “stay put”, “new job” and “new life”, respectively.
37.2.1 Parameterization

As in [LS18], section 6.5, we will focus on a discrete version of the model, parameterized as follows:

- both $\theta$ and $\epsilon$ take values in the set $\text{np.linspace}(0, B, \text{grid\_size})$ — an even grid of points between 0 and $B$ inclusive
- $\text{grid\_size} = 50$
- $B = 5$
- $\beta = 0.95$

The distributions $F$ and $G$ are discrete distributions generating draws from the grid points $\text{np.linspace}(0, B, \text{grid\_size})$.

A very useful family of discrete distributions is the Beta-binomial family, with probability mass function

$$p(k \mid n, a, b) = \binom{n}{k} \frac{B(k + a, n - k + b)}{B(a, b)}, \quad k = 0, \ldots, n$$

Interpretation:

- draw $q$ from a Beta distribution with shape parameters $(a, b)$
- run $n$ independent binary trials, each with success probability $q$
- $p(k \mid n, a, b)$ is the probability of $k$ successes in these $n$ trials

Nice properties:

- very flexible class of distributions, including uniform, symmetric unimodal, etc.
- only three parameters

Here’s a figure showing the effect on the pmf of different shape parameters when $n = 50$.

```python
def gen_probs(n, a, b):
 probs = np.zeros(n+1)
 for k in range(n+1):
 probs[k] = binom(n, k) * beta(k + a, n - k + b) / beta(a, b)
 return probs

n = 50
a_vals = [0.5, 1, 100]
b_vals = [0.5, 1, 100]
fig, ax = plt.subplots(figsize=(10, 6))
for a, b in zip(a_vals, b_vals):
 ab_label = f'$a = {a:.1f}$, $b = {b:.1f}$'
 ax.plot(list(range(0, n+1)), gen_probs(n, a, b), '-o', label=ab_label)
ax.legend()
plt.show()
```
37.3 Implementation

We will first create a class `CareerWorkerProblem` which will hold the default parameterizations of the model and an initial guess for the value function.

```python
class CareerWorkerProblem:
 def __init__(self,
 B=5.0, # Upper bound
 β=0.95, # Discount factor
 grid_size=50, # Grid size
 F_a=1,
 F_b=1,
 G_a=1,
 G_b=1):
 self.β, self.grid_size, self.B = β, grid_size, B

 self.θ = np.linspace(0, B, grid_size) # Set of θ values
 self.ϵ = np.linspace(0, B, grid_size) # Set of ϵ values

 self.F_probs = BetaBinomial(grid_size - 1, F_a, F_b).pdf()
 self.G_probs = BetaBinomial(grid_size - 1, G_a, G_b).pdf()
 self.F_mean = np.sum(self.θ * self.F_probs)
 self.G_mean = np.sum(self.ϵ * self.G_probs)

 # Store these parameters for str and repr methods
 self._F_a, self._F_b = F_a, F_b
 self._G_a, self._G_b = G_a, G_b
```

![Graph showing the effects of different parameter combinations on the model output.](image)
The following function takes an instance of \texttt{CareerWorkerProblem} and returns the corresponding Bellman operator $T$ and the greedy policy function.

In this model, $T$ is defined by $Tv(\theta, \epsilon) = \max\{I, II, III\}$, where $I, II$ and $III$ are as given in (37.2).

```python
def operator_factory(cw, parallel_flag=True):

 """
 Returns jitted versions of the Bellman operator and the greedy policy function
 cw is an instance of `CareerWorkerProblem`
 """

 \(\theta, \epsilon, \beta = cw.\theta, cw.\epsilon, cw.\beta\)
 F_probs, G_probs = cw.F_probs, cw.G_probs
 F_mean, G_mean = cw.F_mean, cw.G_mean

 @njit(parallel=parallel_flag)
 def T(v):
 """The Bellman operator"
 v_new = np.empty_like(v)

 for i in prange(len(v)):
 for j in prange(len(v)):
 v1 = \(\theta[i] + \epsilon[j] + \beta \cdot v[i, j]\) # Stay put
 v2 = \(\theta[i] + G\text{_mean} + \beta \cdot v[i, :] @ G_probs\) # New job
 v3 = G_mean + F_mean + \beta \cdot F_probs @ v @ G_probs # New life
 v_new[i, j] = max(v1, v2, v3)

 return v_new

 @njit
 def get_greedy(v):
 """Computes the \(v\)-greedy policy"
 \(\sigma = np.empty(v.\text{shape})\)

 for i in range(len(v)):
 for j in range(len(v)):
 v1 = \(\theta[i] + \epsilon[j] + \beta \cdot v[i, j]\)
 v2 = \(\theta[i] + G\text{_mean} + \beta \cdot v[i, :] @ G_probs\)
 v3 = G_mean + F_mean + \beta \cdot F_probs @ v @ G_probs
 if v1 > max(v2, v3):
 action = 1
 elif v2 > max(v1, v3):
 action = 2
 else:
 action = 3
 \(\sigma[i, j] = action\)

 return \sigma

 return T, get_greedy
```

Lastly, \texttt{solve\_model} will take an instance of \texttt{CareerWorkerProblem} and iterate using the Bellman operator to find the fixed point of the Bellman equation.
def solve_model(cw,
    use_parallel=True,
    tol=1e-4,
    max_iter=1000,
    verbose=True,
    print_skip=25):

    T, _ = operator_factory(cw, parallel_flag=use_parallel)

    # Set up loop
    v = np.full((cw.grid_size, cw.grid_size), 100.)  # Initial guess
    i = 0
    error = tol + 1

    while i < max_iter and error > tol:
        v_new = T(v)
        error = np.max(np.abs(v - v_new))
        i += 1
        if verbose and i % print_skip == 0:
            print(f"Error at iteration {i} is {error}.")
        v = v_new

    if error > tol:
        print("Failed to converge!")
    elif verbose:
        print(f"\nConverged in {i} iterations.\")

    return v_new

Here’s the solution to the model – an approximate value function

cw = CareerWorkerProblem()
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
tg, eg = np.meshgrid(cw.θ, cw.ε)
ax.plot_surface(tg,
               eg,
               v_star.T,
               cmap=cm.jet,
               alpha=0.5,
               linewidth=0.25)
ax.set(xlabel='θ', ylabel='ε', zlim=(150, 200))
ax.view_init(ax.elev, 225)
plt.show()
And here is the optimal policy

```
fig, ax = plt.subplots(figsize=(6, 6))
tg, eg = np.meshgrid(cw.θ, cw.ε)
lvls = (0.5, 1.5, 2.5, 3.5)
ax.contourf(tg, eg, greedy_star.T, levels=lvls, cmap=cm.winter, alpha=0.5)
ax.contour(tg, eg, greedy_star.T, colors='k', levels=lvls, linewidths=2)
ax.set(xlabel='θ', ylabel='ε')
ax.text(1.8, 2.5, 'new life', fontsize=14)
ax.text(4.5, 2.5, 'new job', fontsize=14, rotation='vertical')
ax.text(4.0, 4.5, 'stay put', fontsize=14)
plt.show()
```
Interpretation:

- If both job and career are poor or mediocre, the worker will experiment with a new job and new career.
- If career is sufficiently good, the worker will hold it and experiment with new jobs until a sufficiently good one is found.
- If both job and career are good, the worker will stay put.

Notice that the worker will always hold on to a sufficiently good career, but not necessarily hold on to even the best paying job.

The reason is that high lifetime wages require both variables to be large, and the worker cannot change careers without changing jobs.

- Sometimes a good job must be sacrificed in order to change to a better career.
37.4 Exercises

Exercise 37.4.1

Using the default parameterization in the class `CareerWorkerProblem`, generate and plot typical sample paths for $\theta$ and $\epsilon$ when the worker follows the optimal policy.

In particular, modulo randomness, reproduce the following figure (where the horizontal axis represents time)

![Graph showing sample paths for $\theta$ and $\epsilon$.]

**Hint:** To generate the draws from the distributions $F$ and $G$, use `quantecon.random.draw()`.

**Solution to Exercise 37.4.1**

Simulate job/career paths.

In reading the code, recall that `optimal_policy[i, j]` = policy at $(\theta_i, \epsilon_j)$ = either 1, 2 or 3; meaning 'stay put', 'new job' and 'new life'.
Quantitative Economics with Python

```python
F = np.cumsum(cw.F_probs)
G = np.cumsum(cw.G_probs)
v_star = solve_model(cw, verbose=False)
T, get_greedy = operator_factory(cw)
greedy_star = get_greedy(v_star)

def gen_path(optimal_policy, F, G, t=20):
 i = j = 0
 θ_index = []
 ϵ_index = []
 for t in range(t):
 if optimal_policy[i, j] == 1: # Stay put
 pass
 elif greedy_star[i, j] == 2: # New job
 j = qe.random.draw(G)
 else: # New life
 i, j = qe.random.draw(F), qe.random.draw(G)
 θ_index.append(i)
 ϵ_index.append(j)
 return cw.θ[θ_index], cw.ϵ[ϵ_index]

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
for ax in axes:
 θ_path, ϵ_path = gen_path(greedy_star, F, G)
 ax.plot(ϵ_path, label='ϵ')
 ax.plot(θ_path, label='θ')
 ax.set_ylim(0, 6)

plt.legend()
plt.show()
```

Chapter 37. Job Search V: Modeling Career Choice
Exercise 37.4.2

Let’s now consider how long it takes for the worker to settle down to a permanent job, given a starting point of \((\theta, \epsilon) = (0, 0)\).

In other words, we want to study the distribution of the random variable

\[ T^* := \text{the first point in time from which the worker’s job no longer changes} \]

Evidently, the worker’s job becomes permanent if and only if \((\theta_t, \epsilon_t)\) enters the “stay put” region of \((\theta, \epsilon)\) space.

Letting \(S\) denote this region, \(T^*\) can be expressed as the first passage time to \(S\) under the optimal policy:

\[ T^* := \inf\{t \geq 0 \mid (\theta_t, \epsilon_t) \in S\} \]

Collect 25,000 draws of this random variable and compute the median (which should be about 7).

Repeat the exercise with \(\beta = 0.99\) and interpret the change.

Solution to Exercise 37.4.2

The median for the original parameterization can be computed as follows
Quantitative Economics with Python

```python
cw = CareerWorkerProblem()
F = np.cumsum(cw.F_probs)
G = np.cumsum(cw.G_probs)
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

@njit
def passage_time(optimal_policy, F, G):
 t = 0
 i = j = 0
 while True:
 if optimal_policy[i, j] == 1: # Stay put
 return t
 elif optimal_policy[i, j] == 2: # New job
 j = qe.random.draw(G)
 else:
 i, j = qe.random.draw(F), qe.random.draw(G)
 t += 1

@njit(parallel=True)
def median_time(optimal_policy, F, G, M=25000):
 samples = np.empty(M)
 for i in range(M):
 samples[i] = passage_time(optimal_policy, F, G)
 return np.median(samples)

median_time(greedy_star, F, G)
```

7.0

To compute the median with $\beta = 0.99$ instead of the default value $\beta = 0.95$, replace `cw = CareerWorkerProblem()` with `cw = CareerWorkerProblem(\beta=0.99)`.

The medians are subject to randomness but should be about 7 and 14 respectively.

Not surprisingly, more patient workers will wait longer to settle down to their final job.

---

**Exercise 37.4.3**

Set the parameterization to $G_a = G_b = 100$ and generate a new optimal policy figure – interpret.

---

**Solution to Exercise 37.4.3**

Here is one solution

```python
cw = CareerWorkerProblem(G_a=100, G_b=100)
T, get_greedy = operator_factory(cw)
v_star = solve_model(cw, verbose=False)
greedy_star = get_greedy(v_star)

fig, ax = plt.subplots(figsize=(6, 6))
tg, eg = np.meshgrid(cw.\theta, cw.\epsilon)
levels = (0.5, 1.5, 2.5, 3.5)
```

(continues on next page)
In the new figure, you see that the region for which the worker stays put has grown because the distribution for $\epsilon$ has become more concentrated around the mean, making high-paying jobs less realistic.
### 38.1 Overview

In this section, we solve a simple on-the-job search model

- based on [LS18], exercise 6.18, and [Jov79]

Let's start with some imports:

```python
import statements
import matplotlib as plt
plt.rcParams['figure.figsize'] = (11, 5) # set default figure size
import numpy as np
import scipy.stats as stats
from interpolation import interp
from numba import njit, prange
from math import gamma
```
38.1.1 Model Features

- job-specific human capital accumulation combined with on-the-job search
- infinite-horizon dynamic programming with one state variable and two controls

38.2 Model

Let $x_t$ denote the time-$t$ job-specific human capital of a worker employed at a given firm and let $w_t$ denote current wages.

Let $w_t = x_t(1 - s_t - \phi_t)$, where

- $\phi_t$ is investment in job-specific human capital for the current role and
- $s_t$ is search effort, devoted to obtaining new offers from other firms.

For as long as the worker remains in the current job, evolution of $\{x_t\}$ is given by $x_{t+1} = g(x_t, \phi_t)$.

When search effort at $t$ is $s_t$, the worker receives a new job offer with probability $\pi(s_t) \in [0, 1]$.

The value of the offer, measured in job-specific human capital, is $u_{t+1}$, where $\{u_t\}$ is IID with common distribution $f$.

The worker can reject the current offer and continue with existing job.

Hence $x_{t+1} = u_{t+1}$ if he/she accepts and $x_{t+1} = g(x_t, \phi_t)$ otherwise.

Let $b_{t+1} \in \{0, 1\}$ be a binary random variable, where $b_{t+1} = 1$ indicates that the worker receives an offer at the end of time $t$.

We can write

$$x_{t+1} = (1 - b_{t+1})g(x_t, \phi_t) + b_{t+1} \max\{g(x_t, \phi_t), u_{t+1}\} \quad (38.1)$$

Agent’s objective: maximize expected discounted sum of wages via controls $\{s_t\}$ and $\{\phi_t\}$.

Taking the expectation of $v(x_{t+1})$ and using (38.1), the Bellman equation for this problem can be written as

$$v(x) = \max_{s+\phi \leq 1} \left\{ x(1 - s - \phi) + \beta(1 - \pi(s))v[g(x, \phi)] + \beta\pi(s) \int v[g(x, \phi) \lor u]f(du) \right\} \quad (38.2)$$

Here nonnegativity of $s$ and $\phi$ is understood, while $a \lor b := \max\{a, b\}$.

38.2.1 Parameterization

In the implementation below, we will focus on the parameterization

$$g(x, \phi) = A(x\phi)^\alpha, \quad \pi(s) = \sqrt{s} \quad \text{and} \quad f = \text{Beta}(2, 2)$$

with default parameter values

- $A = 1.4$
- $\alpha = 0.6$
- $\beta = 0.96$

The Beta$(2, 2)$ distribution is supported on $(0, 1)$ - it has a unimodal, symmetric density peaked at 0.5.
38.2.2 Back-of-the-Envelope Calculations

Before we solve the model, let’s make some quick calculations that provide intuition on what the solution should look like.

To begin, observe that the worker has two instruments to build capital and hence wages:

1. invest in capital specific to the current job via $\phi$
2. search for a new job with better job-specific capital match via $s$

Since wages are $x(1 - s - \phi)$, marginal cost of investment via either $\phi$ or $s$ is identical.

Our risk-neutral worker should focus on whatever instrument has the highest expected return.

The relative expected return will depend on $x$.

For example, suppose first that $x = 0.05$

- If $s = 1$ and $\phi = 0$, then since $g(x, \phi) = 0$, taking expectations of (38.1) gives expected next period capital equal to $\pi(s)EU = EU = 0.5$.
- If $s = 0$ and $\phi = 1$, then next period capital is $g(x, \phi) = g(0.05, 1) \approx 0.23$.

Both rates of return are good, but the return from search is better.

Next, suppose that $x = 0.4$

- If $s = 1$ and $\phi = 0$, then expected next period capital is again 0.5
- If $s = 0$ and $\phi = 1$, then $g(x, \phi) = g(0.4, 1) \approx 0.8$

Return from investment via $\phi$ dominates expected return from search.

Combining these observations gives us two informal predictions:

1. At any given state $x$, the two controls $\phi$ and $s$ will function primarily as substitutes — worker will focus on whichever instrument has the higher expected return.
2. For sufficiently small $x$, search will be preferable to investment in job-specific human capital. For larger $x$, the reverse will be true.

Now let’s turn to implementation, and see if we can match our predictions.

38.3 Implementation

We will set up a class `JVWorker` that holds the parameters of the model described above

```python
class JVWorker:
 r""
 A Jovanovic-type model of employment with on-the-job search.
 ""

 def __init__(self,
 A=1.4,
 a=0.6,
 b=0.96, # Discount factor
 n=np.sqrt, # Search effort function
 a=2,
 b=2, # Parameter of f
 grid_size=50,
```

(continues on next page)
mc_size=100,
\varepsilon=1e-4):

self.A, self.a, self.\beta, self.\pi = A, a, \beta, \pi
self.mc_size, self.\varepsilon = mc_size, \varepsilon

self.g = njit(lambda x, \phi: A * (x * \phi)**a) # Transition function
self.f_rvs = np.random.beta(a, b, mc_size)

# Max of grid is the max of a large quantile value for f and the
# fixed point y = g(y, 1)
\varepsilon = 1e-4
grid_max = max(A**((1 / (1 - a))), stats.beta(a, b).ppf(1 - \varepsilon))

# Human capital
self.x_grid = np.linspace(\varepsilon, grid_max, grid_size)

The function \texttt{operator\_factory} takes an instance of this class and returns a jitted version of the Bellman operator \(T\), i.e.

\[
Tv(x) = \max_{s+\phi \leq 1} w(s, \phi)
\]

where

\[
w(s, \phi) := x(1 - s - \phi) + \beta(1 - \pi(s))v[g(x, \phi)] + \beta\pi(s) \int v[g(x, \phi) \vee u]f(du)
\] (38.3)

When we represent \(v\), it will be with a NumPy array \(v\) giving values on grid \(x\_grid\).

But to evaluate the right-hand side of (38.3), we need a function, so we replace the arrays \(v\) and \(x\_grid\) with a function \(v\_func\) that gives linear interpolation of \(v\) on \(x\_grid\).

Inside the \texttt{for} loop, for each \(x\) in the grid over the state space, we set up the function \(w(z) = w(s, \phi)\) defined in (38.3).

The function is maximized over all feasible \((s, \phi)\) pairs.

Another function, \texttt{get\_greedy} returns the optimal choice of \(s\) and \(\phi\) at each \(x\), given a value function.

```python
def operator_factory(jv, parallel_flag=True):

 """
 Returns a jitted version of the Bellman operator \(T\)

 \(jv\) is an instance of \(JVWorker\)
 """

 n, \beta = jv.n, jv.\beta
 x_grid, \varepsilon, mc_size = jv.x_grid, jv.\varepsilon, jv.mc_size
 f_rvs, g = jv.f_rvs, jv.g

 @njit
def state_action_values(z, x, v):
 s, \phi = z
 v_func = lambda x: interp(x_grid, v, x)

 integral = 0
 for m in range(mc_size):
(continues on next page)
To solve the model, we will write a function that uses the Bellman operator and iterates to find a fixed point.
def solve_model(jv,
 use_parallel=True,
 tol=1e-4,
 max_iter=1000,
 verbose=True,
 print_skip=25):

 """
 Solves the model by value function iteration
 *
 jv is an instance of JVWorker
 """

 T, _ = operator_factory(jv, parallel_flag=use_parallel)

 # Set up loop
 v = jv.x_grid * 0.5 # Initial condition
 i = 0
 error = tol + 1

 while i < max_iter and error > tol:
 v_new = T(v)
 error = np.max(np.abs(v - v_new))
 i += 1
 if verbose and i % print_skip == 0:
 print(f'Error at iteration {i} is {error}.
 v = v_new

 if error > tol:
 print("Failed to converge!")
 elif verbose:
 print(f'\nConverged in {i} iterations."

 return v_new

38.4 Solving for Policies

Let's generate the optimal policies and see what they look like.

jv = JVWorker()
T, get_greedy = operator_factory(jv)
v_star = solve_model(jv)
s_star, phi_star = get_greedy(v_star)

Error at iteration 25 is 0.15110985388123765.
Error at iteration 50 is 0.05445949519811322.
Error at iteration 75 is 0.01962702371148403.
Error at iteration 100 is 0.007073514748620724.

Error at iteration 125 is 0.002549271492050309.
Error at iteration 150 is 0.0009187490761171091.

(continues on next page)
Error at iteration 175 is 0.0003311141506578963.
Error at iteration 200 is 0.00011933245280282279.
Converged in 205 iterations.

Here are the plots:

```python
plots = [s_star, \phi_star, v_star]
titles = ["s policy", "\phi policy", "value function"]

fig, axes = plt.subplots(3, 1, figsize=(12, 12))

for ax, plot, title in zip(axes, plots, titles):
    ax.plot(jv.x_grid, plot)
    ax.set(title=title)
    ax.grid()

axes[-1].set_xlabel("x")
plt.show()
```
The horizontal axis is the state x, while the vertical axis gives $s(x)$ and $\phi(x)$.

Overall, the policies match well with our predictions from above:

- Worker switches from one investment strategy to the other depending on relative return.
- For low values of x, the best option is to search for a new job.
- Once x is larger, worker does better by investing in human capital specific to the current position.
38.5 Exercises

Exercise 38.5.1

Let’s look at the dynamics for the state process \(\{x_t\} \) associated with these policies.

The dynamics are given by (38.1) when \(\phi_t \) and \(s_t \) are chosen according to the optimal policies, and \(P\{ b_{t+1} = 1 \} = \pi(s_t) \).

Since the dynamics are random, analysis is a bit subtle.

One way to do it is to plot, for each \(x \) in a relatively fine grid called plot_grid, a large number \(K \) of realizations of \(x_{t+1} \) given \(x_t = x \).

Plot this with one dot for each realization, in the form of a 45 degree diagram, setting

```python
jv = JVWorker(grid_size=25, mc_size=50)
pplot_grid = np.linspace(0, plot_grid_max, plot_grid_size)
fig, ax = plt.subplots()
ax.set_xlim(0, plot_grid_max)
ax.set_ylim(0, plot_grid_max)
```

By examining the plot, argue that under the optimal policies, the state \(x_t \) will converge to a constant value \(\bar{x} \) close to unity.

Argue that at the steady state, \(s_t \approx 0 \) and \(\phi_t \approx 0.6 \).

Solution to Exercise 38.5.1

Here’s code to produce the 45 degree diagram

```python
jv = JVWorker(grid_size=25, mc_size=50)
n, g, f_rvs, x_grid = jv.n, jv.g, jv.f_rvs, jv.x_grid
T, get_greedy = operator_factory(jv)

v_star = solve_model(jv, verbose=False)
s_policy, phi_policy = get_greedy(v_star)

s = lambda y: interp(x_grid, s_policy, y)
phi = lambda y: interp(x_grid, phi_policy, y)

@jit

def h(x, b, u):
    return (1 - b) * g(x, phi(x)) + b * max(g(x, phi(x)), u)
```

```python
plot_grid_max, plot_grid_size = 1.2, 100
plot_grid = np.linspace(0, plot_grid_max, plot_grid_size)
fig, ax = plt.subplots(figsize=(8, 8))
ticks = (0.25, 0.5, 0.75, 1.0)
ax.set(xticks=ticks, yticks=ticks,
      xlim=(0, plot_grid_max),
      ylim=(0, plot_grid_max),
      xlabel='$x^t$', ylabel='$x_{t+1}$')
ax.plot(plot_grid, plot_grid, 'k--', alpha=0.6)  # 45 degree line
for x in plot_grid:
    for i in range(jv.mc_size):
        ax.plot(x, h(x, 0.5, x), 'ko', alpha=0.2)
```

(continues on next page)
b = 1 if np.random.uniform(0, 1) < n(s(x)) else 0
u = f_rvs[i]
y = h(x, b, u)
ax.plot(x, y, 'go', alpha=0.25)
plt.show()

Looking at the dynamics, we can see that

- If x_t is below about 0.2 the dynamics are random, but $x_{t+1} > x_t$ is very likely.
- As x_t increases the dynamics become deterministic, and x_t converges to a steady state value close to 1.

Referring back to the figure here we see that $x_t \approx 1$ means that $s_t = s(x_t) \approx 0$ and $\phi_t = \phi(x_t) \approx 0.6$.

Exercise 38.5.2
In Exercise 38.5.1, we found that s_t converges to zero and ϕ_t converges to about 0.6.

Since these results were calculated at a value of β close to one, let’s compare them to the best choice for an infinitely patient worker.

Intuitively, an infinitely patient worker would like to maximize steady state wages, which are a function of steady state capital.

You can take it as given—it’s certainly true—that the infinitely patient worker does not search in the long run (i.e., $s_t = 0$ for large t).

Thus, given ϕ, steady state capital is the positive fixed point $x^*(\phi)$ of the map $x \mapsto g(x, \phi)$.

Steady state wages can be written as $w^*(\phi) = x^*(\phi)(1 - \phi)$.

Graph $w^*(\phi)$ with respect to ϕ, and examine the best choice of ϕ.

Can you give a rough interpretation for the value that you see?

Solution to Exercise 38.5.2

The figure can be produced as follows

```python
jv = JVWorker()

def xbar(ϕ):
    A, α = jv.A, jv.α
    return (A * ϕ**α)**(1 / (1 - α))

ϕ_grid = np.linspace(0, 1, 100)
fig, ax = plt.subplots(figsize=(9, 7))
ax.set(xlabel='$\phi$')
ax.plot(ϕ_grid, [xbar(ϕ) * (1 - ϕ) for ϕ in ϕ_grid], label='$w^*(\phi)$')
ax.legend()
plt.show()
```
Observe that the maximizer is around 0.6.
This is similar to the long-run value for ϕ obtained in Exercise 38.5.1.
Hence the behavior of the infinitely patent worker is similar to that of the worker with $\beta = 0.96$.
This seems reasonable and helps us confirm that our dynamic programming solutions are probably correct.
Part VI

Consumption, Savings and Capital
39.1 Overview

This lecture and *Cass-Koopmans Competitive Equilibrium* describe a model that Tjalling Koopmans [Koo65] and David Cass [Cas65] used to analyze optimal growth.

The model can be viewed as an extension of the model of Robert Solow described in an earlier lecture but adapted to make the saving rate a choice.

(Solow assumed a constant saving rate determined outside the model.)

We describe two versions of the model, one in this lecture and the other in *Cass-Koopmans Competitive Equilibrium*.

Together, the two lectures illustrate what is, in fact, a more general connection between a planned economy and a decentralized economy organized as a competitive equilibrium.

This lecture is devoted to the planned economy version.

In the planned economy, there are

- no prices
- no budget constraints

Instead there is a dictator that tells people

- what to produce
• what to invest in physical capital
• who is to consume what and when

The lecture uses important ideas including
• A min-max problem for solving a planning problem.
• A **shooting algorithm** for solving difference equations subject to initial and terminal conditions.
• A **turnpike** property that describes optimal paths for long but finite-horizon economies.

Let’s start with some standard imports:

```python
@matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
from numba import njit, float64
from numba.experimental import jitclass
import numpy as np
```

39.2 The Model

Time is discrete and takes values $t = 0, 1, \ldots, T$ where T is finite.

(We’ll eventually study a limiting case in which $T = +\infty$)

A single good can either be consumed or invested in physical capital.

The consumption good is not durable and depreciates completely if not consumed immediately.

The capital good is durable but depreciates.

We let C_t be the total consumption of a nondurable consumption good at time t.

Let K_t be the stock of physical capital at time t.

Let $\vec{C} = \{C_0, \ldots, C_T\}$ and $\vec{K} = \{K_0, \ldots, K_{T+1}\}$.

39.2.1 Digression: an Aggregation Theory

We use a concept of a representative consumer to be thought of as follows.

There is a unit mass of identical consumers.

For $\omega \in [0, 1]$, consumption of consumer is $c(\omega)$.

Aggregate consumption is

$$C = \int_0^1 c(\omega) d\omega$$

Consider the a welfare problem of choosing an allocation $\{c(\omega)\}$ across consumers to maximize

$$\int_0^1 u(c(\omega)) d\omega$$

where $u(\cdot)$ is a concave utility function with $u' > 0$, $u'' < 0$ and maximization is subject to

$$C = \int_0^1 c(\omega) d\omega.$$ (39.1)
Form a Lagrangian \(L = \int_{0}^{1} u(c(\omega))d\omega + \lambda[C - \int_{0}^{1} c(\omega)d\omega]. \)

Differentiate under the integral signs with respect to each \(\omega \) to obtain the first-order necessary conditions

\[u'(c(\omega)) = \lambda. \]

This condition implies that \(c(\omega) \) equals a constant \(c \) that is independent of \(\omega \).

To find \(c \), use the feasibility constraint (39.1) to conclude that

\[c(\omega) = c = C. \]

This line of argument indicates the special aggregation theory that lies beneath outcomes in which a representative consumer consumes amount \(C \).

It appears often in aggregate economics.

We shall use it in this lecture and in Cass-Koopmans Competitive Equilibrium.

An Economy

A representative household is endowed with one unit of labor at each \(t \) and likes the consumption good at each \(t \).

The representative household inelastically supplies a single unit of labor \(N_t \) at each \(t \), so that \(N_t = 1 \) for all \(t \in [0, T] \).

The representative household has preferences over consumption bundles ordered by the utility functional:

\[U(\vec{C}) = \sum_{t=0}^{T} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma} \tag{39.2} \]

where \(\beta \in (0, 1) \) is a discount factor and \(\gamma > 0 \) governs the curvature of the one-period utility function with larger \(\gamma \) implying more curvature.

Note that

\[u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma} \tag{39.3} \]

satisfies \(u' > 0, u'' < 0. \)

\(u' > 0 \) asserts that the consumer prefers more to less.

\(u'' < 0 \) asserts that marginal utility declines with increases in \(C_t \).

We assume that \(K_0 > 0 \) is an exogenous initial capital stock.

There is an economy-wide production function

\[F(K_t, N_t) = AK_t^\alpha N_t^{1-\alpha} \tag{39.4} \]

with \(0 < \alpha < 1, A > 0. \)

A feasible allocation \(\vec{C}, \vec{K} \) satisfies

\[C_t + K_{t+1} \leq F(K_t, N_t) + (1-\delta)K_t, \quad \text{for all } t \in [0, T] \tag{39.5} \]

where \(\delta \in (0, 1) \) is a depreciation rate of capital.
39.3 Planning Problem

A planner chooses an allocation \(\{\vec{C}, \vec{K}\} \) to maximize (39.2) subject to (39.5).

Let \(\bar{\mu} = \{\mu_0, \ldots, \mu_T\} \) be a sequence of nonnegative Lagrange multipliers.

To find an optimal allocation, form a Lagrangian

\[
L(\vec{C}, \vec{K}, \bar{\mu}) = \sum_{t=0}^{T} \beta^t \{u(C_t) + \mu_t (F(K_t, 1) + (1 - \delta)K_t - C_t - K_{t+1})\} \tag{39.6}
\]

and then pose the following min-max problem:

\[
\min_{\bar{\mu}} \max_{\vec{C}, \vec{K}} L(\vec{C}, \vec{K}, \bar{\mu}) \tag{39.7}
\]

- Extremization means maximization with respect to \(\vec{C}, \vec{K} \) and minimization with respect to \(\bar{\mu} \).
- Our problem satisfies conditions that assure that required second-order conditions are satisfied at an allocation that satisfies the first-order conditions that we are about to compute.

Before computing first-order conditions, we present some handy formulas.

39.3.1 Useful Properties of Linearly Homogeneous Production Function

The following technicalities will help us.

Notice that

\[
F(K_t, N_t) = AK_t^\alpha N_t^{1-\alpha} = N_t A \left(\frac{K_t}{N_t} \right)^\alpha
\]

Define the output per-capita production function

\[
\frac{F(K_t, N_t)}{N_t} \equiv f \left(\frac{K_t}{N_t} \right) = A \left(\frac{K_t}{N_t} \right)^\alpha
\]

whose argument is capital per-capita.

It is useful to recall the following calculations for the marginal product of capital

\[
\frac{\partial F(K_t, N_t)}{\partial K_t} = \frac{\partial N_t f \left(\frac{K_t}{N_t} \right)}{\partial K_t} = N_t f' \left(\frac{K_t}{N_t} \right) \frac{1}{N_t} \quad \text{(Chain rule)}
\]

\[
= f' \left(\frac{K_t}{N_t} \right) \bigg|_{N_t=1}
\]

and the marginal product of labor

\[
\frac{\partial F(K_t, N_t)}{\partial N_t} = \frac{\partial N_t f \left(\frac{K_t}{N_t} \right)}{\partial N_t} \quad \text{(Product rule)}
\]

\[
= f \left(\frac{K_t}{N_t} \right) + N_t f' \left(\frac{K_t}{N_t} \right) - K_t N_t^2 \quad \text{(Chain rule)}
\]

\[
= f \left(\frac{K_t}{N_t} \right) - K_t N_t f' \left(\frac{K_t}{N_t} \right) \bigg|_{N_t=1}
\]

\[
= f(K_t) - f'(K_t)K_t
\]
39.3.2 First-order necessary conditions

We now compute first-order necessary conditions for extremization of the Lagrangian (39.6):

\[C_t : \quad u'(C_t) - \mu_t = 0 \quad \text{for all} \quad t = 0, 1, \ldots, T \]
\[(39.9) \]

\[K_t : \quad \beta \mu_t [(1 - \delta) + f'(K_t)] - \mu_{t-1} = 0 \quad \text{for all} \quad t = 1, 2, \ldots, T \]
\[(39.10) \]

\[\mu_t : \quad F(K_t, 1) + (1 - \delta)K_t - C_t - K_{t+1} = 0 \quad \text{for all} \quad t = 0, 1, \ldots, T \]
\[(39.11) \]

\[K_{T+1} : \quad -\mu_T \leq 0, \quad \mu_T = 0 \quad \text{if} \quad K_{T+1} = 0; \quad \mu_T = 0 \quad \text{if} \quad K_{T+1} > 0 \]
\[(39.12) \]

In computing (39.11) we recognize that \(K_t \) appears in both the time \(t \) and time \(t - 1 \) feasibility constraints.

Restrictions (39.12) come from differentiating with respect to \(K_{T+1} \) and applying the following Karush-Kuhn-Tucker condition (KKT) (see Karush-Kuhn-Tucker conditions):

\[\mu_T K_{T+1} = 0 \]
\[(39.13) \]

Combining (39.9) and (39.10) gives

\[u'(C_t) [(1 - \delta) + f'(K_t)] - u'(C_{t-1}) = 0 \quad \text{for all} \quad t = 1, 2, \ldots, T + 1 \]

which can be rearranged to become

\[u'(C_{t+1}) [(1 - \delta) + f'(K_{t+1})] = u'(C_t) \quad \text{for all} \quad t = 0, 1, \ldots, T \]
\[(39.14) \]

Applying the inverse of the utility function on both sides of the above equation gives

\[C_{t+1} = u'^{-1}\left(\left(\frac{\beta}{u'(C_t)} [f'(K_{t+1}) + (1 - \delta)] \right)^{-1} \right) \]

which for our utility function (39.3) becomes the consumption Euler equation

\[C_{t+1} = (\beta C_t [f'(K_{t+1}) + (1 - \delta)])^{1/\gamma} \]

\[= C_t (\beta [f'(K_{t+1}) + (1 - \delta)])^{1/\gamma} \]

Below we define a jitclass that stores parameters and functions that define our economy.

```python
planning_data = [
    ('\gamma', float64),  # Coefficient of relative risk aversion
    ('\beta', float64),  # Discount factor
    ('\delta', float64),  # Depreciation rate on capital
    ('\alpha', float64),  # Return to capital per capita
    ('A', float64)  # Technology
]

@jitclass(planning_data)
class PlanningProblem():
    def __init__(self, \gamma=2, \beta=0.95, \delta=0.02, \alpha=0.33, A=1):
        self.\gamma, self.\beta = \gamma, \beta
        self.\delta, self.\alpha, self.A = \delta, \alpha, A
```

(continues on next page)
def u(self, c):
 '''
 Utility function
 ASIDE: If you have a utility function that is hard to solve by hand
 you can use automatic or symbolic differentiation
 See https://github.com/HIPS/autograd
 '''
 γ = self.γ
 return c ** (1 - γ) / (1 - γ) if γ != 1 else np.log(c)

def u_prime(self, c):
 'Derivative of utility'
 γ = self.γ
 return c ** (-γ)

def u_prime_inv(self, c):
 'Inverse of derivative of utility'
 γ = self.γ
 return c ** (-1 / γ)

def f(self, k):
 'Production function'
 α, A = self.α, self.A
 return A * k ** α

def f_prime(self, k):
 'Derivative of production function'
 α, A = self.α, self.A
 return α * A * k ** (α - 1)

def f_prime_inv(self, k):
 'Inverse of derivative of production function'
 α, A = self.α, self.A
 return k / (A * α) ** (1 / (α - 1))

def next_k_c(self, k, c):
 '''
 Given the current capital Kt and an arbitrary feasible
 consumption choice Ct, computes Kt+1 by state transition law
 and optimal Ct+1 by Euler equation.
 '''
 β, δ = self.β, self.δ
 u_prime, u_prime_inv = self.u_prime, self.u_prime_inv
 f, f_prime = self.f, self.f_prime
 k_next = f(k) + (1 - δ) * k - c
 c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))
 return k_next, c_next

We can construct an economy with the Python code:
39.4 Shooting Algorithm

We use **shooting** to compute an optimal allocation \vec{C}, \vec{K} and an associated Lagrange multiplier sequence $\vec{\mu}$.

The first-order necessary conditions (39.9), (39.10), and (39.11) for the planning problem form a system of **difference equations** with two boundary conditions:

- K_0 is a given **initial condition** for capital
- $K_{T+1} = 0$ is a **terminal condition** for capital that we deduced from the first-order necessary condition for K_{T+1} the KKT condition (39.13)

We have no initial condition for the Lagrange multiplier μ_0.

If we did, our job would be easy:

- Given μ_0 and k_0, we could compute c_0 from equation (39.9) and then k_1 from equation (39.11) and μ_1 from equation (39.10).
- We could continue in this way to compute the remaining elements of $\vec{C}, \vec{K}, \vec{\mu}$.

But we don’t have an initial condition for μ_0, so this won’t work.

Indeed, part of our task is to compute the optimal value of μ_0.

To compute μ_0 and the other objects we want, a simple modification of the above procedure will work.

It is called the **shooting algorithm**.

It is an instance of a **guess and verify** algorithm that consists of the following steps:

- Guess an initial Lagrange multiplier μ_0.
- Apply the **simple algorithm** described above.
- Compute k_{T+1} and check whether it equals zero.
- If $K_{T+1} = 0$, we have solved the problem.
- If $K_{T+1} > 0$, lower μ_0 and try again.
- If $K_{T+1} < 0$, raise μ_0 and try again.

The following **Python** code implements the shooting algorithm for the planning problem.

We actually modify the algorithm slightly by starting with a guess for c_0 instead of μ_0 in the following code.

```python
@njit
def shooting(pp, c0, k0, T=10):
    '''
    Given the initial condition of capital k0 and an initial guess of consumption c0, computes the whole paths of c and k using the state transition law and Euler equation for T periods.
    '''
    if c0 > pp.f(k0):
        print("initial consumption is not feasible")
        return None
```

(continues on next page)
initialize vectors of c and k

c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
 k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.delta) * k_vec[T] - c_vec[T]

return c_vec, k_vec

We'll start with an incorrect guess.

paths = shooting(pp, 0.2, 0.3, T=10)

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

colors = ['blue', 'red']
titles = ['Consumption', 'Capital']
ylabels = ['c_t', 'k_t']

T = paths[0].size - 1
for i in range(2):
 axs[i].plot(paths[i], c=colors[i])
 axs[i].set(xlabel='t', ylabel=ylabels[i], title=titles[i])

axs[1].scatter(T+1, 0, s=80)
axs[1].axvline(T+1, color='k', ls='--', lw=1)

plt.show()

Evidently, our initial guess for μ_0 is too high, so initial consumption too low.
We know this because we miss our $K_{T+1} = 0$ target on the high side.

Now we automate things with a search-for-a-good μ_0 algorithm that stops when we hit the target $K_{t+1} = 0$.

Quantitative Economics with Python

(continued from previous page)
We use a bisection method.

We make an initial guess for C_0 (we can eliminate μ_0 because C_0 is an exact function of μ_0).

We know that the lowest C_0 can ever be is 0 and the largest it can be is initial output $f(K_0)$.

Guess C_0 and shoot forward to $T + 1$.

If $K_{T+1} > 0$, we take it to be our new lower bound on C_0.

If $K_{T+1} < 0$, we take it to be our new upper bound.

Make a new guess for C_0 that is halfway between our new upper and lower bounds.

Shoot forward again, iterating on these steps until we converge.

When K_{T+1} gets close enough to 0 (i.e., within an error tolerance bounds), we stop.

```python
@njit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):
    # initial boundaries for guess c0
    c0_upper = pp.f(k0)
    c0_lower = 0
    i = 0
    while True:
        c_vec, k_vec = shooting(pp, c0, k0, T)
        error = k_vec[-1] - k_ter
        # check if the terminal condition is satisfied
        if np.abs(error) < tol:
            if verbose:
                print('Converged successfully on iteration ', i + 1)
            return c_vec, k_vec
        i += 1
        if i == max_iter:
            if verbose:
                print('Convergence failed.
            return c_vec, k_vec
        # if iteration continues, updates boundaries and guess of c0
        if error > 0:
            c0_lower = c0
        else:
            c0_upper = c0
        c0 = (c0_lower + c0_upper) / 2

def plot_paths(pp, c0, k0, T_arr, k_ter=0, k_ss=None, axs=None):
    if axs is None:
        fix, axs = plt.subplots(1, 3, figsize=(16, 4))
    ylabels = ['$c_t$', '$k_t$', '$\mu_t$']
titles = ['Consumption', 'Capital', 'Lagrange Multiplier']

c_paths = []
k_paths = []
for T in T_arr:
    # (continues on next page)
Now we can solve the model and plot the paths of consumption, capital, and Lagrange multiplier.

```python
plot_paths(pp, 0.3, 0.3, [10]);
```

### 39.5 Setting Initial Capital to Steady State Capital

When \( T \rightarrow +\infty \), the optimal allocation converges to steady state values of \( C_t \) and \( K_t \).

It is instructive to set \( K_0 \) equal to the \( \lim_{T \to +\infty} K_t \), which we'll call steady state capital.

In a steady state \( K_{t+1} = K_t = \bar{K} \) for all very large \( t \).

Evaluating the feasibility constraint (39.5) at \( \bar{K} \) gives

\[
 f(\bar{K}) - \delta \bar{K} = \bar{C}
\]

Substituting \( K_t = \bar{K} \) and \( C_t = \bar{C} \) for all \( t \) into (39.14) gives

\[
 1 = \beta \frac{u'(\bar{C})}{u''(\bar{C})} [f'(\bar{K}) + (1 - \delta)]
\]
Defining $\beta = \frac{1}{1+\rho}$, and cancelling gives

$$1 + \rho = 1[f'(\bar{K}) + (1 - \delta)]$$

Simplifying gives

$$f'(\bar{K}) = \rho + \delta$$

and

$$\bar{K} = f'^{-1}(\rho + \delta)$$

For the production function (39.4) this becomes

$$\alpha \bar{K}^{\alpha - 1} = \rho + \delta$$

As an example, after setting $\alpha = .33, \rho = 1/\beta - 1 = 1/(19/20) - 1 = 20/19 - 19/19 = 1/19, \delta = 1/50$, we get

$$\bar{K} = \left(\frac{33}{100} + \frac{1}{19}\right)^{\frac{07}{100}} \approx 9.57583$$

Let’s verify this with Python and then use this steady state $\bar{K}$ as our initial capital stock $K_0$.

```python
rho = 1 / pp.\beta - 1
k_ss = pp.f_prime_inv(\rho+pp.\delta)
print(f'steady state for capital is: {k_ss}')
```

steady state for capital is: 9.57583816331462

Now we plot

```python
plot_paths(pp, 0.3, k_ss, [150], k_ss=k_ss);
```

Evidently, with a large value of $T$, $K_t$ stays near $K_0$ until $t$ approaches $T$ closely.

Let’s see what the planner does when we set $K_0$ below $\bar{K}$.

```python
plot_paths(pp, 0.3, k_ss/3, [150], k_ss=k_ss);
```
Quantitative Economics with Python

Notice how the planner pushes capital toward the steady state, stays near there for a while, then pushes $K_t$ toward the terminal value $K_{T+1} = 0$ when $t$ closely approaches $T$.

The following graphs compare optimal outcomes as we vary $T$.

```python
plot_paths(pp, 0.3, k_ss/3, [150, 75, 50, 25], k_ss=k_ss);
```

![](image1.png)

39.6 A Turnpike Property

The following calculation indicates that when $T$ is very large, the optimal capital stock stays close to its steady state value most of the time.

```python
plot_paths(pp, 0.3, k_ss/3, [250, 150, 50, 25], k_ss=k_ss);
```

![](image2.png)

Different colors in the above graphs are associated with different horizons $T$.

Notice that as the horizon increases, the planner puts $K_t$ closer to the steady state value $\bar{K}$ for longer.
This pattern reflects a **turnpike** property of the steady state.

A rule of thumb for the planner is

- from $K_0$, push $K_t$ toward the steady state and stay close to the steady state until time approaches $T$.

The planner accomplishes this by adjusting the saving rate $\frac{f(K_t) - C_t}{f(K_t)}$ over time.

Let’s calculate and plot the saving rate.

```python
@njit
def saving_rate(pp, c_path, k_path):
 'Given paths of c and k, computes the path of saving rate.'
 production = pp.f(k_path[:-1])
 return (production - c_path) / production

def plot_saving_rate(pp, c0, k0, T_arr, k_ter=0, k_ss=None, s_ss=None):
 fix, axs = plt.subplots(2, 2, figsize=(12, 9))
 c_paths, k_paths = plot_paths(pp, c0, k0, T_arr, k_ter=k_ter, k_ss=k_ss, axs=axs.flatten())
 for i, T in enumerate(T_arr):
 s_path = saving_rate(pp, c_paths[i], k_paths[i])
 axs[1, 1].plot(s_path)
 axs[1, 1].set(xlabel='t', ylabel='s_t', title='Saving rate')
 if s_ss is not None:
 axs[1, 1].hlines(s_ss, 0, np.max(T_arr), linestyle='--')

plot_saving_rate(pp, 0.3, k_ss/3, [250, 150, 75, 50], k_ss=k_ss)
```
39.7 A Limiting Infinite Horizon Economy

We want to set $T = +\infty$.

The appropriate thing to do is to replace terminal condition (39.12) with

$$\lim_{T \to +\infty} \beta^T u'(C_T)K_{T+1} = 0,$$

a condition that will be satisfied by a path that converges to an optimal steady state.

We can approximate the optimal path by starting from an arbitrary initial $K_0$ and shooting towards the optimal steady state $\bar{K}$ at a large but finite $T + 1$.

In the following code, we do this for a large $T$ and plot consumption, capital, and the saving rate.

We know that in the steady state that the saving rate is constant and that $\bar{s} = \frac{f(\bar{K}) - \bar{C}}{f(\bar{K})}$.

From (39.15) the steady state saving rate equals

$$\bar{s} = \frac{\delta \bar{K}}{f(\bar{K})}$$

The steady state saving rate $\bar{S} = \bar{s} f(\bar{K})$ is the amount required to offset capital depreciation each period.

We first study optimal capital paths that start below the steady state.
# steady state of saving rate

\[
    s_{ss} = pp.\delta \times k_{ss} / pp.f(k_{ss})
\]

plot_saving_rate(pp, 0.3, k/ss/3, [130], k_ter=k/ss, k/ss=k/ss, s/ss=s/ss)

Since \(K_0 < \bar{K}\), \(f'(K_0) > \rho + \delta\).

The planner chooses a positive saving rate that is higher than the steady state saving rate.

Note, \(f''(K) < 0\), so as \(K\) rises, \(f'(K)\) declines.

The planner slowly lowers the saving rate until reaching a steady state in which \(f'(K) = \rho + \delta\).

### 39.7.1 Exercise

**Exercise 39.7.1**

- Plot the optimal consumption, capital, and saving paths when the initial capital level begins at 1.5 times the steady state level as we shoot towards the steady state at \(T = 130\).
- Why does the saving rate respond as it does?
39.8 Concluding Remarks

In *Cass-Koopmans Competitive Equilibrium*, we study a decentralized version of an economy with exactly the same technology and preference structure as deployed here.

In that lecture, we replace the planner of this lecture with Adam Smith’s **invisible hand**.

In place of quantity choices made by the planner, there are market prices that are set by a mechanism outside the model, a so-called invisible hand.

Equilibrium market prices must reconcile distinct decisions that are made independently by a representative household and a representative firm.

The relationship between a command economy like the one studied in this lecture and a market economy like that studied in *Cass-Koopmans Competitive Equilibrium* is a foundational topic in general equilibrium theory and welfare economics.
40.1 Overview

This lecture continues our analysis in this lecture Cass-Koopmans Planning Model about the model that Tjalling Koopmans [Koo65] and David Cass [Cas65] used to study optimal capital accumulation.

This lecture illustrates what is, in fact, a more general connection between a planned economy and an economy organized as a competitive equilibrium or a market economy.

The earlier lecture Cass-Koopmans Planning Model studied a planning problem and used ideas including

- A Lagrangian formulation of the planning problem that leads to a system of difference equations.
- A shooting algorithm for solving difference equations subject to initial and terminal conditions.
- A turnpike property that describes optimal paths for long-but-finite horizon economies.

The present lecture uses additional ideas including

- Hicks-Arrow prices, named after John R. Hicks and Kenneth Arrow.
- A connection between some Lagrange multipliers from the planning problem and the Hicks-Arrow prices.
- A Big $K$, little $k$ trick widely used in macroeconomic dynamics.
  - We shall encounter this trick in this lecture and also in this lecture.
- A non-stochastic version of a theory of the term structure of interest rates.
• An intimate connection between two ways to organize an economy, namely:
  – **socialism** in which a central planner commands the allocation of resources, and
  – **competitive markets** in which competitive equilibrium *prices* induce individual consumers and producers to choose a socially optimal allocation as unintended consequences of their selfish decisions

Let’s start with some standard imports:

```python
Animate inline imports
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
from numba import njit, float64
from numba.experimental import jitclass
import numpy as np
```

## 40.2 Review of Cass-Koopmans Model

The physical setting is identical with that in *Cass-Koopmans Planning Model*. Time is discrete and takes values \( t = 0, 1, \ldots, T \).

A single good can either be consumed or invested in physical capital.

The consumption good is not durable and depreciates completely if not consumed immediately.

The capital good is durable but partially depreciates each period at a constant rate.

We let \( C_t \) be a nondurable consumption good at time \( t \).

Let \( K_t \) be the stock of physical capital at time \( t \).

Let \( \tilde{C} = \{ C_0, \ldots, C_T \} \) and \( \tilde{K} = \{ K_0, \ldots, K_{T+1} \} \).

A representative household is endowed with one unit of labor at each \( t \) and likes the consumption good at each \( t \).

The representative household inelastically supplies a single unit of labor \( N_t \) at each \( t \), so that \( N_t = 1 \) for all \( t \in [0, T] \).

The representative household has preferences over consumption bundles ordered by the utility functional:

\[
U(\tilde{C}) = \sum_{t=0}^{T} \beta^t \frac{C_t^{1-\gamma}}{1-\gamma}
\]

where \( \beta \in (0, 1) \) is a discount factor and \( \gamma > 0 \) governs the curvature of the one-period utility function.

We assume that \( K_0 > 0 \).

There is an economy-wide production function

\[
F(K_t, N_t) = AK_t^\alpha N_t^{1-\alpha}
\]

with \( 0 < \alpha < 1, A > 0 \).

A feasible allocation \( \tilde{C}, \tilde{K} \) satisfies

\[
C_t + K_{t+1} \leq F(K_t, N_t) + (1 - \delta)K_t, \quad \text{for all } t \in [0, T]
\]

where \( \delta \in (0, 1) \) is a depreciation rate of capital.
40.2.1 Planning Problem

In this lecture Cass-Koopmans Planning Model, we studied a problem in which a planner chooses an allocation \( \{ \vec{C}, \vec{K} \} \) to maximize (39.2) subject to (39.5). The allocation that solves the planning problem reappears in a competitive equilibrium, as we shall see below.

40.3 Competitive Equilibrium

We now study a decentralized version of the economy. It shares the same technology and preference structure as the planned economy studied in this lecture Cass-Koopmans Planning Model. But now there is no planner. There are (unit masses of) price taking consumers and firms. Market prices are set to reconcile distinct decisions that are made separately by a representative household and a representative firm. There is a representative consumer who has the same preferences over consumption plans as did a consumer in the planned economy. Instead of being told what to consume and save by a planner, a consumer (also known as a household) chooses for itself subject to a budget constraint

- At each time \( t \), the household receives wages and rentals of capital from a firm – these comprise its income at time \( t \).
- The consumer decides how much income to allocate to consumption or to savings.
- The household can save either by acquiring additional physical capital (it trades one for one with time \( t \) consumption) or by acquiring claims on consumption at dates other than \( t \).
- The household owns all physical capital and labor and rents them to the firm.
- The household consumes, supplies labor, and invests in physical capital.
- A profit-maximizing representative firm operates the production technology.
- The firm rents labor and capital each period from the representative household and sells its output each period to the household.
- The representative household and the representative firm are both price takers who believe that prices are not affected by their choices

Note: We can think of there being unit measures of identical representative consumers and identical representative firms.
40.4 Market Structure

The representative household and the representative firm are both price takers.
The household owns both factors of production, namely, labor and physical capital.
Each period, the firm rents both factors from the household.
There is a single grand competitive market in which a household can trade date 0 goods for goods at all other dates \( t = 1, 2, \ldots, T \).

40.4.1 Prices

There are sequences of prices \( \{w_t, \eta_t\}_{t=0}^{T} = \{\bar{w}, \bar{\eta}\} \) where
- \( w_t \) is a wage or rental rate for labor at time \( t \)
- \( \eta_t \) is a rental rate for capital at time \( t \)

In addition there is a vector \( \{q_t^0\} \) of intertemporal prices where
- \( q_t^0 \) is the price of a good at date \( t \) relative to a good at date 0.

We call \( \{q_t^0\}_{t=0}^{T} \) a vector of **Hicks-Arrow prices**, named after the 1972 economics Nobel prize winners.
Units of \( q_t^0 \) could be

\[
\frac{\text{number of time 0 goods}}{\text{number of time } t \text{ goods}}
\]

But because \( q_t^0 \) is a relative price, the units in terms of which prices are quoted are arbitrary, we are free to re-normalize them.

40.5 Firm Problem

At time \( t \) a representative firm hires labor \( \tilde{n}_t \) and capital \( \tilde{k}_t \).
The firm’s profits at time \( t \) are

\[
F(\tilde{k}_t, \tilde{n}_t) - w_t \tilde{n}_t - \eta_t \tilde{k}_t
\]

where \( w_t \) is a wage rate at \( t \) and \( \eta_t \) is the rental rate on capital at \( t \).
As in the planned economy model

\[
F(\tilde{k}_t, \tilde{n}_t) = A \tilde{k}_t^\alpha \tilde{n}_t^{1-\alpha}
\]

40.5.1 Zero Profit Conditions

Zero-profits condition for capital and labor are

\[
F_k(\tilde{k}_t, \tilde{n}_t) = \eta_t
\]

and

\[
F_n(\tilde{k}_t, \tilde{n}_t) = w_t \tag{40.1}
\]
These conditions emerge from a no-arbitrage requirement.

To describe this no-arbitrage profits reasoning, we begin by applying a theorem of Euler about linearly homogenous functions.

The theorem applies to the Cobb-Douglas production function because it assumed displays constant returns to scale:

\[ \alpha F(\bar{k}_t, \bar{n}_t) = F(\alpha \bar{k}_t, \alpha \bar{n}_t) \]

for \( \alpha \in (0, 1) \).

Taking the partial derivative \( \frac{\partial F}{\partial \alpha} \) on both sides of the above equation gives

\[ F(\bar{k}_t, \bar{n}_t) = \text{chain rule} \left( \frac{\partial F}{\partial \bar{k}_t} \bar{k}_t + \frac{\partial F}{\partial \bar{n}_t} \bar{n}_t \right) \]

Rewrite the firm’s profits as

\[ \frac{\partial F}{\partial \bar{k}_t} \bar{k}_t + \frac{\partial F}{\partial \bar{n}_t} \bar{n}_t - \bar{w}_t \bar{n}_t - \bar{\eta}_t \bar{k}_t \]

or

\[ \left( \frac{\partial F}{\partial \bar{k}_t} - \bar{\eta}_t \right) \bar{k}_t + \left( \frac{\partial F}{\partial \bar{n}_t} - \bar{w}_t \right) \bar{n}_t \]

Because \( F \) is homogeneous of degree 1, it follows that \( \frac{\partial F}{\partial \bar{k}_t} \) and \( \frac{\partial F}{\partial \bar{n}_t} \) are homogeneous of degree 0 and therefore fixed with respect to \( \bar{k}_t \) and \( \bar{n}_t \).

If \( \frac{\partial F}{\partial \bar{k}_t} > \bar{\eta}_t \), then the firm makes positive profits on each additional unit of \( \bar{k}_t \), so it would want to make \( \bar{k}_t \) arbitrarily large.

But setting \( \bar{k}_t = +\infty \) is not physically feasible, so presumably equilibrium prices will assume values that present the firm with no such arbitrage opportunity.

A similar argument applies if \( \frac{\partial F}{\partial \bar{n}_t} > \bar{w}_t \).

If \( \frac{\partial \bar{k}_t}{\partial \bar{k}_t} < \bar{\eta}_t \), the firm would want to set \( \bar{k}_t \) to zero, which is not feasible.

It is convenient to define \( \bar{w} = \{ \bar{w}_0, \ldots, \bar{w}_T \} \) and \( \bar{\eta} = \{ \bar{\eta}_0, \ldots, \bar{\eta}_T \} \).

### 40.6 Household Problem

A representative household lives at \( t = 0, 1, \ldots, T \).

At \( t \), the household rents 1 unit of labor and \( k_t \) units of capital to a firm and receives income

\[ w_t 1 + \eta_t k_t \]

At \( t \) the household allocates its income to the following purchases

\[ (c_t + (k_{t+1} - (1 - \delta)k_t)) \]

Here \( (k_{t+1} - (1 - \delta)k_t) \) is the household’s net investment in physical capital and \( \delta \in (0, 1) \) is again a depreciation rate of capital.

In period \( t \) is free to purchase more goods to be consumed and invested in physical capital than its income from supplying capital and labor to the firm, provided that in some other periods its income exceeds its purchases.
A household’s net excess demand for time $t$ consumption goods is the gap

$$e_t \equiv (c_t + (k_{t+1} - (1 - \delta)k_t)) - (w_t1 + \eta_k k_t)$$

Let $\vec{c} = \{c_0, \ldots, c_T\}$ and let $\vec{k} = \{k_1, \ldots, k_{T+1}\}$.

$k_0$ is given to the household.

The household faces a single budget constraint, that states that the present value of the household’s net excess demands must be zero:

$$\sum_{t=0}^{T} q_0^t e_t \leq 0$$

or

$$\sum_{t=0}^{T} q_0^t (c_t + (k_{t+1} - (1 - \delta)k_t)) - (w_t1 + \eta_k k_t) \leq 0$$

The household chooses an allocation to solve the constrained optimization problem:

$$\max_{\vec{c}, \vec{k}} \sum_{t=0}^{T} \beta^t u(c_t)$$

subject to

$$\sum_{t=0}^{T} q_0^t (c_t + (k_{t+1} - (1 - \delta)k_t)) - w_t - \eta_k k_t \leq 0$$

### 40.6.1 Definitions

- A **price system** is a sequence $\{q_0^t, \eta_t, w_t\}_{t=0}^{T} = \{\vec{q}, \vec{\eta}, \vec{w}\}$.
- An **allocation** is a sequence $\{c_t, k_{t+1}, n_t = 1\}_{t=0}^{T} = \{\vec{c}, \vec{k}, \vec{n}\}$.
- A **competitive equilibrium** is a price system and an allocation for which
  - Given the price system, the allocation solves the household’s problem.
  - Given the price system, the allocation solves the firm’s problem.

### 40.7 Computing a Competitive Equilibrium

We compute a competitive equilibrium by using a **guess and verify** approach.

- We **guess** equilibrium price sequences $\{\vec{q}, \vec{\eta}, \vec{w}\}$.
- We then **verify** that at those prices, the household and the firm choose the same allocation.

#### 40.7.1 Guess for Price System

In this lecture *Cass-Koopmans Planning Model*, we computed an allocation $\{\vec{C}, \vec{K}, \vec{N}\}$ that solves the planning problem. (This allocation will constitute the Big $K$ to be in the present instance of the Big $K$, little $k$ trick that we’ll apply to a competitive equilibrium in the spirit of this lecture and this lecture.)

We use that allocation to construct a guess for the equilibrium price system.
In particular, we guess that for $t = 0, \ldots, T$:

\[
\lambda q_t^0 = \beta^t u'(K_t) = \beta^t \mu_t \tag{40.2}
\]

\[
w_t = f(K_t) - K_t f'(K_t) \tag{40.3}
\]

\[
\eta_t = f'(K_t) \tag{40.4}
\]

At these prices, let the capital chosen by the household be

\[
k_t^* (\tilde{q}, \tilde{w}, \tilde{\eta}), \quad t \geq 0 \tag{40.5}
\]

and let the allocation chosen by the firm be

\[
\tilde{k}_t^* (\tilde{q}, \tilde{w}, \tilde{\eta}), \quad t \geq 0
\]

and so on.

If our guess for the equilibrium price system is correct, then it must occur that

\[
k_t^* = \tilde{k}_t^* \tag{40.6}
\]

\[
1 = \tilde{n}_t^* \tag{40.7}
\]

\[
c_t^* + k_{t+1}^* - (1 - \delta)k_t^* = F(\tilde{k}_t^*, \tilde{n}_t^*) \tag{40.8}
\]

We shall verify that for $t = 0, \ldots, T$ the allocations chosen by the household and the firm both equal the allocation that solves the planning problem:

\[
k_t^* = \tilde{k}_t^* = K_t, \tilde{n}_t = 1, c_t^* = C_t \tag{40.9}
\]

### 40.7.2 Verification Procedure

Our approach is to stare at first-order necessary conditions for the optimization problems of the household and the firm. At the price system we have guessed, we’ll then verify that both sets of first-order conditions are satisfied at the allocation that solves the planning problem.

### 40.7.3 Household’s Lagrangian

To solve the household’s problem, we formulate the Lagrangian

\[
\mathcal{L}(c, \tilde{k}, \lambda) = \sum_{t=0}^{T} \beta^t u(c_t) + \lambda \left( \sum_{t=0}^{T} q_t^0 \left( (1 - \delta)k_t - w_t + \eta_t k_t - c_t - k_{t+1} \right) \right)
\]

and attack the min-max problem:

\[
\min_{\lambda} \max_{c, k} \mathcal{L}(c, \tilde{k}, \lambda)
\]

First-order conditions are

\[
c_t : \quad \beta^t u'(c_t) - \lambda q_t^0 = 0 \quad t = 0, 1, \ldots, T \tag{40.9}
\]

\[
k_t : \quad -\lambda q_t^0 [(1 - \delta) + \eta_t] + \lambda q_{t-1}^0 = 0 \quad t = 1, 2, \ldots, T + 1 \tag{40.10}
\]
\[
\lambda : \left( \sum_{t=0}^{T} q_t^0 \left( c_t + (k_{t+1} - (1 - \delta)k_t) - w_t - \eta_t k_t \right) \right) \leq 0 \tag{40.11}
\]

\[
k_{T+1} : -\lambda q_0^{T+1} \leq 0, \quad 0 \leq k_{T+1} = 0, \quad 0 \leq k_{T+1} > 0 \tag{40.12}
\]

Now we plug in our guesses of prices and embark on some algebra in the hope of recovering all first-order necessary conditions (39.9)-(39.12) for the planning problem from this lecture Cass-Koopmans Planning Model.

Combining (40.9) and (40.2), we get:

\[ u'(C_t) = \mu_t \]

which is (39.9).

Combining (40.10), (40.2), and (40.4) we get:

\[ -\lambda \beta^t \mu_t [(1 - \delta) + f'(K_t)] + \lambda \beta^{t-1} \mu_{t-1} = 0 \tag{40.13} \]

Rewriting (40.13) by dividing by \( \lambda \) on both sides (which is nonzero since \( u' > 0 \)) we get:

\[ \beta^t \mu_t [(1 - \delta + f'(K_t)] = \beta^{t-1} \mu_{t-1} \]

or

\[ \beta \mu_t [(1 - \delta + f'(K_t)] = \mu_{t-1} \]

which is (39.10).

Combining (40.11), (40.2), (40.3) and (40.4) after multiplying both sides of (40.11) by \( \lambda \), we get

\[ \sum_{t=0}^{T} \beta^t \mu_t (C_t + (K_{t+1} - (1 - \delta)K_t) - f(K_t) + K_t f'(K_t) - f'(K_t)K_t) \leq 0 \]

which simplifies to

\[ \sum_{t=0}^{T} \beta^t \mu_t (C_t + K_{t+1} - (1 - \delta)K_t - F(K_t, 1)) \leq 0 \]

Since \( \beta^t \mu_t > 0 \) for \( t = 0, ... , T \), it follows that

\[ C_t + K_{t+1} - (1 - \delta)K_t - F(K_t, 1) = 0 \quad \text{for all } t \text{ in } 0, ..., T \]

which is (39.11).

Combining (40.12) and (40.2), we get:

\[ -\beta^{T+1} \mu_{T+1} \leq 0 \]

Dividing both sides by \( \beta^{T+1} \) gives

\[ -\mu_{T+1} \leq 0 \]

which is (39.12) for the planning problem.

Thus, at our guess of the equilibrium price system, the allocation that solves the planning problem also solves the problem faced by a representative household living in a competitive equilibrium.

We now turn to the problem faced by a firm in a competitive equilibrium:
If we plug (40.8) into (40.1) for all t, we get
\[
\frac{\partial F(K_t, 1)}{\partial K_t} = f'(K_t) = \eta_t
\]
which is (40.4).

If we now plug (40.8) into (40.1) for all t, we get:
\[
\frac{\partial F(\tilde{K}_t, 1)}{\partial \tilde{L}_t} = f(K_t) - f'(K_t)K_t = w_t
\]
which is exactly (40.5).

Thus, at our guess for the equilibrium price system, the allocation that solves the planning problem also solves the problem faced by a firm within a competitive equilibrium.

By (40.6) and (40.7) this allocation is identical to the one that solves the consumer's problem.

**Note:** Because budget sets are affected only by relative prices, \{q_0^t\} is determined only up to multiplication by a positive constant.

Normalization: We are free to choose a \{q_0^t\} that makes \(\lambda = 1\) so that we are measuring \(q_0^t\) in units of the marginal utility of time 0 goods.

We will plot \(q, w, \eta\) below to show these equilibrium prices induce the same aggregate movements that we saw earlier in the planning problem.

To proceed, we bring in Python code that Cass-Koopmans Planning Model used to solve the planning problem

First let's define a jitclass that stores parameters and functions the characterize an economy.

```python
planning_data = [
 ('γ', float64), # Coefficient of relative risk aversion
 ('β', float64), # Discount factor
 ('δ', float64), # Depreciation rate on capital
 ('α', float64), # Return to capital per capita
 ('A', float64) # Technology
]

@jitclass(planning_data)
class PlanningProblem:
 def __init__(self, γ=2, β=0.95, δ=0.02, α=0.33, A=1):
 self.γ, self.β = γ, β
 self.δ, self.α, self.A = δ, α, A

 def u(self, c):
 ...
 Utility function
 ASIDE: If you have a utility function that is hard to solve by hand
 you can use automatic or symbolic differentiation
 See https://github.com/HIPS/autograd
 ...
 γ = self.γ
```

(continues on next page)
Quantitative Economics with Python

return c ** (1 - γ) / (1 - γ) if γ != 1 else np.log(c)

def u_prime(self, c):
    'Derivative of utility'
    γ = self.γ

    return c ** (-γ)

def u_prime_inv(self, c):
    'Inverse of derivative of utility'
    γ = self.γ

    return c ** (-1 / γ)

def f(self, k):
    'Production function'
    α, A = self.α, self.A

    return A * k ** α

def f_prime(self, k):
    'Derivative of production function'
    α, A = self.α, self.A

    return α * A * k ** (α - 1)

def f_prime_inv(self, k):
    'Inverse of derivative of production function'
    α, A = self.α, self.A

    return (k / (A * α)) ** (1 / (α - 1))

def next_k_c(self, k, c):
    '''
    Given the current capital Kt and an arbitrary feasible consumption choice Ct, computes Kt+1 by state transition law and optimal Ct+1 by Euler equation.
    '''
    β, δ = self.β, self.δ
    u_prime, u_prime_inv = self.u_prime, self.u_prime_inv
    f, f_prime = self.f, self.f_prime

    k_next = f(k) + (1 - δ) * k - c
    c_next = u_prime_inv(u_prime(c) / (β * (f_prime(k_next) + (1 - δ))))

    return k_next, c_next

@njit
def shooting(pp, c0, k0, T=10):
    '''
    Given the initial condition of capital k0 and an initial guess of consumption c0, computes the whole paths of c and k using the state transition law and Euler equation for T periods.
    '''
    if c0 > pp.f(k0):
print("initial consumption is not feasible")

return None

# initialize vectors of c and k
c_vec = np.empty(T+1)
k_vec = np.empty(T+2)

c_vec[0] = c0
k_vec[0] = k0

for t in range(T):
    k_vec[t+1], c_vec[t+1] = pp.next_k_c(k_vec[t], c_vec[t])

k_vec[T+1] = pp.f(k_vec[T]) + (1 - pp.δ) * k_vec[T] - c_vec[T]

return c_vec, k_vec

@njit
def bisection(pp, c0, k0, T=10, tol=1e-4, max_iter=500, k_ter=0, verbose=True):

    # initial boundaries for guess c0
    c0_upper = pp.f(k0)
    c0_lower = 0

    i = 0
    while True:
        c_vec, k_vec = shooting(pp, c0, k0, T)
        error = k_vec[-1] - k_ter

        # check if the terminal condition is satisfied
        if np.abs(error) < tol:
            if verbose:
                print('Converged successfully on iteration ', i+1)
            return c_vec, k_vec

        i += 1
        if i == max_iter:
            if verbose:
                print('Convergence failed.')
            return c_vec, k_vec

        # if iteration continues, updates boundaries and guess of c0
        if error > 0:
            c0_lower = c0
        else:
            c0_upper = c0

        c0 = (c0_lower + c0_upper) / 2

pp = PlanningProblem()

# Steady states
ρ = 1 / pp.β - 1
k_ss = pp.f_prime_inv(ρ*pp.δ)
The above code from this lecture Cass-Koopmans Planning Model lets us compute an optimal allocation for the planning problem that turns out to be the allocation associated with a competitive equilibrium.

Now we’re ready to bring in Python code that we require to compute additional objects that appear in a competitive equilibrium.

```python
@njit
def q(pp, c_path):
 # Here we choose numeraire to be u'(c_0) -- this is q(t_0)_t
 T = len(c_path) - 1
 q_path = np.ones(T+1)
 q_path[0] = 1
 for t in range(1, T+1):
 q_path[t] = pp.β * t * pp.u_prime(c_path[t])
 return q_path

@njit
def w(pp, k_path):
 w_path = pp.f(k_path) - k_path * pp.f_prime(k_path)
 return w_path

@njit
def η(pp, k_path):
 η_path = pp.f_prime(k_path)
 return η_path

Now we calculate and plot for each T

```python
T_arr = [250, 150, 75, 50]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))
titles = ['Arrow-Hicks Prices', 'Labor Rental Rate', 'Capital Rental Rate', 'Consumption', 'Capital', 'Lagrange Multiplier']
ylabels = ['$q_t^0$', '$w_t$', '$\eta_t$', '$c_t$', '$k_t$', '$\mu_t$']

for T in T_arr:
c_path, k_path = bisection(pp, 0.3, k_ss/3, T, verbose=False)
μ_path = pp.u_prime(c_path)

q_path = q(pp, c_path)
w_path = w(pp, k_path)[:-1]
η_path = η(pp, k_path)[:-1]
paths = [q_path, w_path, η_path, c_path, k_path, μ_path]

for i, ax in enumerate(axs.flatten()):
    ax.plot(paths[i])
    ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
    if titles[i] == 'Capital':
        ax.axhline(k_ss, lw=1, ls='--', c='k')
    if titles[i] == 'Consumption':
        ax.axhline(c_ss, lw=1, ls='--', c='k')

plt.tight_layout()
plt.show()
```
Varying Curvature

Now we see how our results change if we keep T constant, but allow the curvature parameter, γ to vary, starting with K_0 below the steady state.

We plot the results for $T = 150$

```python
T = 150
gamma_arr = [1.1, 4, 6, 8]

fix, axs = plt.subplots(2, 3, figsize=(13, 6))

for gamma in gamma_arr:
    pp_gamma = PlanningProblem(gamma=gamma)
    c_path, k_path = bisection(pp_gamma, 0.3, k_ss/3, T, verbose=False)
    mu_path = pp_gamma.u_prime(c_path)
    q_path = q(pp_gamma, c_path)
    w_path = w(pp_gamma, k_path)[::-1]
    n_path = n(pp_gamma, k_path)[::-1]
    paths = [q_path, w_path, n_path, c_path, k_path, mu_path]

    for i, ax in enumerate(axs.flatten()):
        ax.plot(paths[i], label=f'\gamma = {gamma}')
        ax.set(title=titles[i], ylabel=ylabels[i], xlabel='t')
        if titles[i] == 'Capital':
            ax.axhline(k_ss, lw=1, ls='--', c='k')
        if titles[i] == 'Consumption':
            ax.axhline(c_ss, lw=1, ls='--', c='k')

    axs[0, 0].legend()
    plt.tight_layout()
    plt.show()
```

40.7. Computing a Competitive Equilibrium
Adjusting γ means adjusting how much individuals prefer to smooth consumption. Higher γ means individuals prefer to smooth more resulting in slower adjustments to the steady state allocations. Vice-versa for lower γ.

40.8 Yield Curves and Hicks-Arrow Prices

We return to Hicks-Arrow prices and calculate how they are related to yields on loans of alternative maturities. This will let us plot a yield curve that graphs yields on bonds of maturities $j = 1, 2, \ldots$ against $j = 1, 2, \ldots$.

The formulas we want are:

A **yield to maturity** on a loan made at time t_0 that matures at time $t > t_0$

$$ r_{t_0,t} = -\frac{\log q_{t_0}^{t}}{t - t_0} $$

A Hicks-Arrow price for a base-year $t_0 \leq t$

$$ q_{t_0}^{t} = \beta^{t-t_0} \frac{u'(c_t)}{u'(c_{t_0})} = \beta^{t-t_0} \frac{c_t^{-\gamma}}{c_{t_0}^{-\gamma}} $$

We redefine our function for q to allow arbitrary base years, and define a new function for r, then plot both.

We begin by continuing to assume that $t_0 = 0$ and plot things for different maturities $t = T$, with K_0 below the steady state.

```python
@njit
def q_generic(pp, t0, c_path):
    # simplify notations
    β = pp.β
    u_prime = pp.u_prime

    T = len(c_path) - 1
    q_path = np.zeros(T+1-t0)
    q_path[0] = 1

    (continues on next page)
```
for t in range(t0+1, T+1):
 q_path[t-t0] = β ** (t-t0) * u_prime(c_path[t]) / u_prime(c_path[t0])
return q_path

@njit
def r(pp, t0, q_path):
 '''Yield to maturity'''
 r_path = - np.log(q_path[1:]) / np.arange(1, len(q_path))
return r_path
def plot_yield_curves(pp, t0, c0, k0, T_arr):
 fig, axs = plt.subplots(1, 2, figsize=(10, 5))
 for T in T_arr:
 c_path, k_path = bisection(pp, c0, k0, T, verbose=False)
 q_path = q_generic(pp, t0, c_path)
 r_path = r(pp, t0, q_path)
 axs[0].plot(range(t0, T+1), q_path)
 axs[0].set(xlabel='t', ylabel='q_t^0', title='Hicks-Arrow Prices')
 axs[1].plot(range(t0+1, T+1), r_path)
 axs[1].set(xlabel='t', ylabel='r_t^0', title='Yields')

T_arr = [150, 75, 50]
plot_yield_curves(pp, 0.3, k_ss/3, T_arr)

Now we plot when $t_0 = 20$

plot_yield_curves(pp, 20, 0.3, k_ss/3, T_arr)
Chapter 40. Cass-Koopmans Competitive Equilibrium
41.1 Overview

In this lecture we introduce a simple “cake eating” problem.

The intertemporal problem is: how much to enjoy today and how much to leave for the future?

Although the topic sounds trivial, this kind of trade-off between current and future utility is at the heart of many savings and consumption problems.

Once we master the ideas in this simple environment, we will apply them to progressively more challenging—and useful—problems.

The main tool we will use to solve the cake eating problem is dynamic programming.

Readers might find it helpful to review the following lectures before reading this one:

- The shortest paths lecture
- The basic McCall model
- The McCall model with separation
- The McCall model with separation and a continuous wage distribution

In what follows, we require the following imports:

```
%matplotlib inline
import matplotlib.pyplot as plt
```
41.2 The Model

We consider an infinite time horizon \(t = 0, 1, 2, \ldots \).
At \(t = 0 \) the agent is given a complete cake with size \(\bar{x} \).
Let \(x_t \) denote the size of the cake at the beginning of each period, so that, in particular, \(x_0 = \bar{x} \).
We choose how much of the cake to eat in any given period \(t \).
After choosing to consume \(c_t \) of the cake in period \(t \) there is
\[
x_{t+1} = x_t - c_t
\]
left in period \(t + 1 \).
Consuming quantity \(c \) of the cake gives current utility \(u(c) \).
We adopt the CRRA utility function
\[
u(c) = \frac{c^{1-\gamma}}{1 - \gamma} \quad (\gamma > 0, \gamma \neq 1)
\]
In Python this is
```python
def u(c, \gamma):
    return c ** (1 - \gamma) / (1 - \gamma)
```
Future cake consumption utility is discounted according to \(\beta \in (0, 1) \).
In particular, consumption of \(c \) units \(t \) periods hence has present value \(\beta^{t}u(c) \).
The agent's problem can be written as
\[
\max_{\{c_t\}} \sum_{t=0}^{\infty} \beta^{t}u(c_t)
\]
subject to
\[
x_{t+1} = x_t - c_t \quad \text{and} \quad 0 \leq c_t \leq x_t
\]
for all \(t \).
A consumption path \(\{c_t\} \) satisfying (41.3) where \(x_0 = \bar{x} \) is called feasible.
In this problem, the following terminology is standard:
- \(x_t \) is called the state variable
- \(c_t \) is called the control variable or the action
- \(\beta \) and \(\gamma \) are parameters
41.2.1 Trade-Off

The key trade-off in the cake-eating problem is this:

- Delaying consumption is costly because of the discount factor.
- But delaying some consumption is also attractive because u is concave.

The concavity of u implies that the consumer gains value from consumption smoothing, which means spreading consumption out over time.

This is because concavity implies diminishing marginal utility—a progressively smaller gain in utility for each additional spoonful of cake consumed within one period.

41.2.2 Intuition

The reasoning given above suggests that the discount factor β and the curvature parameter γ will play a key role in determining the rate of consumption.

Here’s an educated guess as to what impact these parameters will have.

First, higher β implies less discounting, and hence the agent is more patient, which should reduce the rate of consumption.

Second, higher γ implies that marginal utility $u'(c) = c^{-\gamma}$ falls faster with c.

This suggests more smoothing, and hence a lower rate of consumption.

In summary, we expect the rate of consumption to be decreasing in both parameters.

Let’s see if this is true.

41.3 The Value Function

The first step of our dynamic programming treatment is to obtain the Bellman equation.

The next step is to use it to calculate the solution.

41.3.1 The Bellman Equation

To this end, we let $v(x)$ be maximum lifetime utility attainable from the current time when x units of cake are left.

That is,

\[
v(x) = \max_{\sum_{t=0}^{\infty} \beta^t u(c_t)}
\]

where the maximization is over all paths $\{c_t\}$ that are feasible from $x_0 = x$.

At this point, we do not have an expression for v, but we can still make inferences about it.

For example, as was the case with the McCall model, the value function will satisfy a version of the Bellman equation.

In the present case, this equation states that v satisfies

\[
v(x) = \max_{0 \leq c \leq x} \{u(c) + \beta v(x - c)\} \quad \text{for any given } x \geq 0.
\]

The intuition here is essentially the same it was for the McCall model.

Choosing c optimally means trading off current vs future rewards.
Current rewards from choice c are just $u(c)$.

Future rewards given current cake size x, measured from next period and assuming optimal behavior, are $v(x - c)$. These are the two terms on the right hand side of (41.5), after suitable discounting.

If c is chosen optimally using this trade off strategy, then we obtain maximal lifetime rewards from our current state x. Hence, $v(x)$ equals the right hand side of (41.5), as claimed.

41.3.2 An Analytical Solution

It has been shown that, with u as the CRRA utility function in (41.1), the function

$$v^*(x_t) = \left(1 - \beta^{1/\gamma}\right)^{-\gamma} u(x_t)$$ \hspace{1cm} (41.6)

solves the Bellman equation and hence is equal to the value function.

You are asked to confirm that this is true in the exercises below.

The solution (41.6) depends heavily on the CRRA utility function.

In fact, if we move away from CRRA utility, usually there is no analytical solution at all.

In other words, beyond CRRA utility, we know that the value function still satisfies the Bellman equation, but we do not have a way of writing it explicitly, as a function of the state variable and the parameters.

We will deal with that situation numerically when the time comes.

Here is a Python representation of the value function:

```python
def v_star(x, β, γ):
    return (1 - β**(1/γ))**(-γ) * u(x, γ)
```

And here's a figure showing the function for fixed parameters:

```python
β, γ = 0.95, 1.2
x_grid = np.linspace(0.1, 5, 100)
fig, ax = plt.subplots()
ax.plot(x_grid, v_star(x_grid, β, γ), label='value function')
ax.set_xlabel('$x$', fontsize=12)
ax.legend(fontsize=12)
plt.show()
```
41.4 The Optimal Policy

Now that we have the value function, it is straightforward to calculate the optimal action at each state. We should choose consumption to maximize the right hand side of the Bellman equation (41.5).

\[c^* = \arg \max_c \{ u(c) + \beta v(x - c) \} \]

We can think of this optimal choice as a function of the state \(x \), in which case we call it the optimal policy. We denote the optimal policy by \(\sigma^* \), so that

\[\sigma^*(x) := \arg \max_c \{ u(c) + \beta v(x - c) \} \quad \text{for all} \quad x \]

If we plug the analytical expression (41.6) for the value function into the right hand side and compute the optimum, we find that

\[\sigma^*(x) = (1 - \beta^{1/\gamma}) x \quad \text{(41.7)} \]

Now let's recall our intuition on the impact of parameters. We guessed that the consumption rate would be decreasing in both parameters. This is in fact the case, as can be seen from (41.7).

Here's some plots that illustrate.

```python
def c_star(x, beta, gamma):
    return (1 - beta ** (1/gamma)) * x
```

Continuing with the values for \(\beta \) and \(\gamma \) used above, the plot is
41.5 The Euler Equation

In the discussion above we have provided a complete solution to the cake eating problem in the case of CRRA utility.

There is in fact another way to solve for the optimal policy, based on the so-called Euler equation.

Although we already have a complete solution, now is a good time to study the Euler equation.

This is because, for more difficult problems, this equation provides key insights that are hard to obtain by other methods.

41.5.1 Statement and Implications

The Euler equation for the present problem can be stated as

$$u'(c_t^*) = \beta u'(c_{t+1}^*)$$ \hspace{1cm} (41.8)

This is necessary condition for the optimal path.

It says that, along the optimal path, marginal rewards are equalized across time, after appropriate discounting.

This makes sense: optimality is obtained by smoothing consumption up to the point where no marginal gains remain.

We can also state the Euler equation in terms of the policy function.

A feasible consumption policy is a map $x \mapsto \sigma(x)$ satisfying $0 \leq \sigma(x) \leq x$.
The last restriction says that we cannot consume more than the remaining quantity of cake. A feasible consumption policy \(\sigma \) is said to satisfy the Euler equation if, for all \(x > 0 \),

\[
 u'(\sigma(x)) = \beta u'(\sigma(x - \sigma(x)))
\]

(41.9)

Evidently (41.9) is just the policy equivalent of (41.8).

It turns out that a feasible policy is optimal if and only if it satisfies the Euler equation.

In the exercises, you are asked to verify that the optimal policy (41.7) does indeed satisfy this functional equation.

Note: A functional equation is an equation where the unknown object is a function.

For a proof of sufficiency of the Euler equation in a very general setting, see proposition 2.2 of [MST20].

The following arguments focus on necessity, explaining why an optimal path or policy should satisfy the Euler equation.

41.5.2 Derivation I: A Perturbation Approach

Let’s write \(c \) as a shorthand for consumption path \(\{c_t\}_{t=0}^\infty \).

The overall cake-eating maximization problem can be written as

\[
 \max_{c \in F} U(c) \quad \text{where } U(c) := \sum_{t=0}^\infty \beta^t u(c_t)
\]

and \(F \) is the set of feasible consumption paths.

We know that differentiable functions have a zero gradient at a maximizer.

So the optimal path \(c^* := \{c^*_t\}_{t=0}^\infty \) must satisfy \(U'(c^*) = 0 \).

Note: If you want to know exactly how the derivative \(U'(c^*) \) is defined, given that the argument \(c^* \) is a vector of infinite length, you can start by learning about Gateaux derivatives. However, such knowledge is not assumed in what follows.

In other words, the rate of change in \(U \) must be zero for any infinitesimally small (and feasible) perturbation away from the optimal path.

So consider a feasible perturbation that reduces consumption at time \(t \) to \(c_t^* - h \) and increases it in the next period to \(c_{t+1}^* + h \).

Consumption does not change in any other period.

We call this perturbed path \(c^h \).

By the preceding argument about zero gradients, we have

\[
 \lim_{h \to 0} \frac{U(c^h) - U(c^*)}{h} = U'(c^*) = 0
\]

Recalling that consumption only changes at \(t \) and \(t + 1 \), this becomes

\[
 \lim_{h \to 0} \frac{\beta^t u(c_t^* - h) + \beta^{t+1} u(c_{t+1}^* + h) - \beta^t u(c_t^*) - \beta^{t+1} u(c_{t+1}^*)}{h} = 0
\]

After rearranging, the same expression can be written as

\[
 \lim_{h \to 0} \frac{u(c_t^* - h) - u(c_t^*)}{h} + \beta \lim_{h \to 0} \frac{u(c_{t+1}^* + h) - u(c_{t+1}^*)}{h} = 0
\]
or, taking the limit,

\[-u'(c_t^*) + \beta u'(c_{t+1}^*) = 0\]

This is just the Euler equation.

41.5.3 Derivation II: Using the Bellman Equation

Another way to derive the Euler equation is to use the Bellman equation (41.5).

Taking the derivative on the right hand side of the Bellman equation with respect to \(c\) and setting it to zero, we get

\[u'(c) = \beta v'(x - c)\]

(41.10)

To obtain \(v'(x - c)\), we set \(g(c, x) = u(c) + \beta v(x - c)\), so that, at the optimal choice of consumption,

\[v(x) = g(c, x)\]

(41.11)

Differentiating both sides while acknowledging that the maximizing consumption will depend on \(x\), we get

\[v'(x) = \frac{\partial}{\partial c} g(c, x) \frac{\partial c}{\partial x} + \frac{\partial}{\partial x} g(c, x)\]

When \(g(c, x)\) is maximized at \(c\), we have \(\frac{\partial}{\partial c} g(c, x) = 0\).

Hence the derivative simplifies to

\[v'(x) = \frac{\partial g(c, x)}{\partial x} = \frac{\partial}{\partial x} \beta v(x - c) = \beta v'(x - c)\]

(41.12)

(This argument is an example of the Envelope Theorem.)

But now an application of (41.10) gives

\[u'(c) = v'(x)\]

(41.13)

Thus, the derivative of the value function is equal to marginal utility.

Combining this fact with (41.12) recovers the Euler equation.

41.6 Exercises

Exercise 41.6.1

How does one obtain the expressions for the value function and optimal policy given in (41.6) and (41.7) respectively?

The first step is to make a guess of the functional form for the consumption policy.

So suppose that we do not know the solutions and start with a guess that the optimal policy is linear.

In other words, we conjecture that there exists a positive \(\theta\) such that setting \(c_t^* = \theta x_t\) for all \(t\) produces an optimal path.

Starting from this conjecture, try to obtain the solutions (41.6) and (41.7).

In doing so, you will need to use the definition of the value function and the Bellman equation.
Solution to Exercise 41.6.1

We start with the conjecture $c^*_t = \theta x_t$, which leads to a path for the state variable (cake size) given by

$$x_{t+1} = x_t(1 - \theta)$$

Then $x_t = x_0(1 - \theta)^t$ and hence

$$v(x_0) = \sum_{t=0}^{\infty} \beta^t u(\theta x_t)$$

$$= \sum_{t=0}^{\infty} \beta^t u(\theta x_0(1 - \theta)^t)$$

$$= \sum_{t=0}^{\infty} \theta^{1-\gamma} \beta^t (1 - \theta)^{t(1-\gamma)} u(x_0)$$

$$= \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} u(x_0)$$

From the Bellman equation, then,

$$v(x) = \max_{0 \leq c \leq x} \left\{ u(c) + \beta \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} \cdot u(x - c) \right\}$$

$$= \max_{0 \leq c \leq x} \left\{ \frac{c^{1-\gamma}}{1 - \gamma} + \beta \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} \cdot \frac{(x - c)^{1-\gamma}}{1 - \gamma} \right\}$$

From the first order condition, we obtain

$$c^{-\gamma} + \beta \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} \cdot (x - c)^{-\gamma} (-1) = 0$$

or

$$c^{-\gamma} = \beta \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} \cdot (x - c)^{-\gamma}$$

With $c = \theta x$ we get

$$(\theta x)^{-\gamma} = \beta \frac{\theta^{1-\gamma}}{1 - \beta(1 - \theta)^{1-\gamma}} \cdot (x(1 - \theta))^{-\gamma}$$

Some rearrangement produces

$$\theta = 1 - \beta^{\frac{1}{\gamma}}$$

This confirms our earlier expression for the optimal policy:

$$c^*_t = \left(1 - \beta^{\frac{1}{\gamma}}\right) x_t$$

Substituting θ into the value function above gives

$$v^*(x_t) = \frac{\left(1 - \beta^{\frac{1}{\gamma}}\right)^{1-\gamma}}{1 - \beta \left(\frac{1}{\gamma}\right)} u(x_t)$$

Rearranging gives

$$v^*(x_t) = \left(1 - \beta^{\frac{1}{\gamma}}\right)^{-\gamma} u(x_t)$$

Our claims are now verified.
CAKE EATING II: NUMERICAL METHODS

Contents

- Cake Eating II: Numerical Methods
 - Overview
 - Reviewing the Model
 - Value Function Iteration
 - Time Iteration
 - Exercises

In addition to what’s in Anaconda, this lecture will require the following library:

!pip install interpolation

42.1 Overview

In this lecture we continue the study of the cake eating problem.

The aim of this lecture is to solve the problem using numerical methods.

At first this might appear unnecessary, since we already obtained the optimal policy analytically.

However, the cake eating problem is too simple to be useful without modifications, and once we start modifying the problem, numerical methods become essential.

Hence it makes sense to introduce numerical methods now, and test them on this simple problem.

Since we know the analytical solution, this will allow us to assess the accuracy of alternative numerical methods.

We will use the following imports:

```python
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from interpolation import interp
from scipy.optimize import minimize_scalar, bisect
```
42.2 Reviewing the Model

You might like to review the details before we start.

Recall in particular that the Bellman equation is

\[v(x) = \max_{0 \leq c \leq x} \{ u(c) + \beta v(x - c) \} \quad \text{for all } x \geq 0. \]

(42.1)

where \(u \) is the CRRA utility function.

The analytical solutions for the value function and optimal policy were found to be as follows.

\[
\begin{align*}
\text{def } \ c_\text{star}(x, \beta, \gamma) : \\
\text{return } (1 - \beta * (1/\gamma)) * x
\end{align*}
\]

\[
\begin{align*}
\text{def } \ v_\text{star}(x, \beta, \gamma) : \\
\text{return } (1 - \beta**((1 / \gamma)***(-\gamma)) * (x**((1-\gamma) / (1-\gamma)))
\end{align*}
\]

Our first aim is to obtain these analytical solutions numerically.

42.3 Value Function Iteration

The first approach we will take is value function iteration.

This is a form of successive approximation, and was discussed in our lecture on job search.

The basic idea is:

1. Take an arbitrary initial guess of \(v \).
2. Obtain an update \(w \) defined by

\[w(x) = \max_{0 \leq c \leq x} \{ u(c) + \beta v(x - c) \} \]

3. Stop if \(w \) is approximately equal to \(v \), otherwise set \(v = w \) and go back to step 2.

Let’s write this a bit more mathematically.

42.3.1 The Bellman Operator

We introduce the Bellman operator \(T \) that takes a function \(v \) as an argument and returns a new function \(Tv \) defined by

\[Tv(x) = \max_{0 \leq c \leq x} \{ u(c) + \beta v(x - c) \} \]

From \(v \) we get \(Tv \), and applying \(T \) to this yields \(T^2v := T(Tv) \) and so on.

This is called iterating with the Bellman operator from initial guess \(v \).

As we discuss in more detail in later lectures, one can use Banach’s contraction mapping theorem to prove that the sequence of functions \(T^n v \) converges to the solution to the Bellman equation.
42.3.2 Fitted Value Function Iteration

Both consumption c and the state variable x are continuous. This causes complications when it comes to numerical work.

For example, we need to store each function $T^n v$ in order to compute the next iterate $T^{n+1} v$.

But this means we have to store $T^n v(x)$ at infinitely many x, which is, in general, impossible.

To circumvent this issue we will use fitted value function iteration, as discussed previously in one of the lectures on job search.

The process looks like this:

1. Begin with an array of values $\{v_0, \ldots, v_I\}$ representing the values of some initial function v on the grid points $\{x_0, \ldots, x_I\}$.
2. Build a function \tilde{v} on the state space \mathbb{R}_+ by linear interpolation, based on these data points.
3. Obtain and record the value $T\tilde{v}(x_i)$ on each grid point x_i by repeatedly solving the maximization problem in the Bellman equation.
4. Unless some stopping condition is satisfied, set $\{v_0, \ldots, v_I\} = \{T\tilde{v}(x_0), \ldots, T\tilde{v}(x_I)\}$ and go to step 2.

In step 2 we’ll use continuous piecewise linear interpolation.

42.3.3 Implementation

The maximize function below is a small helper function that converts a SciPy minimization routine into a maximization routine.

```python
def maximize(g, a, b, args):
    """
    Maximize the function $g$ over the interval $[a, b]$.
    We use the fact that the maximizer of $g$ on any interval is
    also the minimizer of $-g$. The tuple args collects any extra
    arguments to $g$.
    """
    objective = lambda x: -g(x, *args)
    result = minimize_scalar(objective, bounds=(a, b), method='bounded')
    maximizer, maximum = result.x, -result.fun
    return maximizer, maximum
```

We’ll store the parameters β and γ in a class called CakeEating.

The same class will also provide a method called state_action_value that returns the value of a consumption choice given a particular state and guess of v.

```python
class CakeEating:
    def __init__(self, 
        # discount factor
        beta=0.96, 
        # degree of relative risk aversion
        gamma=1.5, 
        # exclude zero for numerical stability
        x_grid_min=1e-3, 
    
    # (continues on next page)
```
We now define the Bellman operation:

```python
def T(v, ce):
    """
    The Bellman operator. Updates the guess of the value function.
    * ce is an instance of CakeEating
    * v is an array representing a guess of the value function
    """
    v_new = np.empty_like(v)
    for i, x in enumerate(ce.x_grid):
        # Maximize RHS of Bellman equation at state x
        v_new[i] = maximize(ce.state_action_value, 1e-10, x, (x, v))[1]
    return v_new
```

After defining the Bellman operator, we are ready to solve the model.

Let's start by creating a `CakeEating` instance using the default parameterization.
Now let’s see the iteration of the value function in action.

We start from guess v given by $v(x) = u(x)$ for every x grid point.

```python
def compute_value_function(ce,
                         tol=1e-4,
                         max_iter=1000,
                         verbose=True,
                         print_skip=25):
```

To do this more systematically, we introduce a wrapper function called `compute_value_function` that iterates until some convergence conditions are satisfied.
Set up loop
v = np.zeros(len(ce.x_grid)) # Initial guess
i = 0
error = tol + 1

while i < max_iter and error > tol:
 v_new = T(v, ce)
 error = np.max(np.abs(v - v_new))
 i += 1
 if verbose and i % print_skip == 0:
 print(f"Error at iteration {i} is {error}.")
 v = v_new

if error > tol:
 print("Failed to converge!"
elif verbose:
 print(f"\nConverged in {i} iterations."
return v_new

Now let's call it, noting that it takes a little while to run.

v = compute_value_function(ce)

Error at iteration 25 is 23.8003755134813.
Error at iteration 50 is 8.577577195046615.
Error at iteration 75 is 3.091330659691039.
Error at iteration 100 is 1.1141054204751981.
Error at iteration 125 is 0.4015199357729671.
Error at iteration 150 is 0.14470646660561215.
Error at iteration 175 is 0.052151735472762084.
Error at iteration 200 is 0.018795314242879613.
Error at iteration 225 is 0.006773769545588948.
Error at iteration 250 is 0.0024412443051460286.
Error at iteration 275 is 0.000879816432870939.

Error at iteration 300 is 0.00031708295398402697.

Error at iteration 325 is 0.00011427565573285392.

Converged in 329 iterations.

Now we can plot and see what the converged value function looks like.

```python
fig, ax = plt.subplots()
ax.plot(x_grid, v, label='Approximate value function')
ax.set_ylabel('$V(x)$', fontsize=12)
ax.set_xlabel('$x$', fontsize=12)
ax.set_title('Value function')
ax.legend()
plt.show()
```

Next let's compare it to the analytical solution.

```python
v_analytical = v_star(ce.x_grid, ce.β, ce.γ)
fig, ax = plt.subplots()
ax.plot(x_grid, v_analytical, label='analytical solution')
ax.plot(x_grid, v, label='numerical solution')
ax.set_ylabel('$V(x)$', fontsize=12)
ax.set_xlabel('$x$', fontsize=12)
ax.legend()
ax.set_title('Comparison between analytical and numerical value functions')
plt.show()
```
The quality of approximation is reasonably good for large x, but less so near the lower boundary. The reason is that the utility function and hence value function is very steep near the lower boundary, and hence hard to approximate.

42.3.4 Policy Function

Let’s see how this plays out in terms of computing the optimal policy.

In the first lecture on cake eating, the optimal consumption policy was shown to be

$$\sigma^*(x) = (1 - \beta^{1/\gamma}) x$$

Let’s see if our numerical results lead to something similar.

Our numerical strategy will be to compute

$$\sigma(x) = \arg \max_{0 \leq c \leq x} \{ u(c) + \beta v(x - c) \}$$

on a grid of x points and then interpolate.

For v we will use the approximation of the value function we obtained above.

Here’s the function:

```python
def σ(ce, v):
    """
    The optimal policy function. Given the value function, 
    it finds optimal consumption in each state.
    """
    * ce is an instance of CakeEating
    * v is a value function array
    """
    c = np.empty_like(v)
    for i in range(len(ce.x_grid)):
        (continues on next page)
```
Now let’s pass the approximate value function and compute optimal consumption:

\[c = \sigma(ce, v) \]

Let’s plot this next to the true analytical solution

\[c_{\text{analytical}} = c_{\text{star}}(ce \cdot x_{\text{grid}}, ce \cdot \beta, ce \cdot y) \]

![Graph showing the fit of numerical and analytical solutions](image)

The fit is reasonable but not perfect.

We can improve it by increasing the grid size or reducing the error tolerance in the value function iteration routine. However, both changes will lead to a longer compute time.

Another possibility is to use an alternative algorithm, which offers the possibility of faster compute time and, at the same time, more accuracy.

We explore this next.
42.4 Time Iteration

Now let’s look at a different strategy to compute the optimal policy.

Recall that the optimal policy satisfies the Euler equation

$$u'(\sigma(x)) = \beta u'(\sigma(x - \sigma(x))) \quad \text{for all } x > 0 \quad (42.2)$$

Computationally, we can start with any initial guess of σ_0 and now choose c to solve

$$u'(c) = \beta u'(\sigma_0(x - c))$$

Choosing c to satisfy this equation at all $x > 0$ produces a function of x.

Call this new function σ_1, treat it as the new guess and repeat.

This is called time iteration.

As with value function iteration, we can view the update step as action of an operator, this time denoted by K.

- In particular, $K \sigma$ is the policy updated from σ using the procedure just described.
- We will use this terminology in the exercises below.

The main advantage of time iteration relative to value function iteration is that it operates in policy space rather than value function space.

This is helpful because the policy function has less curvature, and hence is easier to approximate.

In the exercises you are asked to implement time iteration and compare it to value function iteration.

You should find that the method is faster and more accurate.

This is due to

1. the curvature issue mentioned just above and
2. the fact that we are using more information — in this case, the first order conditions.

42.5 Exercises

Exercise 42.5.1

Try the following modification of the problem.

Instead of the cake size changing according to $x_{t+1} = x_t - c_t$, let it change according to

$$x_{t+1} = (x_t - c_t)^\alpha$$

where α is a parameter satisfying $0 < \alpha < 1$.

(We will see this kind of update rule when we study optimal growth models.)

Make the required changes to value function iteration code and plot the value and policy functions.

Try to reuse as much code as possible.

Solution to Exercise 42.5.1
We need to create a class to hold our primitives and return the right hand side of the Bellman equation.

We will use inheritance to maximize code reuse.

```python
class OptimalGrowth(CakeEating):
    
    A subclass of CakeEating that adds the parameter α and overrides
    the state_action_value method.
    
    def __init__(self,
                 β=0.96,  # discount factor
                 γ=1.5,   # degree of relative risk aversion
                 α=0.4,   # productivity parameter
                 x_grid_min=1e-3,  # exclude zero for numerical stability
                 x_grid_max=2.5,   # size of cake
                 x_grid_size=120):
        
        self.α = α
        CakeEating.__init__(self, β, γ, x_grid_min, x_grid_max, x_grid_size)

    def state_action_value(self, c, x, v_array):
        
        Right hand side of the Bellman equation given x and c.
        
        u, β, α = self.u, self.β, self.α
        v = lambda x: interp(self.x_grid, v_array, x)
        return u(c) + β * v((x - c)**α)
```

og = OptimalGrowth()

Here's the computed value function.

```python
v = compute_value_function(og, verbose=False)

fig, ax = plt.subplots()

ax.plot(x_grid, v, lw=2, alpha=0.6)
ax.set_ylabel('value', fontsize=12)
ax.set_xlabel('state $x$', fontsize=12)

plt.show()
```
Here’s the computed policy, combined with the solution we derived above for the standard cake eating case $\alpha = 1$.

```python
C_new = σ(og, v)

fig, ax = plt.subplots()
ax.plot(ce.x_grid, c_analytical, label=r'$\alpha=1$ solution')
ax.plot(ce.x_grid, c_new, label=fr'$\alpha={og.α}$ solution')
ax.set_ylabel('consumption', fontsize=12)
ax.set_xlabel('$x$', fontsize=12)
ax.legend(fontsize=12)
plt.show()
```

Consumption is higher when $\alpha < 1$ because, at least for large x, the return to savings is lower.

722 Chapter 42. Cake Eating II: Numerical Methods
Exercise 42.5.2

Implement time iteration, returning to the original case (i.e., dropping the modification in the exercise above).

Solution to Exercise 42.5.2

Here’s one way to implement time iteration.

```python
def K(σ_array, ce):
    """
The policy function operator. Given the policy function, it updates the optimal consumption using Euler equation.

* σ_array is an array of policy function values on the grid
* ce is an instance of CakeEating
"""

u_prime, β, x_grid = ce.u_prime, ce.β, ce.x_grid
σ_new = np.empty_like(σ_array)
σ = lambda x: interp(x_grid, σ_array, x)
def euler_diff(c, x):
    return u_prime(c) - β * u_prime(σ(x - c))
for i, x in enumerate(x_grid):
    # handle small x separately --- helps numerical stability
    if x < 1e-12:
        σ_new[i] = 0.0
    # handle other x
    else:
        σ_new[i] = bisect(euler_diff, 1e-10, x - 1e-10, x)
return σ_new

def iterate_euler_equation(ce,
                          max_iter=500,
                          tol=1e-5,
                          verbose=True,
                          print_skip=25):
    x_grid = ce.x_grid
    σ = np.copy(x_grid)  # initial guess
    i = 0
    error = tol + 1
    while i < max_iter and error > tol:
        σ_new = K(σ, ce)
        error = np.max(np.abs(σ_new - σ))
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

\[i += 1 \]

if verbose and i % print_skip == 0:
 print(f"Error at iteration {i} is {error}.")

\[\sigma = \sigma_{\text{new}} \]

if error > tol:
 print("Failed to converge!")
else:
 print(f"\nConverged in {i} iterations."

return \sigma

ce = CakeEating(x_grid_min=0.0)
c_euler = iterate_euler_equation(ce)

Error at iteration 25 is 0.0036456675931543225.
Error at iteration 50 is 0.0008283185047067848.

Error at iteration 75 is 0.00030791132300957147.
Error at iteration 100 is 0.00013555502390599772.

Error at iteration 125 is 6.417740905302616e-05.
Error at iteration 150 is 3.1438019047758115e-05.

Error at iteration 175 is 1.5658492883291464e-05.

Converged in 192 iterations.

fig, ax = plt.subplots()
ax.plot(ce.x_grid, c_analytical, label='analytical solution')
ax.plot(ce.x_grid, c_euler, label='time iteration solution')

ax.set_ylabel('consumption')
ax.set_xlabel('x')
ax.legend(fontsize=12)

plt.show()
43.1 Overview

In this lecture, we're going to study a simple optimal growth model with one agent. The model is a version of the standard one sector infinite horizon growth model studied in

- [SLP89], chapter 2
- [LS18], section 3.1
- EDTC, chapter 1
- [Sun96], chapter 12

It is an extension of the simple cake eating problem we looked at earlier.

The extension involves

- nonlinear returns to saving, through a production function, and
- stochastic returns, due to shocks to production.

Despite these additions, the model is still relatively simple.

We regard it as a stepping stone to more sophisticated models.

We solve the model using dynamic programming and a range of numerical techniques.

In this first lecture on optimal growth, the solution method will be value function iteration (VFI).

While the code in this first lecture runs slowly, we will use a variety of techniques to drastically improve execution time over the next few lectures.
Let's start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from scipy.interpolate import interp1d
from scipy.optimize import minimize_scalar
```

43.2 The Model

Consider an agent who owns an amount $y_t \in \mathbb{R}_+ := [0, \infty)$ of a consumption good at time t. This output can either be consumed or invested. When the good is invested, it is transformed one-for-one into capital. The resulting capital stock, denoted here by k_{t+1}, will then be used for production. Production is stochastic, in that it also depends on a shock ξ_{t+1} realized at the end of the current period. Next period output is

$$y_{t+1} := f(k_{t+1})\xi_{t+1}$$

where $f : \mathbb{R}_+ \to \mathbb{R}_+$ is called the production function.

The resource constraint is

$$k_{t+1} + c_t \leq y_t$$ \hspace{1cm} (43.1)

and all variables are required to be nonnegative.

43.2.1 Assumptions and Comments

In what follows,

- The sequence $\{\xi_t\}$ is assumed to be IID.
- The common distribution of each ξ_t will be denoted by ϕ.
- The production function f is assumed to be increasing and continuous.
- Depreciation of capital is not made explicit but can be incorporated into the production function.

While many other treatments of the stochastic growth model use k_t as the state variable, we will use y_t. This will allow us to treat a stochastic model while maintaining only one state variable.

We consider alternative states and timing specifications in some of our other lectures.
43.2.2 Optimization

Taking \(y_0 \) as given, the agent wishes to maximize

\[
\mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t u(c_t) \right]
\]

subject to

\[
y_{t+1} = f(y_t - c_t)\xi_{t+1} \quad \text{and} \quad 0 \leq c_t \leq y_t \quad \text{for all } t
\]

where

- \(u \) is a bounded, continuous and strictly increasing utility function and
- \(\beta \in (0, 1) \) is a discount factor.

In (43.3) we are assuming that the resource constraint (43.1) holds with equality — which is reasonable because \(u \) is strictly increasing and no output will be wasted at the optimum.

In summary, the agent’s aim is to select a path \(c_0, c_1, c_2, \ldots \) for consumption that is

1. nonnegative,
2. feasible in the sense of (43.1),
3. optimal, in the sense that it maximizes (43.2) relative to all other feasible consumption sequences, and
4. adapted, in the sense that the action \(c_t \) depends only on observable outcomes, not on future outcomes such as \(\xi_{t+1} \).

In the present context

- \(y_t \) is called the state variable — it summarizes the “state of the world” at the start of each period.
- \(c_t \) is called the control variable — a value chosen by the agent each period after observing the state.

43.2.3 The Policy Function Approach

One way to think about solving this problem is to look for the best policy function. A policy function is a map from past and present observables into current action.

We’ll be particularly interested in Markov policies, which are maps from the current state \(y_t \) into a current action \(c_t \).

For dynamic programming problems such as this one (in fact for any Markov decision process), the optimal policy is always a Markov policy.

In other words, the current state \(y_t \) provides a sufficient statistic for the history in terms of making an optimal decision today.

This is quite intuitive, but if you wish you can find proofs in texts such as [SLP89] (section 4.1).

Hereafter we focus on finding the best Markov policy.

In our context, a Markov policy is a function \(\sigma : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \), with the understanding that states are mapped to actions via

\[
c_t = \sigma(y_t) \quad \text{for all } t
\]

In what follows, we will call \(\sigma \) a feasible consumption policy if it satisfies

\[
0 \leq \sigma(y) \leq y \quad \text{for all } y \in \mathbb{R}_+ \quad (43.4)
\]

In other words, a feasible consumption policy is a Markov policy that respects the resource constraint.
The set of all feasible consumption policies will be denoted by Σ.

Each $\sigma \in \Sigma$ determines a continuous state Markov process $\{y_t\}$ for output via

$$y_{t+1} = f(y_t - \sigma(y_t))z_{t+1}, \quad y_0 \text{ given}$$

(43.5)

This is the time path for output when we choose and stick with the policy σ.

We insert this process into the objective function to get

$$\mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t u(c_t) \right] = \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t u(\sigma(y_t)) \right]$$

(43.6)

This is the total expected present value of following policy σ forever, given initial income y_0.

The aim is to select a policy that makes this number as large as possible.

The next section covers these ideas more formally.

43.2.4 Optimality

The σ associated with a given policy σ is the mapping defined by

$$v_\sigma(y) = \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t u(\sigma(y_t)) \right]$$

(43.7)

when $\{y_t\}$ is given by (43.5) with $y_0 = y$.

In other words, it is the lifetime value of following policy σ starting at initial condition y.

The value function is then defined as

$$v^*(y) := \sup_{\sigma \in \Sigma} v_\sigma(y)$$

(43.8)

The value function gives the maximal value that can be obtained from state y, after considering all feasible policies.

A policy $\sigma \in \Sigma$ is called optimal if it attains the supremum in (43.8) for all $y \in \mathbb{R}_+$.

43.2.5 The Bellman Equation

With our assumptions on utility and production functions, the value function as defined in (43.8) also satisfies a Bellman equation.

For this problem, the Bellman equation takes the form

$$v(y) = \max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v(f(y - c)z)\phi(dz) \right\} \quad (y \in \mathbb{R}_+)$$

(43.9)

This is a functional equation in v.

The term $\int v(f(y - c)z)\phi(dz)$ can be understood as the expected next period value when

- v is used to measure value
- the state is y
- consumption is set to c

As shown in EDTC, theorem 10.1.11 and a range of other texts
The value function v^* satisfies the Bellman equation

In other words, (43.9) holds when $v = v^*$.

The intuition is that maximal value from a given state can be obtained by optimally trading off

- current reward from a given action, v
- expected discounted future value of the state resulting from that action

The Bellman equation is important because it gives us more information about the value function.

It also suggests a way of computing the value function, which we discuss below.

43.2.6 Greedy Policies

The primary importance of the value function is that we can use it to compute optimal policies.

The details are as follows.

Given a continuous function v on \mathbb{R}_+, we say that $\sigma \in \Sigma$ is v-greedy if $\sigma(y)$ is a solution to

$$
\max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v(f(y - c)z)\phi(dz) \right\}
$$

(43.10)

for every $y \in \mathbb{R}_+$.

In other words, $\sigma \in \Sigma$ is v-greedy if it optimally trades off current and future rewards when v is taken to be the value function.

In our setting, we have the following key result

- A feasible consumption policy is optimal if and only if it is v^*-greedy.

The intuition is similar to the intuition for the Bellman equation, which was provided after (43.9).

See, for example, theorem 10.1.11 of **EDTC**.

Hence, once we have a good approximation to v^*, we can compute the (approximately) optimal policy by computing the corresponding greedy policy.

The advantage is that we are now solving a much lower dimensional optimization problem.

43.2.7 The Bellman Operator

How, then, should we compute the value function?

One way is to use the so-called **Bellman operator**.

(An operator is a map that sends functions into functions.)

The Bellman operator is denoted by T and defined by

$$
Tv(y) := \max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v(f(y - c)z)\phi(dz) \right\}
$$

(43.11)

In other words, T sends the function v into the new function Tv defined by (43.11).

By construction, the set of solutions to the Bellman equation (43.9) exactly coincides with the set of fixed points of T.

For example, if $Tv = v$, then, for any $y \geq 0$,

$$
v(y) = Tv(y) = \max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v^*(f(y - c)z)\phi(dz) \right\}
$$
which says precisely that \(v \) is a solution to the Bellman equation.
It follows that \(v^* \) is a fixed point of \(T \).

43.2.8 Review of Theoretical Results

One can also show that \(T \) is a contraction mapping on the set of continuous bounded functions on \(\mathbb{R}_+ \) under the supremum distance

\[
\rho(g, h) = \sup_{y \geq 0} |g(y) - h(y)|
\]

See EDTC, lemma 10.1.18.

Hence, it has exactly one fixed point in this set, which we know is equal to the value function.

It follows that

- The value function \(v^* \) is bounded and continuous.
- Starting from any bounded and continuous \(v \), the sequence \(v, T v, T^2 v, \ldots \) generated by iteratively applying \(T \) converges uniformly to \(v^* \).

This iterative method is called **value function iteration**.

We also know that a feasible policy is optimal if and only if it is \(v^* \)-greedy.

It's not too hard to show that a \(v^* \)-greedy policy exists (see EDTC, theorem 10.1.11 if you get stuck).

Hence, at least one optimal policy exists.

Our problem now is how to compute it.

43.2.9 Unbounded Utility

The results stated above assume that the utility function is bounded.
In practice economists often work with unbounded utility functions — and so will we.

In the unbounded setting, various optimality theories exist.

Unfortunately, they tend to be case-specific, as opposed to valid for a large range of applications.
Nevertheless, their main conclusions are usually in line with those stated for the bounded case just above (as long as we drop the word “bounded”).

Consult, for example, section 12.2 of EDTC, [Kam12] or [MdRV10].

43.3 Computation

Let’s now look at computing the value function and the optimal policy.

Our implementation in this lecture will focus on clarity and flexibility.

Both of these things are helpful, but they do cost us some speed — as you will see when you run the code.

Later we will sacrifice some of this clarity and flexibility in order to accelerate our code with just-in-time (JIT) compilation.

The algorithm we will use is fitted value function iteration, which was described in earlier lectures the McCall model and cake eating.

The algorithm will be
1. Begin with an array of values \(\{v_1, \ldots, v_I\} \) representing the values of some initial function \(v \) on the grid points \(\{y_1, \ldots, y_I\} \).

2. Build a function \(\hat{v} \) on the state space \(\mathbb{R}_+ \) by linear interpolation, based on these data points.

3. Obtain and record the value \(T\hat{v}(y_i) \) on each grid point \(y_i \) by repeatedly solving (43.11).

4. Unless some stopping condition is satisfied, set \(\{v_1, \ldots, v_I\} = \{T\hat{v}(y_1), \ldots, T\hat{v}(y_I)\} \) and go to step 2.

43.3.1 Scalar Maximization

To maximize the right hand side of the Bellman equation (43.9), we are going to use the `minimize_scalar` routine from SciPy.

Since we are maximizing rather than minimizing, we will use the fact that the maximizer of \(g \) on the interval \([a, b]\) is the minimizer of \(-g\) on the same interval.

To this end, and to keep the interface tidy, we will wrap `minimize_scalar` in an outer function as follows:

```python
def maximize(g, a, b, args):
    """
    Maximize the function g over the interval [a, b).
    We use the fact that the maximizer of g on any interval is
    also the minimizer of -g. The tuple args collects any extra
    arguments to g.
    Returns the maximal value and the maximizer.
    """

    objective = lambda x: -g(x, *args)
    result = minimize_scalar(objective, bounds=(a, b), method='bounded')
    maximizer, maximum = result.x, -result.fun
    return maximizer, maximum
```

43.3.2 Optimal Growth Model

We will assume for now that \(\phi \) is the distribution of \(\xi := \exp(\mu + s\zeta) \) where

- \(\zeta \) is standard normal,
- \(\mu \) is a shock location parameter and
- \(s \) is a shock scale parameter.

We will store this and other primitives of the optimal growth model in a class.

The class, defined below, combines both parameters and a method that realizes the right hand side of the Bellman equation (43.9).

```python
class OptimalGrowthModel:
    def __init__(self, u, f, \beta=0.96, \mu=0):
        # utility function
        # production function
        # discount factor
        # shock location parameter
```

(continues on next page)
s = 0.1, # shock scale parameter
grid_max = 4,
grid_size = 120,
shock_size = 250,
seed = 1234):

 self.u, self.f, self.β, self.µ, self.s = u, f, β, µ, s

 # Set up grid
 self.grid = np.linspace(1e-4, grid_max, grid_size)

 # Store shocks (with a seed, so results are reproducible)
 np.random.seed(seed)
 self.shocks = np.exp(µ + s * np.random.randn(shock_size))

 def state_action_value(self, c, y, v_array):

 """
 Right hand side of the Bellman equation.
 """

 u, f, β, shocks = self.u, self.f, self.β, self.shocks
 v = interp1d(self.grid, v_array)

 return u(c) + β * np.mean(v(f(y - c) * shocks))

In the second last line we are using linear interpolation.

In the last line, the expectation in (43.11) is computed via Monte Carlo, using the approximation

\[
\int v(f(y - c)z)\phi(dz) \approx \frac{1}{n} \sum_{i=1}^{n} v(f(y - c)\xi_i)
\]

where \(\{\xi_i\}_{i=1}^{n}\) are IID draws from \(\phi\).

Monte Carlo is not always the most efficient way to compute integrals numerically but it does have some theoretical advantages in the present setting.

(For example, it preserves the contraction mapping property of the Bellman operator — see, e.g., [PalS13].)

43.3.3 The Bellman Operator

The next function implements the Bellman operator.

(We could have added it as a method to the `OptimalGrowthModel` class, but we prefer small classes rather than monolithic ones for this kind of numerical work.)

```python
def T(v, og):
    """
    The Bellman operator. Updates the guess of the value function
    and also computes a v-greedy policy.
    
    * og is an instance of OptimalGrowthModel
    * v is an array representing a guess of the value function
    """
```
Quantitative Economics with Python

(continued from previous page)

```python
v_new = np.empty_like(v)
v_greedy = np.empty_like(v)

for i in range(len(grid)):
    y = grid[i]
    # Maximize RHS of Bellman equation at state y
    c_star, v_max = maximize(og.state_action_value, 1e-10, y, (y, v))
    v_new[i] = v_max
    v_greedy[i] = c_star

return v_greedy, v_new
```

43.3.4 An Example

Let’s suppose now that

\[f(k) = k^\alpha \quad \text{and} \quad u(c) = \ln c \]

For this particular problem, an exact analytical solution is available (see [LS18], section 3.1.2), with

\[
v^*(y) = \frac{\ln(1 - \alpha \beta)}{1 - \beta} + \frac{(\mu + \alpha \ln(\alpha \beta))}{1 - \alpha} \left[\frac{1}{1 - \beta} - \frac{1}{1 - \alpha \beta} \right] + \frac{1}{1 - \alpha \beta} \ln y \quad (43.12)
\]

and optimal consumption policy

\[\sigma^*(y) = (1 - \alpha \beta) y \]

It is valuable to have these closed-form solutions because it lets us check whether our code works for this particular case.

In Python, the functions above can be expressed as:

```python
def v_star(y, α, β, μ):
    ""
    True value function
    ""
    c1 = np.log(1 - α * β) / (1 - β)
    c2 = (μ + α * np.log(α * β)) / (1 - α)
    c3 = 1 / (1 - β)
    c4 = 1 / (1 - α * β)
    return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
    ""
    True optimal policy
    ""
    return (1 - α * β) * y
```

Next let’s create an instance of the model with the above primitives and assign it to the variable og.

\[\alpha = 0.4 \]

```python
def fcd(k):
    return k ** α
```

\[\text{og} = \text{OptimalGrowthModel}(u=np.log, f=fcd) \]
Now let’s see what happens when we apply our Bellman operator to the exact solution v^* in this case.

In theory, since v^* is a fixed point, the resulting function should again be v^*.

In practice, we expect some small numerical error.

```python
grid = og.grid
v_init = v_star(grid, a, og.β, og.μ)  # Start at the solution
v_greedy, v = T(v_init, og)  # Apply T once

fig, ax = plt.subplots()
ax.set_ylim(-35, -24)
ax.plot(grid, v, lw=2, alpha=0.6, label='$Tv^*$')
ax.plot(grid, v_init, lw=2, alpha=0.6, label='$v^*$')
ax.legend()
plt.show()
```

The two functions are essentially indistinguishable, so we are off to a good start.

Now let’s have a look at iterating with the Bellman operator, starting from an arbitrary initial condition.

The initial condition we’ll start with is, somewhat arbitrarily, $v(y) = 5 \ln(y)$.

```python
v = 5 * np.log(grid)  # An initial condition
n = 35

fig, ax = plt.subplots()
ax.plot(grid, v, color=plt.cm.jet(0), lw=2, alpha=0.6, label='Initial condition')

for i in range(n):
    v_greedy, v = T(v, og)  # Apply the Bellman operator
    ax.plot(grid, v, color=plt.cm.jet(i / n), lw=2, alpha=0.6)

ax.plot(grid, v_star(grid, a, og.β, og.μ), 'k-', lw=2, alpha=0.8, label='True value function')
```

(continues on next page)
The figure shows
1. the first 36 functions generated by the fitted value function iteration algorithm, with hotter colors given to higher iterates
2. the true value function v^* drawn in black

The sequence of iterates converges towards v^*. We are clearly getting closer.

43.3.5 Iterating to Convergence

We can write a function that iterates until the difference is below a particular tolerance level.

```python
def solve_model(og, 
    tol=1e-4, 
    max_iter=1000, 
    verbose=True, 
    print_skip=25):
    
    """
    Solve model by iterating with the Bellman operator.
    """
    
    # Set up loop
    v = og.u(og.grid)  # Initial condition
    i = 0
    error = tol + 1
    
    while i < max_iter and error > tol:
        v_greedy, v_new = T(v, og)
```

(continues on next page)
Let's use this function to compute an approximate solution at the defaults.

```python
v_greedy, v_solution = solve_model(og)
```

Error at iteration 25 is 0.40975776844490497.

Error at iteration 50 is 0.1476753540823772.

Error at iteration 75 is 0.05322171277213883.

Error at iteration 100 is 0.019180930468646558.

Error at iteration 125 is 0.006912744396029069.

Error at iteration 150 is 0.002491330384817303.

Error at iteration 175 is 0.000897867291303811.

Error at iteration 200 is 0.00032358842396718046.

Error at iteration 225 is 0.00011662020561331587.

Converged in 229 iterations.

Now we check our result by plotting it against the true value:

```python
fig, ax = plt.subplots()
ax.plot(grid, v_solution, lw=2, alpha=0.6, label='Approximate value function')
ax.plot(grid, v_star(grid, α, og.β, og.μ), lw=2, alpha=0.6, label='True value function')
ax.legend()
```
The figure shows that we are pretty much on the money.

43.3.6 The Policy Function

The policy v_{greedy} computed above corresponds to an approximate optimal policy. The next figure compares it to the exact solution, which, as mentioned above, is $\sigma(y) = (1 - \alpha \beta)y$

```python
fig, ax = plt.subplots()

ax.plot(grid, v_greedy, lw=2,
         alpha=0.6, label='approximate policy function')

ax.plot(grid, σ_star(grid, α, og.β), '--',
         lw=2, alpha=0.6, label='true policy function')

ax.legend()
plt.show()
```
43.4 Exercises

Exercise 43.4.1

A common choice for utility function in this kind of work is the CRRA specification

\[u(c) = \frac{c^{1-\gamma}}{1-\gamma} \]

Maintaining the other defaults, including the Cobb-Douglas production function, solve the optimal growth model with this utility specification.

Setting \(\gamma = 1.5 \), compute and plot an estimate of the optimal policy.

Time how long this function takes to run, so you can compare it to faster code developed in the next lecture.

Solution to Exercise 43.4.1

Here we set up the model.

\[
\begin{align*}
\gamma &= 1.5 \quad \# \ Preference \ parameter \\
\text{def } u_{\text{crra}}(c): \quad &
\text{return } (c**\gamma - 1) / (1 - \gamma) \\
og &= \text{OptimalGrowthModel}(u=u_{\text{crra}}, f=fcd)
\end{align*}
\]

Now let’s run it, with a timer.

\[
\begin{align*}
\%\%\\text{time} \\
v_{\text{greedy}}, v_{\text{solution}} &= \text{solve_model}(og)
\end{align*}
\]
Error at iteration 25 is 0.5528151810417512.

Error at iteration 50 is 0.19923228425590978.

Error at iteration 75 is 0.07180266113800826.

Error at iteration 100 is 0.025877443335843964.

Error at iteration 125 is 0.009326145618970827.

Error at iteration 150 is 0.00336112262005861.

Error at iteration 175 is 0.0012113338243295857.

Error at iteration 200 is 0.0004365607333056687.

Error at iteration 225 is 0.00015733505506432266.

Converged in 237 iterations.
CPU times: user 43.1 s, sys: 183 ms, total: 43.3 s
Wall time: 42.8 s

Let’s plot the policy function just to see what it looks like:

```python
fig, ax = plt.subplots()

ax.plot(grid, v_greedy, lw=2, alpha=0.6, label='Approximate optimal policy')

ax.legend()
plt.show()
```
Exercise 43.4.2

Time how long it takes to iterate with the Bellman operator 20 times, starting from initial condition $v(y) = u(y)$.

Use the model specification in the previous exercise.

(As before, we will compare this number with that for the faster code developed in the next lecture.)

Solution to Exercise 43.4.2

Let's set up:

```python
og = OptimalGrowthModel(u=u_crra, f=fcd)
v = og.u(og.grid)
```

Here's the timing:

```python
%%time
for i in range(20):
    v_greedy, v_new = T(v, og)
    v = v_new
```

CPU times: user 3.6 s, sys: 11.7 ms, total: 3.61 s
Wall time: 3.59 s
In addition to what’s in Anaconda, this lecture will need the following libraries:

```
!pip install quantecon
!pip install interpolation
```

44.1 Overview

Previously, we studied a stochastic optimal growth model with one representative agent. We solved the model using dynamic programming.

In writing our code, we focused on clarity and flexibility. These are important, but there’s often a trade-off between flexibility and speed.

The reason is that, when code is less flexible, we can exploit structure more easily.

(This is true about algorithms and mathematical problems more generally: more specific problems have more structure, which, with some thought, can be exploited for better results.)

So, in this lecture, we are going to accept less flexibility while gaining speed, using just-in-time (JIT) compilation to accelerate our code.

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from interpolation import interp
```
We are using an interpolation function from `interpolation.py` because it helps us JIT-compile our code. The function `brent_max` is also designed for embedding in JIT-compiled code. These are alternatives to similar functions in SciPy (which, unfortunately, are not JIT-aware).

44.2 The Model

The model is the same as discussed in our previous lecture on optimal growth. We will start with log utility:

\[
 u(c) = \ln(c)
\]

We continue to assume that

* \(f(k) = k^\alpha \)
* \(\phi \) is the distribution of \(\xi := \exp(\mu + s\zeta) \) when \(\zeta \) is standard normal

We will once again use value function iteration to solve the model.

In particular, the algorithm is unchanged, and the only difference is in the implementation itself.

As before, we will be able to compare with the true solutions

```python
def v_star(y, α, β, μ):
    """
    True value function
    """
    c1 = np.log(1 - α * β) / (1 - β)
    c2 = (μ + α * np.log(α * β)) / (1 - α)
    c3 = 1 / (1 - β)
    c4 = 1 / (1 - α * β)
    return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
    """
    True optimal policy
    """
    return (1 - α * β) * y
```
44.3 Computation

We will again store the primitives of the optimal growth model in a class. But now we are going to use Numba's `@jitclass` decorator to target our class for JIT compilation.

Because we are going to use Numba to compile our class, we need to specify the data types. You will see this as a list called `opt_growth_data` above our class.

Unlike in the previous lecture, we hardwire the production and utility specifications into the class.

This is where we sacrifice flexibility in order to gain more speed.

```python
opt_growth_data = [  
    ('α', float64),  # Production parameter  
    ('β', float64),  # Discount factor  
    ('μ', float64),  # Shock location parameter  
    ('s', float64),  # Shock scale parameter  
    ('grid', float64[:]),  # Grid (array)  
    ('shocks', float64[:])  # Shock draws (array)  
]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

    def __init__(self,  
        α=0.4,  
        β=0.96,  
        μ=0,  
        s=0.1,  
        grid_max=4,  
        grid_size=120,  
        shock_size=250,  
        seed=1234):

        self.α, self.β, self.μ, self.s = α, β, μ, s

        # Set up grid
        self.grid = np.linspace(1e-5, grid_max, grid_size)

        # Store shocks (with a seed, so results are reproducible)
        np.random.seed(seed)
        self.shocks = np.exp(μ + s * np.random.randn(shock_size))

    def f(self, k):
        "The production function"
        return k**self.α

    def u(self, c):
        "The utility function"
        return np.log(c)

    def f_prime(self, k):
        "Derivative of f"
        return self.α * (k**(self.α - 1))
```

(continues on next page)
The class includes some methods such as `u_prime` that we do not need now but will use in later lectures.

44.3.1 The Bellman Operator

We will use JIT compilation to accelerate the Bellman operator.

First, here’s a function that returns the value of a particular consumption choice `c`, given state `y`, as per the Bellman equation (43.9).

```python
@njit
def state_action_value(c, y, v_array, og):
    ""
    Right hand side of the Bellman equation.
    ""
    u, f, β, shocks = og.u, og.f, og.β, og.shocks
    v = lambda x: interp(og.grid, v_array, x)
    return u(c) + β * np.mean(v(f(y - c) * shocks))
```

Now we can implement the Bellman operator, which maximizes the right hand side of the Bellman equation:

```python
@jit(nopython=True)
def T(v, og):
    ""
    The Bellman operator.
    ""
    v_new = np.empty_like(v)
    v_greedy = np.empty_like(v)
    for i in range(len(og.grid)):
        y = og.grid[i]
        ... (continues on next page)
We use the `solve_model` function to perform iteration until convergence.

```python
def solve_model(og,
 tol=1e-4,
 max_iter=1000,
 verbose=True,
 print_skip=25):

 # Set up loop
 v = og.u(og.grid) # Initial condition
 i = 0
 error = tol + 1

 while i < max_iter and error > tol:
 v_greedy, v_new = T(v, og)
 error = np.max(np.abs(v - v_new))
 i += 1
 if verbose and i % print_skip == 0:
 print(f"Error at iteration {i} is {error}.")
 v = v_new

 if error > tol:
 print("Failed to converge!")
 elif verbose:
 print(f"nConverged in {i} iterations."

 return v_greedy, v_new
```

Let's compute the approximate solution at the default parameters.

First we create an instance:

```python
og = OptimalGrowthModel()
```

Now we call `solve_model`, using the `%time` magic to check how long it takes.

```python
%time v_greedy, v_solution = solve_model(og)
```

```
Error at iteration 25 is 0.41372668361363196.
Error at iteration 50 is 0.14767653072604503.
Error at iteration 75 is 0.053221715530355596.
```
Error at iteration 100 is 0.019180931418503633.

Error at iteration 125 is 0.006912744709538288.

Error at iteration 150 is 0.002491330497818467.
Error at iteration 175 is 0.0008978673320712005.

Error at iteration 200 is 0.0003235884386754151.

Error at iteration 225 is 0.00011662021095304453.

Converged in 229 iterations.
CPU times: user 5.07 s, sys: 69.3 ms, total: 5.14 s
Wall time: 5.13 s

You will notice that this is much faster than our original implementation.

Here is a plot of the resulting policy, compared with the true policy:

```python
fig, ax = plt.subplots()
ax.plot(og.grid, v_greedy, lw=2,
 alpha=0.8, label='approximate policy function')
ax.plot(og.grid, σ_star(og.grid, og.α, og.β), 'k--',
 lw=2, alpha=0.8, label='true policy function')
ax.legend()
plt.show()
```

![Policy Comparison Plot](image)

Again, the fit is excellent — this is as expected since we have not changed the algorithm.

The maximal absolute deviation between the two policies is
np.max(np.abs(v_greedy - o_star(og.grid, og.a, og.β)))

0.0010480539639137199

44.4 Exercises

Exercise 44.4.1
Time how long it takes to iterate with the Bellman operator 20 times, starting from initial condition $v(y) = u(y)$. Use the default parameterization.

Solution to Exercise 44.4.1
Let's set up the initial condition.

$$ v = og.u(og.grid) $$

Here's the timing:

```python
%%time
for i in range(20):
 v_greedy, v_new = T(v, og)
 v = v_new
```

CPU times: user 181 ms, sys: 0 ns, total: 181 ms
Wall time: 180 ms

Compared with our timing for the non-compiled version of value function iteration, the JIT-compiled code is usually an order of magnitude faster.

Exercise 44.4.2
Modify the optimal growth model to use the CRRA utility specification.

$$ u(c) = \frac{c^{1-\gamma}}{1-\gamma} $$

Set $\gamma = 1.5$ as the default value and maintaining other specifications.

(Note that jitclass currently does not support inheritance, so you will have to copy the class and change the relevant parameters and methods.)

Compute an estimate of the optimal policy, plot it and compare visually with the same plot from the analogous exercise in the first optimal growth lecture.

Compare execution time as well.
Solution to Exercise 44.4.2

Here’s our CRRA version of OptimalGrowthModel:

```python
opt_growth_data = [
 ('α', float64), # Production parameter
 ('β', float64), # Discount factor
 ('μ', float64), # Shock location parameter
 ('γ', float64), # Preference parameter
 ('s', float64), # Shock scale parameter
 ('grid', float64[:]), # Grid (array)
 ('shocks', float64[:]) # Shock draws (array)
]

@jitclass(opt_growth_data)
class OptimalGrowthModel_CRRA:
 def __init__(self,
 α=0.4,
 β=0.96,
 μ=0,
 s=0.1,
 γ=1.5,
 grid_max=4,
 grid_size=120,
 shock_size=250,
 seed=1234):
 self.α, self.β, self.γ, self.μ, self.s = α, β, γ, μ, s

 # Set up grid
 self.grid = np.linspace(1e-5, grid_max, grid_size)

 # Store shocks (with a seed, so results are reproducible)
 np.random.seed(seed)
 self.shocks = np.exp(μ + s * np.random.randn(shock_size))

 def f(self, k):
 "The production function."
 return k**self.α

 def u(self, c):
 "The utility function."
 return c**(1 - self.γ) / (1 - self.γ)

 def f_prime(self, k):
 "Derivative of f."
 return self.α * (k**self.α - 1)

 def u_prime(self, c):
 "Derivative of u."
 return c**(-self.γ)

 def u_prime_inv(c):
 return c**(-1 / self.γ)

Let’s create an instance:
```
og_crra = OptimalGrowthModel_CRRRA()

Now we call `solve_model`, using the `%%time` magic to check how long it takes.

```python
%%time
v_greedy, v_solution = solve_model(og_crra)
```

Error at iteration 25 is 1.6201897527234905.

Error at iteration 50 is 0.459106047057503.

Error at iteration 75 is 0.165423522162655.
Error at iteration 100 is 0.05961808343499797.

Error at iteration 125 is 0.021486161531569792.

Error at iteration 150 is 0.007743542074422294.

Error at iteration 175 is 0.002790747140650751.

Error at iteration 200 is 0.001005776107120937.

Error at iteration 225 is 0.0003624784085332067.

Error at iteration 250 is 0.00013063602793295104.

Converged in 257 iterations.
CPU times: user 4.24 s, sys: 13.6 ms, total: 4.25 s
Wall time: 4.25 s

Here is a plot of the resulting policy:

```python
fig, ax = plt.subplots()
ax.plot(og.grid, v_greedy, lw=2,
 alpha=0.6, label='Approximate value function')
ax.legend(loc='lower right')
plt.show()
```
This matches the solution that we obtained in our non-jitted code, *in the exercises.*

Execution time is an order of magnitude faster.

---

**Exercise 44.4.3**

In this exercise we return to the original log utility specification.

Once an optimal consumption policy $\sigma$ is given, income follows

$$y_{t+1} = f(y_t - \sigma(y_t))\xi_{t+1}$$

The next figure shows a simulation of 100 elements of this sequence for three different discount factors (and hence three different policies).
In each sequence, the initial condition is $y_0 = 0.1$.
The discount factors are `discount_factors = (0.8, 0.9, 0.98)`.
We have also dialed down the shocks a bit with $s = 0.05$.
Otherwise, the parameters and primitives are the same as the log-linear model discussed earlier in the lecture.
Notice that more patient agents typically have higher wealth.
Replicate the figure modulo randomness.

---

**Solution to Exercise 44.4.3**

Here’s one solution:

```python
def simulate_og(σ_func, og, y0=0.1, ts_length=100):
 '''
 Compute a time series given consumption policy σ.
 '''
 y = np.empty(ts_length)
 ξ = np.random.randn(ts_length-1)
 y[0] = y0
 for t in range(ts_length-1):
 y[t+1] = (y[t] - σ_func(y[t])) * og.α * np.exp(og.μ + og.s * ξ[t])
 return y

fig, ax = plt.subplots()
for β in (0.8, 0.9, 0.98):
 og = OptimalGrowthModel(β=β, s=0.05)
 v_greedy, v_solution = solve_model(og, verbose=False)
 # Define an optimal policy function
 σ_func = lambda x: interp(og.grid, v_greedy, x)
 y = simulate_og(σ_func, og)
 ax.plot(y, lw=2, alpha=0.6, label=rf'$\beta = {β}$')
ax.legend(loc='lower right')
plt.show()
```
45.1 Overview

In this lecture, we’ll continue our earlier study of the stochastic optimal growth model. In that lecture, we solved the associated dynamic programming problem using value function iteration. The beauty of this technique is its broad applicability.

With numerical problems, however, we can often attain higher efficiency in specific applications by deriving methods that are carefully tailored to the application at hand.

The stochastic optimal growth model has plenty of structure to exploit for this purpose, especially when we adopt some concavity and smoothness assumptions over primitives.

We’ll use this structure to obtain an Euler equation based method.

This will be an extension of the time iteration method considered in our elementary lecture on cake eating.

In a subsequent lecture, we’ll see that time iteration can be further adjusted to obtain even more efficiency.

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
```
Our first step is to derive the Euler equation, which is a generalization of the Euler equation we obtained in the lecture on cake eating.

We take the model set out in the stochastic growth model lecture and add the following assumptions:

1. \( u \) and \( f \) are continuously differentiable and strictly concave
2. \( f(0) = 0 \)
3. \( \lim_{c \to 0} u'(c) = \infty \) and \( \lim_{c \to \infty} u'(c) = 0 \)
4. \( \lim_{k \to 0} f'(k) = \infty \) and \( \lim_{k \to \infty} f'(k) = 0 \)

The last two conditions are usually called Inada conditions.

Recall the Bellman equation

\[
v^*(y) = \max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v^*(f(y-c)z)\phi(dz) \right\}
\]

for all \( y \in \mathbb{R}_+ \) (45.1)

Let the optimal consumption policy be denoted by \( \sigma^* \).

We know that \( \sigma^* \) is a \( v^* \)-greedy policy so that \( \sigma^*(y) \) is the maximizer in (45.1).

The conditions above imply that

- \( \sigma^* \) is the unique optimal policy for the stochastic optimal growth model
- the optimal policy is continuous, strictly increasing and also interior, in the sense that \( 0 < \sigma^*(y) < y \) for all strictly positive \( y \), and
- the value function is strictly concave and continuously differentiable, with

\[
(v^*)'(y) = u'(\sigma^*(y)) := (u' \circ \sigma^*)(y)
\]

(45.2)

The last result is called the envelope condition due to its relationship with the envelope theorem.

To see why (45.2) holds, write the Bellman equation in the equivalent form

\[
v^*(y) = \max_{0 \leq k \leq y} \left\{ u(y-k) + \beta \int v^*(f(k)z)\phi(dz) \right\},
\]

Differentiating with respect to \( y \), and then evaluating at the optimum yields (45.2).

(Section 12.1 of EDTC contains full proofs of these results, and closely related discussions can be found in many other texts.)

Differentiability of the value function and interiority of the optimal policy imply that optimal consumption satisfies the first order condition associated with (45.1), which is

\[
u'(\sigma^*(y)) = \beta \int (v^*)'((f(y-\sigma^*(y))z)f'(y-\sigma^*(y)) \phi(dz)
\]

(45.3)
Combining (45.2) and the first-order condition (45.3) gives the **Euler equation**

\[(u' \circ \sigma^*)(y) = \beta \int (u' \circ \sigma^*)(f(y - \sigma^*(y))z)f'(y - \sigma^*(y))z\phi(dz)\]  

(45.4)

We can think of the Euler equation as a functional equation

\[(u' \circ \sigma)(y) = \beta \int (u' \circ \sigma)(f(y - \sigma(y))z)f'(y - \sigma(y))z\phi(dz)\]  

(45.5)

over interior consumption policies \(\sigma\), one solution of which is the optimal policy \(\sigma^*\).

Our aim is to solve the functional equation (45.5) and hence obtain \(\sigma^*\).

### 45.2.1 The Coleman-Reffett Operator

Recall the Bellman operator

\[Tv(y) := \max_{0 \leq c \leq y} \left\{ u(c) + \beta \int v(f(y - c)z)\phi(dz) \right\} \]  

(45.6)

Just as we introduced the Bellman operator to solve the Bellman equation, we will now introduce an operator over policies to help us solve the Euler equation.

This operator \(K\) will act on the set of all \(\sigma \in \Sigma\) that are continuous, strictly increasing and interior.

Henceforth we denote this set of policies by \(\mathcal{P}\)

1. The operator \(K\) takes as its argument a \(\sigma \in \mathcal{P}\) and
2. returns a new function \(K\sigma\), where \(K\sigma(y)\) is the \(c \in (0, y)\) that solves.

\[u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\phi(dz)\]  

(45.7)

We call this operator the **Coleman-Reffett operator** to acknowledge the work of [Col90] and [Ref96].

In essence, \(K\sigma\) is the consumption policy that the Euler equation tells you to choose today when your future consumption policy is \(\sigma\).

The important thing to note about \(K\) is that, by construction, its fixed points coincide with solutions to the functional equation (45.5).

In particular, the optimal policy \(\sigma^*\) is a fixed point.

Indeed, for fixed \(y\), the value \(K\sigma^*(y)\) is the \(c\) that solves

\[u'(c) = \beta \int (u' \circ \sigma^*)(f(y - c)z)f'(y - c)z\phi(dz)\]

In view of the Euler equation, this is exactly \(\sigma^*(y)\).

### 45.2.2 Is the Coleman-Reffett Operator Well Defined?

In particular, is there always a unique \(c \in (0, y)\) that solves (45.7)?

The answer is yes, under our assumptions.

For any \(\sigma \in \mathcal{P}\), the right side of (45.7)

- is continuous and strictly increasing in \(c\) on \((0, y)\)
• diverges to $+\infty$ as $c \uparrow y$

The left side of (45.7)

• is continuous and strictly decreasing in $c$ on $(0, y)$

• diverges to $+\infty$ as $c \downarrow 0$

Sketching these curves and using the information above will convince you that they cross exactly once as $c$ ranges over $(0, y)$.

With a bit more analysis, one can show in addition that $K\sigma \in \mathcal{P}$ whenever $\sigma \in \mathcal{P}$.

45.2.3 Comparison with VFI (Theory)

It is possible to prove that there is a tight relationship between iterates of $K$ and iterates of the Bellman operator.

Mathematically, the two operators are topologically conjugate.

Loosely speaking, this means that if iterates of one operator converge then so do iterates of the other, and vice versa.

Moreover, there is a sense in which they converge at the same rate, at least in theory.

However, it turns out that the operator $K$ is more stable numerically and hence more efficient in the applications we consider.

Examples are given below.

45.3 Implementation

As in our previous study, we continue to assume that

• $u(c) = \ln c$

• $f(k) = k^\alpha$

• $\phi$ is the distribution of $\xi := \exp(\mu + s\zeta)$ when $\zeta$ is standard normal

This will allow us to compare our results to the analytical solutions

```python
True value function
def v_star(y, a, b, mu):
 c1 = np.log(1 - a * b) / (1 - b)
 c2 = (mu + a * np.log(a * b)) / (1 - a)
 c3 = 1 / (1 - b)
 c4 = 1 / (1 - a * b)
 return c1 + c2 * (c3 - c4) + c4 * np.log(y)

True optimal policy
def o_star(y, a, b):
 return (1 - a * b) * y
```

As discussed above, our plan is to solve the model using time iteration, which means iterating with the operator $K$.

For this we need access to the functions $u'$ and $f', f'$. 
These are available in a class called `OptimalGrowthModel` that we constructed in an earlier lecture.

```python
opt_growth_data = [
 ('α', float64), # Production parameter
 ('β', float64), # Discount factor
 ('μ', float64), # Shock location parameter
 ('s', float64), # Shock scale parameter
 ('grid', float64[:]), # Grid (array)
 ('shocks', float64[:]) # Shock draws (array)
]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

 def __init__(self,
 α=0.4,
 β=0.96,
 μ=0,
 s=0.1,
 grid_max=4,
 grid_size=120,
 shock_size=250,
 seed=1234):
 self.α, self.β, self.μ, self.s = α, β, μ, s

 # Set up grid
 self.grid = np.linspace(1e-5, grid_max, grid_size)

 # Store shocks (with a seed, so results are reproducible)
 np.random.seed(seed)
 self.shocks = np.exp(μ + s * np.random.randn(shock_size))

 def f(self, k):
 "The production function"
 return k**self.α

 def u(self, c):
 "The utility function"
 return np.log(c)

 def f_prime(self, k):
 "Derivative of f"
 return self.α * (k**self.α - 1)

 def u_prime(self, c):
 "Derivative of u"
 return 1/c

 def u_prime_inv(self, c):
 "Inverse of u"
 return 1/c
```

45.3. Implementation
Now we implement a method called `euler_diff`, which returns

\[
u'(c) - \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)\phi(dz)
\] (45.8)

```python
@njit
def euler_diff(c, sigma, y, og):
 """
 Set up a function such that the root with respect to c,
given y and \(\sigma\), is equal to \(K\sigma(y)\).
 """
 beta, shocks, grid = og.beta, og.shocks, og.grid
 f, f_prime, u_prime = og.f, og.f_prime, og.u_prime
 # First turn \(\sigma\) into a function via interpolation
 sigma_func = lambda x: interp(grid, sigma, x)
 # Now set up the function we need to find the root of.
 vals = u_prime(sigma_func(f(y - c) * shocks)) * f_prime(y - c) * shocks
 return u_prime(c) - beta * np.mean(vals)
```

The function `euler_diff` evaluates integrals by Monte Carlo and approximates functions using linear interpolation.

We will use a root-finding algorithm to solve (45.8) for \(c\) given state \(y\) and \(\sigma\), the current guess of the policy.

Here’s the operator \(K\), that implements the root-finding step.

```python
@njit
def K(sigma, og):
 """
 The Coleman-Reffett operator

 Here og is an instance of OptimalGrowthModel.
 """
 beta = og.beta
 f, f_prime, u_prime = og.f, og.f_prime, og.u_prime
 grid, shocks = og.grid, og.shocks
 sigma_new = np.empty_like(sigma)
 for i, y in enumerate(grid):
 # Solve for optimal c at y
 c_star = brentq(euler_diff, 1e-10, y-1e-10, args=(sigma, y, og))[0]
 sigma_new[i] = c_star
 return sigma_new
```
45.3.1 Testing

Let's generate an instance and plot some iterates of $K$, starting from $\sigma(y) = y$.

```python
og = OptimalGrowthModel()
grid = og.grid

n = 15
σ = grid.copy() # Set initial condition

fig, ax = plt.subplots()
lb = 'initial condition $\sigma(y) = y$'
ax.plot(grid, σ, color=plt.cm.jet(0), alpha=0.6, label=lb)

for i in range(n):
 σ = K(σ, og)
 ax.plot(grid, σ, color=plt.cm.jet(i / n), alpha=0.6)

Update one more time and plot the last iterate in black
σ = K(σ, og)
ax.plot(grid, σ, color='k', alpha=0.8, label='last iterate')

ax.legend()
plt.show()
```

We see that the iteration process converges quickly to a limit that resembles the solution we obtained in the previous lecture.

Here is a function called `solve_model_time_iter` that takes an instance of `OptimalGrowthModel` and returns an approximation to the optimal policy, using time iteration.

```python
def solve_model_time_iter(model, # Class with model information
 σ, # Initial condition
tol=1e-4,
max_iter=1000,
verbose=True,
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
print_skip=25):

 # Set up loop
 i = 0
 error = tol + 1

 while i < max_iter and error > tol:
 σ_new = K(σ, model)
 error = np.max(np.abs(σ - σ_new))
 i += 1
 if verbose and i % print_skip == 0:
 print(f"Error at iteration \{i\} is \{error\}.")
 σ = σ_new

 if error > tol:
 print("Failed to converge!")
 elif verbose:
 print(f"Converged in \{i\} iterations."")

 return σ_new

Let's call it:

c_init = np.copy(og.grid)
σ = solve_model_time_iter(og, c_init)

Converged in 11 iterations.

Here is a plot of the resulting policy, compared with the true policy:

```
Again, the fit is excellent.

The maximal absolute deviation between the two policies is

\[
\text{np.max(np.abs(\sigma - \sigma_{\text{star}}(og, grid, og, \alpha, og, \beta)))}
\]

\[
2.5329106132954138e-05
\]

How long does it take to converge?

```python
%%timeit -n 3 -r 1
\sigma = \text{solve_model_time_iter}(og, \sigma_{\text{init}}, \text{verbose=False})
```

\[
77 \text{ ms } \pm \text{ 0 ns per loop (mean } \pm \text{ std. dev. of 1 run, 3 loops each)}
\]

Convergence is very fast, even compared to our JIT-compiled value function iteration.

Overall, we find that time iteration provides a very high degree of efficiency and accuracy, at least for this model.

## 45.4 Exercises

**Exercise 45.4.1**

Solve the model with CRRA utility

\[
u(c) = \frac{c^{1-\gamma}}{1-\gamma}
\]

Set \( \gamma = 1.5 \).

Compute and plot the optimal policy.
We use the class `OptimalGrowthModel_CRRA` from our VFI lecture.

```python
opt_growth_data = [
 ('α', float64), # Production parameter
 ('β', float64), # Discount factor
 ('μ', float64), # Shock location parameter
 ('γ', float64), # Preference parameter
 ('s', float64), # Shock scale parameter
 ('grid', float64[:]), # Grid (array)
 ('shocks', float64[:]) # Shock draws (array)
]

@jitclass(opt_growth_data)
class OptimalGrowthModel_CRRA:
 def __init__(self, α=0.4, β=0.96, μ=0, s=0.1, γ=1.5, grid_max=4, grid_size=120, shock_size=250, seed=1234):
 self.α, self.β, self.γ, self.μ, self.s = α, β, γ, μ, s

 # Set up grid
 self.grid = np.linspace(1e-5, grid_max, grid_size)

 # Store shocks (with a seed, so results are reproducible)
 np.random.seed(seed)
 self.shocks = np.exp(μ + s * np.random.randn(shock_size))

 def f(self, k):
 """The production function.""
 return k**self.α

 def u(self, c):
 """The utility function.""
 return c**(1 - self.γ) / (1 - self.γ)

 def f_prime(self, k):
 """Derivative of f.""
 return self.α * (k**(self.α - 1))

 def u_prime(self, c):
 """Derivative of u.""
 return c**(-self.γ)

 def u_prime_inv(c):
 return c**(-1 / self.γ)

Let's create an instance:
```
og_crra = OptimalGrowthModel_CRRA()

Now we solve and plot the policy:

```python
%%time
σ = solve_model_time_iter(og_crra, σ_init)

fig, ax = plt.subplots()

ax.plot(og.grid, σ, lw=2,
 alpha=0.8, label='approximate policy function')

ax.legend()
plt.show()
```

Converged in 13 iterations.

CPU times: user 2.45 s, sys: 167 ms, total: 2.61 s
Wall time: 2.38 s
OPTIMAL GROWTH IV: THE ENDOGENOUS GRID METHOD

Contents

- Optimal Growth IV: The Endogenous Grid Method
  - Overview
  - Key Idea
  - Implementation

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
!pip install interpolation
```

46.1 Overview

Previously, we solved the stochastic optimal growth model using

1. value function iteration
2. Euler equation based time iteration

We found time iteration to be significantly more accurate and efficient.

In this lecture, we’ll look at a clever twist on time iteration called the endogenous grid method (EGM).

EGM is a numerical method for implementing policy iteration invented by Chris Carroll.

The original reference is [Car06].

Let’s start with some standard imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import quantecon asqe
from interpolation import interp
from numba import njit, float64
from numba.experimental import jitclass
from quantecon.optimize import brentq
```
46.2 Key Idea

Let’s start by reminding ourselves of the theory and then see how the numerics fit in.

46.2.1 Theory

Take the model set out in the time iteration lecture, following the same terminology and notation.

The Euler equation is

\[ (u' \circ \sigma^*)(y) = \beta \int (u' \circ \sigma^*)(f(y - \sigma^*(y))z)f'(y - \sigma^*(y))z\phi(dz) \]  \hspace{1cm} (46.1)

As we saw, the Coleman-Reffett operator is a nonlinear operator $K$ engineered so that $\sigma^*$ is a fixed point of $K$.

It takes as its argument a continuous strictly increasing consumption policy $\sigma \in \Sigma$.

It returns a new function $K\sigma$, where $(K\sigma)(y)$ is the $c \in (0, \infty)$ that solves

\[ u'(c) = \beta \int (u' \circ \sigma)(f(y - c)z)f'(y - c)z\phi(dz) \]  \hspace{1cm} (46.2)

46.2.2 Exogenous Grid

As discussed in the lecture on time iteration, to implement the method on a computer, we need a numerical approximation.

In particular, we represent a policy function by a set of values on a finite grid.

The function itself is reconstructed from this representation when necessary, using interpolation or some other method.

Previously, to obtain a finite representation of an updated consumption policy, we

- fixed a grid of income points $\{y_i\}$
- calculated the consumption value $c_i$ corresponding to each $y_i$ using (46.2) and a root-finding routine

Each $c_i$ is then interpreted as the value of the function $K\sigma$ at $y_i$.

Thus, with the points $\{y_i, c_i\}$ in hand, we can reconstruct $K\sigma$ via approximation.

Iteration then continues…

46.2.3 Endogenous Grid

The method discussed above requires a root-finding routine to find the $c_i$ corresponding to a given income value $y_i$.

Root-finding is costly because it typically involves a significant number of function evaluations.

As pointed out by Carroll [Car06], we can avoid this if $y_i$ is chosen endogenously.

The only assumption required is that $u'$ is invertible on $(0, \infty)$.

Let $(u')^{-1}$ be the inverse function of $u'$.

The idea is this:

- First, we fix an exogenous grid $\{k_i\}$ for capital $(k = y - c)$.
- Then we obtain $c_i$ via
Finally, for each $c_i$ we set $y_i = c_i + k_i$.

It is clear that each $(y_i, c_i)$ pair constructed in this manner satisfies (46.2).

With the points $(y_i, c_i)$ in hand, we can reconstruct $K\sigma$ via approximation as before.

The name EGM comes from the fact that the grid $\{y_i\}$ is determined *endogenously*.

### 46.3 Implementation

As before, we will start with a simple setting where

- $u(c) = \ln c$,
- production is Cobb-Douglas, and
- the shocks are lognormal.

This will allow us to make comparisons with the analytical solutions.

```python
def v_star(y, α, β, μ):

 """True value function
 """
 c1 = np.log(1 - α * β) / (1 - β)
 c2 = (μ + α * np.log(α * β)) / (1 - α)
 c3 = 1 / (1 - β)
 c4 = 1 / (1 - α * β)
 return c1 + c2 * (c3 - c4) + c4 * np.log(y)

def σ_star(y, α, β):
 """True optimal policy
 """
 return (1 - α * β) * y
```

We reuse the `OptimalGrowthModel` class

```python
opt_growth_data = [
 ('α', float64), # Production parameter
 ('β', float64), # Discount factor
 ('μ', float64), # Shock location parameter
 ('σ', float64), # Shock scale parameter
 ('grid', float64[:]), # Grid (array)
 ('shocks', float64[:]) # Shock draws (array)
]

@jitclass(opt_growth_data)
class OptimalGrowthModel:

def __init__(self,
 α=0.4,
 β=0.96,
 μ=0,
 s=0.1,
```

(continues on next page)
The production function

```
def f(self, k):
 "The production function"
 return k**self.a
```

The utility function

```
def u(self, c):
 "The utility function"
 return np.log(c)
```

Derivative of f

```
def f_prime(self, k):
 "Derivative of f"
 return self.a * (k**(self.a - 1))
```

Derivative of u

```
def u_prime(self, c):
 "Derivative of u"
 return 1/c
```

Inverse of u

```
def u_prime_inv(self, c):
 "Inverse of u"
 return 1/c
```

46.3.1 The Operator

Here's an implementation of $K$ using EGM as described above.

```
@njit
def K(σ_array, og):
 ""
 The Coleman-Reffett operator using EGM
 ""

 # Simplify names
 f, β = og.f, og.β
 f_prime, u_prime = og.f_prime, og.u_prime
 u_prime_inv = og.u_prime_inv
 grid, shocks = og.grid, og.shocks
```

(continues on next page)
# Determine endogenous grid
\[ y = \text{grid} + \sigma_{\text{array}} \quad \# y_i = k_i + c_i \]

# Linear interpolation of policy using endogenous grid
\[ \sigma = \text{lambda x: interp}(y, \sigma_{\text{array}}, x) \]

# Allocate memory for new consumption array
\[ c = \text{np.empty_like}({\text{grid}}) \]

# Solve for updated consumption value
for \(i, k\) in enumerate({\text{grid}}):
    \[\text{vals} = u'prime(\sigma(f(k) \times \text{shocks})) \times f'prime(k) \times \text{shocks}\]
    \[c[i] = u'prime_inv(\beta \times \text{np.mean(vals)})\]

return \(c\)

Note the lack of any root-finding algorithm.

## 46.3.2 Testing

First we create an instance.

\[\text{og} = \text{OptimalGrowthModel()}\]
\[\text{grid} = \text{og.grid}\]

Here’s our solver routine:

```python
def solve_model_time_iter(model, \# Class with model information
 \sigma, \# Initial condition
 toli=1e-4,
 max_iter=1000,
 verbose=True,
 print_skip=25):

 # Set up loop
 i = 0
 error = toli + 1

 while i < max_iter and error > toli:
 \(\sigma_{\text{new}} = K(\sigma, \text{model})\)
 error = \text{np.max}({\text{np.abs}}(\sigma - \sigma_{\text{new}}))
 i += 1
 if verbose and i \% print_skip == 0:
 print(f"Error at iteration \{i\} is \{error\}.")
 \sigma = \sigma_{\text{new}}

 if error > toli:
 print("Failed to converge!")
 elif verbose:
 print(f"nConverged in \{i\} iterations.")

 return \sigma_{\text{new}}
```

Let’s call it:
σ_init = np.copy(grid)
σ = solve_model_time_iter(og, σ_init)

Converged in 12 iterations.

Here is a plot of the resulting policy, compared with the true policy:

\[
y = \text{grid} + σ \quad \# \quad y_i = k_i + c_i
\]

```python
fig, ax = plt.subplots()

ax.plot(y, σ, lw=2, alpha=0.8, label='approximate policy function')

ax.plot(y, σ_star(y, og.α, og.β), 'k--', lw=2, alpha=0.8, label='true policy function')

ax.legend()
plt.show()
```

The maximal absolute deviation between the two policies is

```
np.max(np.abs(σ - σ_star(y, og.α, og.β)))
```

```
1.530274914252061e-05
```

How long does it take to converge?

```
%%timeit -n 3 -r 1
σ = solve_model_time_iter(og, σ_init, verbose=False)
```

```
11.9 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 3 loops each)
```
Relative to time iteration, which as already found to be highly efficient, EGM has managed to shave off still more run time without compromising accuracy.

This is due to the lack of a numerical root-finding step.

We can now solve the optimal growth model at given parameters extremely fast.
In addition to what's in Anaconda, this lecture will need the following libraries:

```
pip install quantecon
pip install interpolation
```

### 47.1 Overview

In this lecture, we study an optimal savings problem for an infinitely lived consumer—the “common ancestor” described in [LS18], section 1.3.

This is an essential sub-problem for many representative macroeconomic models

- [Aiy94]
- [Hug93]
- etc.

It is related to the decision problem in the *stochastic optimal growth model* and yet differs in important ways.

For example, the choice problem for the agent includes an additive income term that leads to an occasionally binding constraint.

Moreover, in this and the following lectures, we will inject more realistic features such as correlated shocks.

To solve the model we will use Euler equation based time iteration, which proved to be *fast and accurate* in our investigation of the *stochastic optimal growth model*.

Time iteration is globally convergent under mild assumptions, even when utility is unbounded (both above and below).

We'll need the following imports:
47.1 References

Our presentation is a simplified version of [MST20]. Other references include [Dea91], [DH10], [Kuh13], [Rab02], [Rei09] and [SE77].

47.2 The Optimal Savings Problem

Let’s write down the model and then discuss how to solve it.

47.2.1 Set-Up

Consider a household that chooses a state-contingent consumption plan \{c_t\}_{t \geq 0} to maximize

\[ \mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t) \]

subject to

\[ a_{t+1} \leq R(a_t - c_t) + Y_{t+1}, \quad c_t \geq 0, \quad a_t \geq 0 \quad t = 0, 1, \ldots \]  \hspace{1cm} (47.1)

Here

- \( \beta \in (0, 1) \) is the discount factor
- \( a_t \) is asset holdings at time \( t \), with borrowing constraint \( a_t \geq 0 \)
- \( c_t \) is consumption
- \( Y_t \) is non-capital income (wages, unemployment compensation, etc.)
- \( R := 1 + r \), where \( r > 0 \) is the interest rate on savings

The timing here is as follows:

1. At the start of period \( t \), the household chooses consumption \( c_t \).
2. Labor is supplied by the household throughout the period and labor income \( Y_{t+1} \) is received at the end of period \( t \).
3. Financial income \( R(a_t - c_t) \) is received at the end of period \( t \).
4. Time shifts to \( t + 1 \) and the process repeats.

Non-capital income \( Y_t \) is given by \( Y_t = y(Z_t) \), where \{\( Z_t \)\} is an exogeneous state process.

As is common in the literature, we take \{\( Z_t \)\} to be a finite state Markov chain taking values in \( \mathbb{Z} \) with Markov matrix \( P \). We further assume that
1. $\beta R < 1$
2. $u$ is smooth, strictly increasing and strictly concave with $\lim_{c \to 0} u'(c) = \infty$ and $\lim_{c \to \infty} u'(c) = 0$

The asset space is $\mathbb{R}_+$ and the state is the pair $(a, z) \in S := \mathbb{R}_+ \times \mathbb{Z}$.

A feasible consumption path from $(a, z) \in S$ is a consumption sequence $\{c_t\}$ such that $\{c_t\}$ and its induced asset path $\{a_t\}$ satisfy

1. $(a_0, z_0) = (a, z)$
2. the feasibility constraints in (47.1), and
3. measurability, which means that $c_t$ is a function of random outcomes up to date $t$ but not after.

The meaning of the third point is just that consumption at time $t$ cannot be a function of outcomes are yet to be observed.

In fact, for this problem, consumption can be chosen optimally by taking it to be contingent only on the current state.

Optimality is defined below.

### 47.2.2 Value Function and Euler Equation

The value function $V : S \rightarrow \mathbb{R}$ is defined by

$$V(a, z) := \max \left\{ \mathbb{E} \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\} \right\}$$

(47.2)

where the maximization is overall feasible consumption paths from $(a, z)$.

An optimal consumption path from $(a, z)$ is a feasible consumption path from $(a, z)$ that attains the supremum in (47.2).

To pin down such paths we can use a version of the Euler equation, which in the present setting is

$$u'(c_t) \geq \beta R \mathbb{E}_t u'(c_{t+1})$$

(47.3)

and

$$c_t < a_t \implies u'(c_t) = \beta R \mathbb{E}_t u'(c_{t+1})$$

(47.4)

When $c_t = a_t$ we obviously have $u'(c_t) = u'(a_t)$.

When $c_t$ hits the upper bound $a_t$, the strict inequality $u'(c_t) > \beta R \mathbb{E}_t u'(c_{t+1})$ can occur because $c_t$ cannot increase sufficiently to attain equality.

(The lower boundary case $c_t = 0$ never arises at the optimum because $u'(0) = \infty$.)

With some thought, one can show that (47.3) and (47.4) are equivalent to

$$u'(c_t) = \max \{ \beta R \mathbb{E}_t u'(c_{t+1}), u'(a_t) \}$$

(47.5)

### 47.2.3 Optimality Results

As shown in [MST20],

1. For each $(a, z) \in S$, a unique optimal consumption path from $(a, z)$ exists
2. This path is the unique feasible path from $(a, z)$ satisfying the Euler equality (47.5) and the transversality condition
\[
\lim_{t \to \infty} \beta^t E \left[ u'(c_t) a_{t+1} \right] = 0 \tag{47.6}
\]

Moreover, there exists an optimal consumption function \( \sigma^* : S \to \mathbb{R}_+ \) such that the path from \((a, z)\) generated by
\[
(a_0, z_0) = (a, z), \quad c_t = \sigma^*(a_t, Z_t) \quad \text{and} \quad a_{t+1} = R(a_t - c_t) + Y_{t+1}
\]
satisfies both (47.5) and (47.6), and hence is the unique optimal path from \((a, z)\).

Thus, to solve the optimization problem, we need to compute the policy \( \sigma^* \).

### 47.3 Computation

There are two standard ways to solve for \( \sigma^* \):

1. time iteration using the Euler equality and
2. value function iteration.

Our investigation of the cake eating problem and stochastic optimal growth model suggests that time iteration will be faster and more accurate.

This is the approach that we apply below.

#### 47.3.1 Time Iteration

We can rewrite (47.5) to make it a statement about functions rather than random variables.

In particular, consider the functional equation
\[
(u' \circ \sigma)(a, z) = \max \left\{ \beta R E_z(u' \circ \sigma)[R(a - \sigma(a, z)) + \tilde{Y}, \tilde{Z}], u'(a) \right\}
\]
where
- \((u' \circ \sigma)(s) := u'(\sigma(s))\).
- \(E_z\) conditions on current state \(z\) and \(\tilde{X}\) indicates next period value of random variable \(X\) and
- \(\sigma\) is the unknown function.

We need a suitable class of candidate solutions for the optimal consumption policy.

The right way to pick such a class is to consider what properties the solution is likely to have, in order to restrict the search space and ensure that iteration is well behaved.

To this end, let \(\mathcal{C}\) be the space of continuous functions \(\sigma : S \to \mathbb{R}\) such that \(\sigma\) is increasing in the first argument, \(0 < \sigma(a, z) \leq a\) for all \((a, z) \in S\), and
\[
\sup_{(a, z) \in S} |(u' \circ \sigma)(a, z) - u'(a)| < \infty \tag{47.8}
\]

This will be our candidate class.

In addition, let \(K : \mathcal{C} \to \mathcal{C}\) be defined as follows.

For given \(\sigma \in \mathcal{C}\), the value \(K\sigma(a, z)\) is the unique \(c \in [0, a]\) that solves
\[
u'(c) = \max \left\{ \beta R E_z(u' \circ \sigma)[R(a - c) + \tilde{Y}, \tilde{Z}], u'(a) \right\}
\]

We refer to \(K\) as the Coleman–Reffett operator.

The operator \(K\) is constructed so that fixed points of \(K\) coincide with solutions to the functional equation (47.7).

It is shown in [MST20] that the unique optimal policy can be computed by picking any \(\sigma \in \mathcal{C}\) and iterating with the operator \(K\) defined in (47.9).
47.3.2 Some Technical Details

The proof of the last statement is somewhat technical but here is a quick summary:

It is shown in [MST20] that $K$ is a contraction mapping on $\mathcal{C}$ under the metric

$$
\rho(c, d) := \| u' \circ \sigma_1 - u' \circ \sigma_2 \| := \sup_{s \in S} | u'(\sigma_1(s)) - u'(\sigma_2(s)) | \quad (\sigma_1, \sigma_2 \in \mathcal{C})
$$

which evaluates the maximal difference in terms of marginal utility.

(The benefit of this measure of distance is that, while elements of $\mathcal{C}$ are not generally bounded, $\rho$ is always finite under our assumptions.)

It is also shown that the metric $\rho$ is complete on $\mathcal{C}$.

In consequence, $K$ has a unique fixed point $\sigma^* \in \mathcal{C}$ and $K^n c \to \sigma^*$ as $n \to \infty$ for any $\sigma \in \mathcal{C}$.

By the definition of $K$, the fixed points of $K$ in $\mathcal{C}$ coincide with the solutions to (47.7) in $\mathcal{C}$.

As a consequence, the path $\{c_t\}$ generated from $(a_0, z_0) \in S$ using policy function $\sigma^*$ is the unique optimal path from $(a_0, z_0) \in S$.

47.4 Implementation

We use the CRRA utility specification

$$
u(c) = \frac{c^{1-\gamma}}{1-\gamma}
$$

The exogeneous state process $\{Z_t\}$ defaults to a two-state Markov chain with state space $\{0, 1\}$ and transition matrix $P$.

Here we build a class called IFP that stores the model primitives.

```python
ifp_data = [{'R', float64},
 {'\beta', float64},
 {'\gamma', float64},
 {'P', float64[:, :]},
 {'y', float64[:]},
 {'asset_grid', float64[:]}]

@jitclass(ifp_data)
class IFP:
 def __init__(self,
 r=0.01,
 \beta=0.96,
 \gamma=1.5,
 P=((0.6, 0.4),
 (0.05, 0.95)),
 y=(0.0, 2.0),
 grid_max=16,
 grid_size=50):
 self.R = 1 + r
 self.\beta, self.\gamma = \beta, \gamma
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
self.P, self.y = np.array(P), np.array(y)
self.asset_grid = np.linspace(0, grid_max, grid_size)

Recall that we need R β < 1 for convergence.
assert self.R * self.β < 1, "Stability condition violated."

def u_prime(self, c):
 return c**(-self.γ)
```

Next we provide a function to compute the difference

\[ u'(c) - \max \left\{ \beta R E_z (u' \circ \sigma) \left[ R(a - c) + \hat{Y}, \hat{Z} \right], u'(a) \right\} \]  \hspace{1cm} (47.10)

@njit
def euler_diff(c, a, z, σ_vals, ifp):
    """
The difference between the left- and right-hand side of the Euler Equation, given current policy σ.

* c is the consumption choice
* (a, z) is the state, with z in \{0, 1\}
* σ_vals is a policy represented as a matrix.
* ifp is an instance of IFP
    """

    # Simplify names
    asset_grid, u_prime = ifp.asset_grid, ifp.u_prime
    n = len(P)

    # Convert policy into a function by linear interpolation
    def σ(a, z):
        return interp(asset_grid, σ_vals[:, z], a)

    # Calculate the expectation conditional on current z
    expect = 0.0
    for z_hat in range(n):
        expect += u_prime(σ(R * (a - c) + y[z_hat], z_hat)) * P[z, z_hat]

    return u_prime(c) - max(β * R * expect, u_prime(a))
```

Note that we use linear interpolation along the asset grid to approximate the policy function.

The next step is to obtain the root of the Euler difference.

@njit
def K(σ, ifp):
 """
The operator K.
 """

 o_new = np.empty_like(o)
 for i, a in enumerate(ifp.asset_grid):
 for z in (0, 1):
 result = brentq(euler_diff, 1e-8, a, args=(a, z, σ, ifp))
```

(continues on next page)
\( \sigma_{\text{new}}[i, z] = \text{result}.\text{root} \)

```
return \(\sigma_{\text{new}} \)
```

With the operator \( K \) in hand, we can choose an initial condition and start to iterate.

The following function iterates to convergence and returns the approximate optimal policy.

```python
def solve_model_time_iter(model, \# Class with model information
sigma, \# Initial condition
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

 # Set up loop
 i = 0
 error = tol + 1

 while i < max_iter and error > tol:
 sigma_new = K(sigma, model)
 error = np.max(np.abs(sigma - sigma_new))
 i += 1
 if verbose and i % print_skip == 0:
 print(f"Error at iteration \{i\} is \{error\}.")
 sigma = sigma_new

 if error > tol:
 print("Failed to converge!")
 elif verbose:
 print(f"\nConverged in \{i\} iterations."")

 return sigma_new
```

Let's carry this out using the default parameters of the `IFP` class:

```python
ifp = IFP()

Set up initial consumption policy of consuming all assets at all z
z_size = len(ifp.P)
a_grid = ifp.asset_grid
a_size = len(a_grid)
q_init = np.repeat(a_grid.reshape(a_size, 1), z_size, axis=1)
q_star = solve_model_time_iter(ifp, q_init)
```

Error at iteration 25 is 0.011629589188247191.
Error at iteration 50 is 0.0003857183099467143.

Converged in 60 iterations.

Here's a plot of the resulting policy for each exogeneous state \( z \).

```python
fig, ax = plt.subplots()
for z in range(z_size):
```

(continues on next page)
The following exercises walk you through several applications where policy functions are computed.

### 47.4.1 A Sanity Check

One way to check our results is to

- set labor income to zero in each state and
- set the gross interest rate $R$ to unity.

In this case, our income fluctuation problem is just a cake eating problem.

We know that, in this case, the value function and optimal consumption policy are given by

```python
def c_star(x, β, γ):
 return (1 - β ** (1/γ)) * x

def v_star(x, β, γ):
 return (1 - β**(1 / γ))**(-γ) * (x**(1-γ) / (1-γ))
```

Let’s see if we match up:

```python
ifp_cake_eating = IFP(r=0.0, y=(0.0, 0.0))
σ_star = solve_model_time_iter(ifp_cake_eating, σ_init)
```
fig, ax = plt.subplots()
ax.plot(a_grid, c_star[:, 0], label='numerical')
ax.plot(a_grid, c_star(a_grid, ifp.β, ifp.γ), '--', label='analytical')

ax.set(xlabel='assets', ylabel='consumption')
ax.legend()
plt.show()

Error at iteration 25 is 0.023332272630545603.
Error at iteration 50 is 0.005301238424249788.
Error at iteration 75 is 0.0019706324625650695.
Error at iteration 100 is 0.0008675521337955794.
Error at iteration 125 is 0.00041073542212249903.
Error at iteration 150 is 0.00020120334010509389.
Error at iteration 175 is 0.00010021430795081887.

Converged in 176 iterations.

Success!

47.5 Exercises

Exercise 47.5.1

Let’s consider how the interest rate affects consumption.

Reproduce the following figure, which shows (approximately) optimal consumption policies for different interest rates

- Other than \( r \), all parameters are at their default values.
- \( r \) steps through np.linspace(0, 0.04, 4).
- Consumption is plotted against assets for income shock fixed at the smallest value.
The figure shows that higher interest rates boost savings and hence suppress consumption.

**Solution to Exercise 47.5.1**

Here’s one solution:

```python
r_vals = np.linspace(0, 0.04, 4)
fig, ax = plt.subplots()
for r_val in r_vals:
 ifp = IFP(r=r_val)
 o_star = solve_model_time_iter(ifp, o_init, verbose=False)
 ax.plot(ifp.asset_grid, o_star[:, 0], label=f'$r = {r_val:.3f}$')
ax.set(xlabel='asset level', ylabel='consumption (low income)')
ax.legend()
plt.show()
```
Exercise 47.5.2

Now let's consider the long run asset levels held by households under the default parameters.

The following figure is a 45 degree diagram showing the law of motion for assets when consumption is optimal.

```python
ifp = IFP()

σ_star = solve_model_time_iter(ifp, σ_init, verbose=False)
a = ifp.asset_grid
R, y = ifp.R, ifp.y

fig, ax = plt.subplots()
for z, lb in zip((0, 1), ('low income', 'high income')):
 ax.plot(a, R * (a - σ_star[:, z]) + y[z], label=lb)

ax.plot(a, a, 'k--')
ax.set(xlabel='current assets', ylabel='next period assets')

ax.legend()
plt.show()
```
The unbroken lines show the update function for assets at each $z$, which is

$$a \mapsto R(a - \sigma^*(a, z)) + y(z)$$

The dashed line is the 45 degree line.

We can see from the figure that the dynamics will be stable — assets do not diverge even in the highest state.

In fact there is a unique stationary distribution of assets that we can calculate by simulation

- Can be proved via theorem 2 of [HP92].
- It represents the long run dispersion of assets across households when households have idiosyncratic shocks.

Ergodicity is valid here, so stationary probabilities can be calculated by averaging over a single long time series.

Hence to approximate the stationary distribution we can simulate a long time series for assets and histogram it.

Your task is to generate such a histogram.

- Use a single time series $\{a_t\}$ of length 500,000.
- Given the length of this time series, the initial condition $(a_0, z_0)$ will not matter.
- You might find it helpful to use the MarkovChain class from quantecon.

**Solution to Exercise 47.5.2**

First we write a function to compute a long asset series.

```python
def compute_asset_series(ifp, T=500_000, seed=1234):

 # Simulates a time series of length T for assets, given optimal savings behavior.

 P, y, R = ifp.P, ifp.y, ifp.R # Simplify names
```

(continues on next page)
# Solve for the optimal policy
σ_star = solve_model_time_iter(ifp, q_init, verbose=False)
σ = lambda a, z: interp(ifp.asset_grid, σ_star[:, z], a)

# Simulate the exogeneous state process
mc = MarkovChain(P)
z_seq = mc.simulate(T, random_state=seed)

# Simulate the asset path
a = np.zeros(T+1)
for t in range(T):
    z = z_seq[t]
    a[t+1] = R * (a[t] - σ(a[t], z)) + y[z]
return a

Now we call the function, generate the series and then histogram it:

ifp = IFP()
a = compute_asset_series(ifp)

fig, ax = plt.subplots()
ax.hist(a, bins=20, alpha=0.5, density=True)
ax.set(xlabel='assets')
plt.show()

The shape of the asset distribution is unrealistic.
Here it is left skewed when in reality it has a long right tail.
In a subsequent lecture we will rectify this by adding more realistic features to the model.

Exercise 47.5.3
Following on from exercises 1 and 2, let’s look at how savings and aggregate asset holdings vary with the interest rate
Note: [LS18] section 18.6 can be consulted for more background on the topic treated in this exercise.

For a given parameterization of the model, the mean of the stationary distribution of assets can be interpreted as aggregate capital in an economy with a unit mass of \textit{ex-ante} identical households facing idiosyncratic shocks.

Your task is to investigate how this measure of aggregate capital varies with the interest rate.

Following tradition, put the price (i.e., interest rate) on the vertical axis.

On the horizontal axis put aggregate capital, computed as the mean of the stationary distribution given the interest rate.

Solution to Exercise 47.5.3

Here’s one solution

```python
M = 25
r_vals = np.linspace(0, 0.02, M)
fig, ax = plt.subplots()

asset_mean = []
for r in r_vals:
 print(f'Solving model at r = {r}')
 ifp = IFP(r)
 mean = np.mean(compute_asset_series(ifp, T=250_000))
 asset_mean.append(mean)
ax.plot(asset_mean, r_vals)
ax.set(xlabel='capital', ylabel='interest rate')
plt.show()
```

Solving model at r = 0.0

Solving model at r = 0.0008333333333333334

Solving model at r = 0.0016666666666666668

Solving model at r = 0.0025

Solving model at r = 0.003333333333333335

Solving model at r = 0.004166666666666667

Solving model at r = 0.005

Solving model at r = 0.005833333333333334

Solving model at r = 0.006666666666666667
Solving model at $r = 0.007500000000000001$
Solving model at $r = 0.008333333333333333$
Solving model at $r = 0.009166666666666667$
Solving model at $r = 0.01$
Solving model at $r = 0.010833333333333334$
Solving model at $r = 0.011666666666666667$
Solving model at $r = 0.0125$
Solving model at $r = 0.013333333333333334$
Solving model at $r = 0.014166666666666668$
Solving model at $r = 0.015000000000000001$
Solving model at $r = 0.015833333333333335$
Solving model at $r = 0.016666666666666666$
Solving model at $r = 0.0175$
Solving model at $r = 0.018333333333333333$
Solving model at $r = 0.019166666666666667$
Solving model at $r = 0.02$
As expected, aggregate savings increases with the interest rate.
48.1 Overview

In this lecture, we continue our study of the income fluctuation problem. While the interest rate was previously taken to be fixed, we now allow returns on assets to be state-dependent. This matches the fact that most households with a positive level of assets face some capital income risk. It has been argued that modeling capital income risk is essential for understanding the joint distribution of income and wealth (see, e.g., [BBZ15] or [ST19b]). Theoretical properties of the household savings model presented here are analyzed in detail in [MST20].

In terms of computation, we use a combination of time iteration and the endogenous grid method to solve the model quickly and accurately.

We require the following imports:

```python
set default figure size
plt.rcParams["figure.figsize"] = (11, 5)
import numpy as np
```
48.2 The Savings Problem

In this section we review the household problem and optimality results.

48.2.1 Set Up

A household chooses a consumption-asset path \((c_t, a_t)\) to maximize

\[
\mathbb{E} \left\{ \sum_{t=0}^{\infty} \beta^t u(c_t) \right\}
\]

subject to

\[
a_{t+1} = R_{t+1}(a_t - c_t) + Y_{t+1} \quad \text{and} \quad 0 \leq c_t \leq a_t,
\]

with initial condition \((a_0, Z_0) = (a, z)\) treated as given.

Note that \(\{R_t\}_{t \geq 1}\), the gross rate of return on wealth, is allowed to be stochastic.

The sequence \(\{Y_t\}_{t \geq 1}\) is non-financial income.

The stochastic components of the problem obey

\[
R_t = R(Z_t, \zeta_t) \quad \text{and} \quad Y_t = Y(Z_t, \eta_t),
\]

where

- the maps \(R\) and \(Y\) are time-invariant nonnegative functions,
- the innovation processes \(\{\zeta_t\}\) and \(\{\eta_t\}\) are IID and independent of each other, and
- \(\{Z_t\}_{t \geq 0}\) is an irreducible time-homogeneous Markov chain on a finite set \(Z\).

Let \(P\) represent the Markov matrix for the chain \(\{Z_t\}_{t \geq 0}\).

Our assumptions on preferences are the same as our previous lecture on the income fluctuation problem.

As before, \(\mathbb{E}_z \tilde{X}\) means expectation of next period value \(\tilde{X}\) given current value \(Z = z\).

48.2.2 Assumptions

We need restrictions to ensure that the objective (48.1) is finite and the solution methods described below converge.

We also need to ensure that the present discounted value of wealth does not grow too quickly.

When \(\{R_t\}\) was constant we required that \(\beta R < 1\).
Now it is stochastic, we require that
\[
\beta G_R < 1, \quad \text{where} \quad G_R := \lim_{n \to \infty} \left( \mathbb{E} \prod_{t=1}^{n} R_t \right)^{1/n} \tag{48.4}
\]
Notice that, when \( \{ R_t \} \) takes some constant value \( R \), this reduces to the previous restriction \( \beta R < 1 \).
The value \( G_R \) can be thought of as the long run (geometric) average gross rate of return.
More intuition behind (48.4) is provided in [MST20].
Discussion on how to check it is given below.
Finally, we impose some routine technical restrictions on non-financial income.
\[ \mathbb{E} Y_t < \infty \text{ and } \mathbb{E} u'(Y_t) < \infty \]
One relatively simple setting where all these restrictions are satisfied is the IID and CRRA environment of [BBZ15].

### 48.2.3 Optimality

Let the class of candidate consumption policies \( \mathcal{C} \) be defined as before.
In [MST20] it is shown that, under the stated assumptions,
- any \( \sigma \in \mathcal{C} \) satisfying the Euler equation is an optimal policy and
- exactly one such policy exists in \( \mathcal{C} \).

In the present setting, the Euler equation takes the form
\[
(u' \circ \sigma)(a, z) = \max \left\{ \beta \mathbb{E}_z [R(u' \circ \sigma)(\hat{R}(a - \sigma(a, z)) + \hat{Y}, \hat{Z}), u'(a)] \right\} \tag{48.5}
\]
(Intuition and derivation are similar to our earlier lecture on the income fluctuation problem.)
We again solve the Euler equation using time iteration, iterating with a Coleman–Reffett operator \( K \) defined to match the Euler equation (48.5).

### 48.3 Solution Algorithm

#### 48.3.1 A Time Iteration Operator

Our definition of the candidate class \( \sigma \in \mathcal{C} \) of consumption policies is the same as in our earlier lecture on the income fluctuation problem.
For fixed \( \sigma \in \mathcal{C} \) and \( (a, z) \in \mathcal{S} \), the value \( K \sigma(a, z) \) of the function \( K \sigma \) at \( (a, z) \) is defined as the \( \xi \in (0, a] \) that solves
\[
u'(\xi) = \max \left\{ \beta \mathbb{E}_z [R(u' \circ \sigma)(\hat{R}(a - \xi) + \hat{Y}, \hat{Z}), u'(a)] \right\} \tag{48.6}
\]
The idea behind \( K \) is that, as can be seen from the definitions, \( \sigma \in \mathcal{C} \) satisfies the Euler equation if and only if \( K \sigma(a, z) = \sigma(a, z) \) for all \( (a, z) \in \mathcal{S} \).
This means that fixed points of \( K \) in \( \mathcal{C} \) and optimal consumption policies exactly coincide (see [MST20] for more details).
48.3.2 Convergence Properties

As before, we pair $\mathcal{C}$ with the distance

$$
\rho(c, d) := \sup_{(a, z) \in \mathcal{S}} |(u' \circ c)(a, z) - (u' \circ d)(a, z)|,
$$

It can be shown that

1. $(\mathcal{C}, \rho)$ is a complete metric space,
2. there exists an integer $n$ such that $K^n$ is a contraction mapping on $(\mathcal{C}, \rho)$, and
3. The unique fixed point of $K$ in $\mathcal{C}$ is the unique optimal policy in $\mathcal{C}$.

We now have a clear path to successfully approximating the optimal policy: choose some $\sigma \in \mathcal{C}$ and then iterate with $K$ until convergence (as measured by the distance $\rho$).

48.3.3 Using an Endogenous Grid

In the study of that model we found that it was possible to further accelerate time iteration via the endogenous grid method.

We will use the same method here.

The methodology is the same as it was for the optimal growth model, with the minor exception that we need to remember that consumption is not always interior.

In particular, optimal consumption can be equal to assets when the level of assets is low.

Finding Optimal Consumption

The endogenous grid method (EGM) calls for us to take a grid of savings values $s_i$, where each such $s$ is interpreted as $s = a - c$.

For the lowest grid point we take $s_0 = 0$.

For the corresponding $a_0, c_0$ pair we have $a_0 = c_0$.

This happens close to the origin, where assets are low and the household consumes all that it can.

Although there are many solutions, the one we take is $a_0 = c_0 = 0$, which pins down the policy at the origin, aiding interpolation.

For $s > 0$, we have, by definition, $c < a$, and hence consumption is interior.

Hence the max component of (48.5) drops out, and we solve for

$$
c_i = (u')^{-1} \left\{ \beta E_z \tilde{R}(u' \circ \sigma) [\tilde{R}s_i + \tilde{Y}, \tilde{Z}] \right\}
$$

at each $s_i$. 

794 Chapter 48. The Income Fluctuation Problem II: Stochastic Returns on Assets
Iterating

Once we have the pairs \( \{ s_i, c_i \} \), the endogenous asset grid is obtained by \( a_i = c_i + s_i \).

Also, we held \( z \in \mathbb{Z} \) in the discussion above so we can pair it with \( a_i \).

An approximation of the policy \( (a, z) \mapsto \sigma(a, z) \) can be obtained by interpolating \( \{a_i, c_i\} \) at each \( z \).

In what follows, we use linear interpolation.

**48.3.4 Testing the Assumptions**

Convergence of time iteration is dependent on the condition \( \beta G_R < 1 \) being satisfied.

One can check this using the fact that \( G_R \) is equal to the spectral radius of the matrix \( L \) defined by

\[
L(z, \tilde{z}) := P(z, \tilde{z}) \int R(\tilde{z}, x) \phi(x) dx
\]

This identity is proved in [MST20], where \( \phi \) is the density of the innovation \( \zeta_t \) to returns on assets.

(Remember that \( \mathbb{Z} \) is a finite set, so this expression defines a matrix.)

Checking the condition is even easier when \( \{R_t\} \) is IID.

In that case, it is clear from the definition of \( G_R \) that \( G_R \) is just \( \mathbb{E}R_t \).

We test the condition \( \beta \mathbb{E}R_t < 1 \) in the code below.

**48.4 Implementation**

We will assume that \( R_t = \exp(a_r \zeta_t + b_r) \) where \( a_r, b_r \) are constants and \( \{\zeta_t\} \) is IID standard normal.

We allow labor income to be correlated, with

\[
Y_t = \exp(a_y \eta_t + Z_t b_y)
\]

where \( \{\eta_t\} \) is also IID standard normal and \( \{Z_t\} \) is a Markov chain taking values in \( \{0, 1\} \).

```python
ifp_data = [
 ('y', float64), # utility parameter
 ('beta', float64), # discount factor
 ('P', float64[:,:,:]), # transition probs for z_t
 ('a_r', float64), # scale parameter for R_t
 ('b_r', float64), # additive parameter for R_t
 ('a_y', float64), # scale parameter for Y_t
 ('b_y', float64), # additive parameter for Y_t
 ('s_grid', float64[:]), # Grid over savings
 ('eta_draws', float64[:]), # Draws of innovation \eta for MC
 ('zeta_draws', float64[:]) # Draws of innovation \zeta for MC
]

@jitclass(ifp_data)
class IFP:
 """
 A class that stores primitives for the income fluctuation
 """
```

(continues on next page)
Quantitative Economics with Python

Here’s the Coleman-Reffett operator based on EGM:

```python
@njit
def K(a_in, σ_in, ifp):

 The Coleman–Reffett operator for the income fluctuation problem, using the endogenous grid method.

 * ifp is an instance of IFP
 * a_in[i, z] is an asset grid
 * σ_in[i, z] is consumption at a_in[i, z]

 return np.exp(a_in * ifp.a_y + z * ifp.b_y)
```

(continues on next page)
# Simplify names
u_prime, u_prime_inv = ifp.u_prime, ifp.u_prime_inv
s_grid, η_draws, ζ_draws = ifp.s_grid, ifp.η_draws, ifp.ζ_draws
n = len(P)

# Create consumption function by linear interpolation
σ = lambda a, z: interp(a_in[:, z], σ_in[:, z], a)

# Allocate memory
σ_out = np.empty_like(σ_in)

# Obtain c_i at each s_i, z, store in σ_out[i, z], computing
# the expectation term by Monte Carlo
for i, s in enumerate(s_grid):
    for z in range(n):
        # Compute expectation
        Ez = 0.0
        for z_hat in range(n):
            for η in ifp.η_draws:
                for ζ in ifp.ζ_draws:
                    R_hat = R(z_hat, ζ)
                    Y_hat = Y(z_hat, η)
                    U = u_prime(σ(R_hat * s + Y_hat, z_hat))
                    Ez += R_hat * U * P[z, z_hat]
        Ez = Ez / (len(η_draws) * len(ζ_draws))
        σ_out[i, z] = u_prime_inv(β * Ez)

# Calculate endogenous asset grid
a_out = np.empty_like(σ_out)
for z in range(n):
    a_out[:, z] = s_grid + σ_out[:, z]

# Fixing a consumption-asset pair at (0, 0) improves interpolation
σ_out[0, :] = 0
a_out[0, :] = 0

return a_out, σ_out

The next function solves for an approximation of the optimal consumption policy via time iteration.

def solve_model_time_iter(model, # Class with model information
                          a_vec, # Initial condition for assets
                          σ_vec, # Initial condition for consumption
tol=1e-4,
max_iter=1000,
verbose=True,
print_skip=25):

    # Set up loop
    i = 0
    error = tol + 1

    while i < max_iter and error > tol:
        a_new, σ_new = K(a_vec, σ_vec, model)
Now we are ready to create an instance at the default parameters.

```python
ifp = IFP()
```

Next we set up an initial condition, which corresponds to consuming all assets.

```python
Initial guess of σ = consume all assets
k = len(ifp.s_grid)
n = len(ifp.P)
σ_init = np.empty((k, n))
for z in range(n):
 σ_init[:, z] = ifp.s_grid
a_init = np.copy(σ_init)
```

Let's generate an approximation solution.

```python
a_star, σ_star = solve_model_time_iter(ifp, a_init, σ_init, print_skip=5)
```

Error at iteration 5 is 0.5081944529506557.

Error at iteration 10 is 0.1057246950930697.

Error at iteration 15 is 0.03658262202883744.

Error at iteration 20 is 0.013936729965906114.

Error at iteration 25 is 0.005292165269711546.

Error at iteration 30 is 0.0019748126990770665.

Error at iteration 35 is 0.0007219210463285108.

Error at iteration 40 is 0.0002590544496094971.
Error at iteration 45 is 9.16396595426842e-05.
Converged in 45 iterations.

Here’s a plot of the resulting consumption policy.

```
fig, ax = plt.subplots()
for z in range(len(ifp.P)):
 ax.plot(a_star[:, z], o_star[:, z], label=f"consumption when $z={z}$")
plt.legend()
plt.show()
```

Notice that we consume all assets in the lower range of the asset space.
This is because we anticipate income $Y_{t+1}$ tomorrow, which makes the need to save less urgent.
Can you explain why consuming all assets ends earlier (for lower values of assets) when $z = 0$?

### 48.4.1 Law of Motion

Let’s try to get some idea of what will happen to assets over the long run under this consumption policy.
As with our earlier lecture on the income fluctuation problem, we begin by producing a 45 degree diagram showing the law of motion for assets.

```
Good and bad state mean labor income
Y_mean = [np.mean(ifp.Y(z, ifp.η_draws)) for z in (0, 1)]
Mean returns
R_mean = np.mean(ifp.R(z, ifp.ζ_draws))

a = a_star
fig, ax = plt.subplots()
for z, lb in zip((0, 1), ('bad state', 'good state')):
 ax.plot(a[:, z], R_mean * (a[:, z] - o_star[:, z]) + Y_mean[z], label=lb)
```

(continues on next page)
The unbroken lines represent, for each $z$, an average update function for assets, given by

$$ a \mapsto \bar{R}(a - \sigma^*(a, z)) + \bar{Y}(z) $$

Here

- $\bar{R} = \mathbb{E}R_t$, which is mean returns and
- $\bar{Y}(z) = \mathbb{E}_z Y(z, \eta_t)$, which is mean labor income in state $z$.

The dashed line is the 45 degree line.

We can see from the figure that the dynamics will be stable — assets do not diverge even in the highest state.

### 48.5 Exercises

**Exercise 48.5.1**

Let’s repeat our earlier exercise on the long-run cross sectional distribution of assets.

In that exercise, we used a relatively simple income fluctuation model.

In the solution, we found the shape of the asset distribution to be unrealistic.

In particular, we failed to match the long right tail of the wealth distribution.

Your task is to try again, repeating the exercise, but now with our more sophisticated model.

Use the default parameters.
Solution to Exercise 48.5.1

First we write a function to compute a long asset series.

Because we want to JIT-compile the function, we code the solution in a way that breaks some rules on good programming style.

For example, we will pass in the solutions \( a_{\text{star}}, \sigma_{\text{star}} \) along with \( \text{ifp} \), even though it would be more natural to just pass in \( \text{ifp} \) and then solve inside the function.

The reason we do this is that \( \text{solve_model_time_iter} \) is not JIT-compiled.

```python
@njit
def compute_asset_series(ifp, a_star, σ_star, z_seq, T=500_000):

 """
 Simulates a time series of length T for assets, given optimal savings behavior.

 * ifp is an instance of IFP
 * a_star is the endogenous grid solution
 * σ_star is optimal consumption on the grid
 * z_seq is a time path for \(\{Z_t\} \)
 """

 # Create consumption function by linear interpolation
 σ = lambda a, z: interp(a_star[:, z], σ_star[:, z], a)

 # Simulate the asset path
 a = np.zeros(T+1)
 for t in range(T):
 z = z_seq[t]
 ζ, η = np.random.randn(), np.random.randn()
 R = ifp.R(z, ζ)
 Y = ifp.Y(z, η)
 a[t+1] = R * (a[t] - σ(a[t], z)) + Y
 return a
```

Now we call the function, generate the series and then histogram it, using the solutions computed above.

```python
T = 1_000_000
mc = MarkovChain(ifp.P)
z_seq = mc.simulate(T, random_state=1234)

a = compute_asset_series(ifp, a_star, σ_star, z_seq, T=T)

fig, ax = plt.subplots()
ax.hist(a, bins=40, alpha=0.5, density=True)
ax.set(xlabel='assets')
plt.show()
```
Now we have managed to successfully replicate the long right tail of the wealth distribution. Here’s another view of this using a horizontal violin plot.

```python
fig, ax = plt.subplots()
ax.violinplot(a, vert=False, showmedians=True)
ax.set(xlabel='assets')
plt.show()
```
Part VII

Bayes Law
This lecture is a sequel to the QuantEcon lecture [https://python.quantecon.org/prob_meaning.html](https://python.quantecon.org/prob_meaning.html)

That lecture offers a Bayesian interpretation of probability in a setting in which the likelihood function and the prior distribution over parameters just happened to form a **conjugate** pair in which

- application of Bayes' Law produces a posterior distribution that has the same functional form as the prior

Having a likelihood and prior that are conjugate can simplify calculation of a posterior, facilitating analytical or nearly analytical calculations.

But in many situations the likelihood and prior need not form a conjugate pair.

- after all, a person’s prior is his or her own business and would take a form conjugate to a likelihood only by remote coincidence

In these situations, computing a posterior can become very challenging.

In this lecture, we illustrate how modern Bayesians confront non-conjugate priors by using Monte Carlo techniques that involve

- first cleverly forming a Markov chain whose invariant distribution is the posterior distribution we want
- simulating the Markov chain until it has converged and then sampling from the invariant distribution to approximate the posterior

We shall illustrate the approach by deploying two powerful Python modules that implement this approach as well as another closely related one to be described below.

The two Python modules are

- numpyro
- pymc4

As usual, we begin by importing some Python code.

```python
install dependencies
!pip install numpyro pyro-ppl torch jax

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import binom
import torch

jax
```

(continues on next page)
49.1 Unleashing MCMC on a Binomial Likelihood

This lecture begins with the binomial example in the QuantEcon lecture https://python.quantecon.org/prob_meaning.html. That lecture computed a posterior

- analytically via choosing the conjugate priors,

This lecture instead computes posteriors

- numerically by sampling from the posterior distribution through MCMC methods, and

- using a variational inference (VI) approximation.

We use both the packages `pyro` and `numpyro` with assistance from `jax` to approximate a posterior distribution. We use several alternative prior distributions.

We compare computed posteriors with ones associated with a conjugate prior as described in QuantEcon lecture https://python.quantecon.org/prob_meaning.html.

49.1.1 Analytical Posterior

Assume that the random variable $X \sim Binom(n, \theta)$. This defines a likelihood function

$$L(Y|\theta) = \text{Prob}(X = k|\theta) = \binom{n!}{k!(n-k)!} \theta^k (1-\theta)^{n-k}$$

where $Y = k$ is an observed data point.

We view $\theta$ as a random variable for which we assign a prior distribution having density $f(\theta)$.
We will try alternative priors later, but for now, suppose the prior is distributed as \( \theta \sim \text{Beta}(\alpha, \beta) \), i.e.,

\[
f(\theta) = \text{Prob}(\theta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
\]

We choose this as our prior for now because we know that a conjugate prior for the binomial likelihood function is a beta distribution.

After observing \( k \) successes among \( N \) sample observations, the posterior probability distribution of \( \theta \) is

\[
\text{Prob}(\theta|k) = \frac{\text{Prob}(\theta,k)}{\text{Prob}(k)} = \frac{\text{Prob}(k|\theta)\text{Prob}(\theta)}{\text{Prob}(k)} = \frac{\int_0^1 \text{Prob}(k|\theta)\text{Prob}(\theta)d\theta}{\int_0^1 (N\theta)^{k+N-k-1}\theta^{\alpha+k-1}d\theta}
\]

Thus,

\[
\text{Prob}(\theta|k) \sim \text{Beta}(\alpha + k, \beta + N - k)
\]

The analytical posterior for a given conjugate beta prior is coded in the following Python code.

```python
def simulate_draw(theta, n):
 """
 Draws a Bernoulli sample of size n with probability P(Y=1) = theta
 """
 rand_draw = np.random.rand(n)
 draw = (rand_draw < theta).astype(int)
 return draw

def analytical_beta_posterior(data, alpha0, beta0):
 """
 Computes analytically the posterior distribution with beta prior parametrized by
 \(\sim (alpha, beta) \) given # num observations
 Parameters

 num : int.
 the number of observations after which we calculate the posterior
 alpha0, beta0 : float.
 the parameters for the beta distribution as a prior
 Returns

 The posterior beta distribution
 """
 num = len(data)
 up_num = data.sum()
 down_num = num - up_num
 return st.beta(alpha0 + up_num, beta0 + down_num)
```
49.1.2 Two Ways to Approximate Posteriors

Suppose that we don’t have a conjugate prior.

Then we can’t compute posteriors analytically.

Instead, we use computational tools to approximate the posterior distribution for a set of alternative prior distributions using both Pyro and Numpyro packages in Python.

We first use the Markov Chain Monte Carlo (MCMC) algorithm.

We implement the NUTS sampler to sample from the posterior.

In that way we construct a sampling distribution that approximates the posterior.

After doing that we deploy another procedure called Variational Inference (VI).

In particular, we implement Stochastic Variational Inference (SVI) machinery in both Pyro and Numpyro.

The MCMC algorithm supposedly generates a more accurate approximation since in principle it directly samples from the posterior distribution.

But it can be computationally expensive, especially when dimension is large.

A VI approach can be cheaper, but it is likely to produce an inferior approximation to the posterior, for the simple reason that it requires guessing a parametric guide functional form that we use to approximate a posterior.

This guide function is likely at best to be an imperfect approximation.

By paying the cost of restricting the putative posterior to have a restricted functional form, the problem of approximating a posteriors is transformed to a well-posed optimization problem that seeks parameters of the putative posterior that minimize a Kullback-Leibler (KL) divergence between true posterior and the putative posterior distribution.

- minimizing the KL divergence is equivalent with maximizing a criterion called the Evidence Lower Bound (ELBO), as we shall verify soon.

49.2 Prior Distributions

In order to be able to apply MCMC sampling or VI, Pyro and Numpyro require that a prior distribution satisfy special properties:

- we must be able sample from it;
- we must be able to compute the log pdf pointwise;
- the pdf must be differentiable with respect to the parameters.

We’ll want to define a distribution class.

We will use the following priors:

- a uniform distribution on \([\theta, \theta]\), where \(0 \leq \theta < \theta \leq 1\).
- a truncated log-normal distribution with support on \([0, 1]\) with parameters \((\mu, \sigma)\).
  - To implement this, let \(Z \sim \text{Normal}(\mu, \sigma)\) and \(\tilde{Z}\) be truncated normal with support \([\log(0), \log(1)]\), then \(\exp(Z)\) has a log normal distribution with bounded support \([0, 1]\). This can be easily coded since Numpyro has a built-in truncated normal distribution, and Torch provides a TransformedDistribution class that includes an exponential transformation.
  - Alternatively, we can use a rejection sampling strategy by assigning the probability rate to 0 outside the bounds and rescaling accepted samples, i.e., realizations that are within the bounds, by the total probability computed...
via CDF of the original distribution. This can be implemented by defining a truncated distribution class with pyro's dist.Rejector class.

- We implement both methods in the below section and verify that they produce the same result.

- a shifted von Mises distribution that has support confined to \([0, 1]\) with parameter \((\mu, \kappa)\).
  
  - Let \(X \sim \text{vonMises}(0, \kappa)\). We know that \(X\) has bounded support \([-\pi, \pi]\). We can define a shifted von Mises random variable \(\tilde{X} = a + bX\) where \(a = 0.5, b = 1/(2\pi)\) so that \(\tilde{X}\) is supported on \([0, 1]\).

    - This can be implemented using Torch's TransformedDistribution class with its AffineTransform method.

    - If instead, we want the prior to be von-Mises distributed with center \(\mu = 0.5\), we can choose a high concentration level \(\kappa\) so that most mass is located between 0 and 1. Then we can truncate the distribution using the above strategy. This can be implemented using pyro's dist.Rejector class. We choose \(\kappa > 40\) in this case.

- a truncated Laplace distribution.

  - We also considered a truncated Laplace distribution because its density comes in a piece-wise non-smooth form and has a distinctive spiked shape.

  - The truncated Laplace can be created using Numpyro's TruncatedDistribution class.

```python
used by Numpyro
def TruncatedLogNormal_trans(loc, scale):

 # Obtains the truncated log normal distribution using numpyro's TruncatedNormal and
 # ExpTransform
 base_dist = ndist.TruncatedNormal(low=jnp.log(0), high=jnp.log(1), loc=loc,
 # scale=scale)
 return ndist.TransformedDistribution(
 base_dist, ndist.transforms.ExponentialTransform()
)

def ShiftedVonMises(kappa):

 # Obtains the shifted von Mises distribution using AffineTransform
 base_dist = ndist.VonMises(0, kappa)
 return ndist.TransformedDistribution(
 base_dist, ndist.transforms.AffineTransform(loc=0.5, scale=1/(2*jnp.pi))
)

def TruncatedLaplace(loc, scale):

 # Obtains the truncated Laplace distribution on \([0,1]\)
 base_dist = ndist.Laplace(loc, scale)
 return ndist.TruncatedDistribution(
 base_dist, low=0.0, high=1.0
)

used by Pyro
class TruncatedLogNormal(dist.Rejector):

 # Define a TruncatedLogNormal distribution through rejection sampling in Pyro
```

(continues on next page)
def __init__(self, loc, scale_0, upp=1):
    self.upp = upp
    propose = dist.LogNormal(loc, scale_0)

    def log_prob_accept(x):
        return (x < upp).type_as(x).log()

    log_scale = dist.LogNormal(loc, scale_0).cdf(torch.as_tensor(upp)).log()
    super(TruncatedLogNormal, self).__init__(propose, log_prob_accept, log_scale)

@constraints.dependent_property
def support(self):
    return constraints.interval(0, self.upp)

class TruncatedvonMises(dist.Rejector):
    
    # Define a TruncatedvonMises distribution through rejection sampling in Pyro
    
    def __init__(self, kappa, mu=0.5, low=0.0, upp=1.0):
        self.low, self.upp = low, upp
        propose = dist.VonMises(mu, kappa)

        def log_prob_accept(x):
            return ((x > low) & (x < upp)).type_as(x).log()

        log_scale = torch.log(
            torch.tensor(
                st.vonmises(kappa=kappa, loc=mu).cdf(upp) - st.vonmises(kappa=kappa, loc=mu).cdf(low)
            )
        )
        super(TruncatedvonMises, self).__init__(propose, log_prob_accept, log_scale)

    @constraints.dependent_property
    def support(self):
        return constraints.interval(self.low, self.upp)

49.2.1 Variational Inference

Instead of directly sampling from the posterior, the variational inference method approximates an unknown posterior distribution with a family of tractable distributions/densities.

It then seeks to minimizes a measure of statistical discrepancy between the approximating and true posteriors.

Thus variational inference (VI) approximates a posterior by solving a minimization problem.

Let the latent parameter/variable that we want to infer be $\theta$.

Let the prior be $p(\theta)$ and the likelihood be $p(Y|\theta)$.

We want $p(\theta|Y)$.

Bayes’ rule implies

$$p(\theta|Y) = \frac{p(Y, \theta)}{p(Y)} = \frac{p(Y|\theta)p(\theta)}{p(Y)}$$
where

\[ p(Y) = \int d\theta p(Y | \theta) p(\theta). \]  \hspace{1cm} (49.1)

The integral on the right side of (49.1) is typically difficult to compute.

Consider a guide distribution \( q_\phi(\theta) \) parameterized by \( \phi \) that we’ll use to approximate the posterior.

We choose parameters \( \phi \) of the guide distribution to minimize a Kullback-Leibler (KL) divergence between the approximate posterior \( q_\phi(\theta) \) and the posterior:

\[ D_{KL}(q(\theta; \phi) \| p(\theta \mid Y)) \equiv - \int d\theta q(\theta; \phi) \log \frac{p(\theta \mid Y)}{q(\theta; \phi)} \]

Thus, we want a variational distribution \( q \) that solves

\[ \min_\phi D_{KL}(q(\theta; \phi) \| p(\theta \mid Y)) \]

Note that

\[ D_{KL}(q(\theta; \phi) \| p(\theta \mid Y)) = - \int d\theta q(\theta; \phi) \log \frac{P(\theta \mid Y)}{q(\theta; \phi)} \]

\[ = - \int d\theta q(\theta) \log \frac{p(\theta, Y)}{q(\theta)} \]

\[ = - \int d\theta q(\theta) \log \frac{p(\theta, Y)}{p(\theta)q(Y)} \]

\[ = - \int d\theta q(\theta) \left[ \log \frac{p(\theta, Y)}{q(\theta)} - \log p(Y) \right] \]

\[ = - \int d\theta q(\theta) \log \frac{p(\theta, Y)}{q(\theta)} + \int d\theta q(\theta) \log p(Y) \]

\[ \log p(Y) = D_{KL}(q(\theta; \phi) \| p(\theta \mid Y)) + \int d\theta q_\phi(\theta) \log \frac{p(\theta, Y)}{q_\phi(\theta)} \]

For observed data \( Y \), \( p(\theta, Y) \) is a constant, so minimizing KL divergence is equivalent to maximizing

\[ ELBO \equiv \int d\theta q_\phi(\theta) \log \frac{p(\theta, Y)}{q_\phi(\theta)} = \mathbb{E}_{q_\phi}(\theta) \left[ \log p(\theta, Y) - \log q_\phi(\theta) \right] \] \hspace{1cm} (49.2)

Formula (49.2) is called the evidence lower bound (ELBO).

A standard optimization routine can be used to search for the optimal \( \phi \) in our parametrized distribution \( q_\phi(\theta) \).

The parameterized distribution \( q_\phi(\theta) \) is called the variational distribution.

We can implement Stochastic Variational Inference (SVI) in Pyro and Numpyro using the Adam gradient descent algorithm to approximate posterior.

We use two sets of variational distributions: Beta and TruncatedNormal with support \([0, 1] \]

- Learnable parameters for the Beta distribution are (alpha, beta), both of which are positive.
- Learnable parameters for the Truncated Normal distribution are (loc, scale).

We restrict the truncated Normal parameter ‘loc’ to be in the interval \([0, 1] \).
49.3 Implementation

We have constructed a Python class `BayesianInference` that requires the following arguments to be initialized:

- **param**: a tuple/scalar of parameters dependent on distribution types
- **name_dist**: a string that specifies distribution names

The `(param, name_dist)` pair includes:

- `(‘beta’, alpha, beta)`
- `(‘uniform’, upper_bound, lower_bound)`
- `(‘lognormal’, loc, scale)`
  - Note: This is the truncated log normal.
- `(‘vonMises’, kappa)`, where kappa denotes concentration parameter, and center location is set to 0.5.
  - Note: When using Pyro, this is the truncated version of the original vonMises distribution;
  - Note: When using Numpyro, this is the shifted distribution.
- `(‘laplace’, loc, scale)`
  - Note: This is the truncated Laplace

The class `BayesianInference` has several key methods:

- **sample_prior**:  
  - This can be used to draw a single sample from the given prior distribution.
- **show_prior**:  
  - Plots the approximate prior distribution by repeatedly drawing samples and fitting a kernel density curve.
- **MCMC_sampling**:  
  - INPUT: (data, num_samples, num_warmup=1000)  
  - Take a `np.array` data and generate MCMC sampling of posterior of size `num_samples`.
- **SVI_run**:  
  - INPUT: (data, guide_dist, n_steps=10000)  
  - `guide_dist = 'normal'` - use a truncated normal distribution as the parametrized guide  
  - `guide_dist = 'beta'` - use a beta distribution as the parametrized guide  
  - RETURN: (params, losses) - the learned parameters in a `dict` and the vector of loss at each step.

```python
class BayesianInference:
 def __init__(self, param, name_dist, solver):
 ""
 Parameters

 param : tuple.
 a tuple object that contains all relevant parameters for the distribution
dist : str.
 name of the distribution - 'beta', 'uniform', 'lognormal', 'vonMises', 'tent'
solver : str.
 either pyro or numpyro
 ""
```

(continues on next page)
def sample_prior(self):
    """
    Define the prior distribution to sample from in Pyro/Numpyro models.
    """
    if self.name_dist=='beta':
        # unpack parameters
        alpha0, beta0 = self.param
        if self.solver=='pyro':
            sample = pyro.sample('theta', dist.Beta(alpha0, beta0))
        else:
            sample = numpyro.sample('theta', ndist.Beta(alpha0, beta0), rng_key=self.rng_key)
    elif self.name_dist=='uniform':
        # unpack parameters
        lb, ub = self.param
        if self.solver=='pyro':
            sample = pyro.sample('theta', dist.Uniform(lb, ub))
        else:
            sample = numpyro.sample('theta', ndist.Uniform(lb, ub), rng_key=self.rng_key)
    elif self.name_dist=='lognormal':
        # unpack parameters
        loc, scale = self.param
        if self.solver=='pyro':
            sample = pyro.sample('theta', TruncatedLogNormal(loc, scale))
        else:
            sample = numpyro.sample('theta', TruncatedLogNormal_trans(loc, scale), rng_key=self.rng_key)
    elif self.name_dist=='vonMises':
        # unpack parameters
        kappa = self.param
        if self.solver=='pyro':
            sample = pyro.sample('theta', TruncatedvonMises(kappa))
        else:
            sample = numpyro.sample('theta', ShiftedVonMises(kappa), rng_key=self.rng_key)
    elif self.name_dist=='laplace':
        # unpack parameters
        loc, scale = self.param
        if self.solver=='pyro':
            print("WARNING: Please use Numpyro for truncated Laplace.")
            sample = None
        else:
            sample = None
    else:
        raise Exception(f"Unexpected distribution: {self.name_dist}")

    return sample
```python
sample = numpyro.sample('theta', TruncatedLaplace(loc, scale), rng_
 # key=self.rng_key)
 return sample

def show_prior(self, size=1e5, bins=20, disp_plot=1):
 ""
 Visualizes prior distribution by sampling from prior and plots the...
 approximated sampling distribution
 ""
 self.bins = bins

 if self.solver=='pyro':
 with pyro.plate('show_prior', size=size):
 # to numpy
 sample = self.sample_prior()
 sample_array = sample.numpy()

 elif self.solver=='numpyro':
 with numpyro.plate('show_prior', size=size):
 sample = self.sample_prior()
 # to numpy
 sample_array = jnp.asarray(sample)

 # plot histogram and kernel density
 if disp_plot==1:
 sns.displot(sample_array, kde=True, stat='density', bins=bins, height=5,
 aspect=1.5)
 plt.xlim(0, 1)
 plt.show()
 else:
 return sample_array

def model(self, data):
 ""
 Define the probabilistic model by specifying prior, conditional likelihood,
 and data conditioning
 ""
 if not torch.is_tensor(data):
 data = torch.tensor(data)
 # set prior
 theta = self.sample_prior()

 # sample from conditional likelihood
 if self.solver=='pyro':
 output = pyro.sample('obs', dist.Binomial(len(data), theta), obs=torch.
 sum(data))
 else:
 # Note: numpyro.sample() requires obs=np.ndarray
 output = numpyro.sample('obs', ndist.Binomial(len(data), theta),
 obs=torch.sum(data).numpy())

 return output
```

(continues on next page)
def MCMC_sampling(self, data, num_samples, num_warmup=1000):
    
    Computes numerically the posterior distribution with beta prior parametrized
    by (alpha0, beta0)
    given data using MCMC
    
    # tensorize
data = torch.tensor(data)

    # use pyro
    if self.solver=='pyro':
        nuts_kernel = NUTS(self.model)
mcmc = MCMC(nuts_kernel, num_samples=num_samples, warmup_steps=num_warmup,
                   disable_progress=True)
mcmc.run(data)

    # use numpyro
    elif self.solver=='numpyro':
        nuts_kernel = nNUTS(self.model)
mcmc = nMCMC(nuts_kernel, num_samples=num_samples, num_warmup=num_warmup,
                    progress_bar=False)
mcmc.run(self.rng_key, data=data)

    # collect samples
    samples = mcmc.get_samples()['theta']
    return samples

def beta_guide(self, data):
    
    Defines the candidate parametrized variational distribution that we train to
    approximate posterior with Pyro/Numpyro
    Here we use parameterized beta
    
    if self.solver=='pyro':
        alpha_q = pyro.param('alpha_q', torch.tensor(0.5),
                              constraint=constraints.positive)
beta_q = pyro.param('beta_q', torch.tensor(0.5),
                         constraint=constraints.positive)
pyro.sample('theta', dist.Beta(alpha_q, beta_q))

    else:
        alpha_q = numpyro.param('alpha_q', 10,
                                 constraint=nconstraints.positive)
beta_q = numpyro.param('beta_q', 10,
                               constraint=nconstraints.positive)
numpyro.sample('theta', ndist.Beta(alpha_q, beta_q))

def truncnormal_guide(self, data):
    
    Defines the candidate parametrized variational distribution that we train to
    approximate posterior with Pyro/Numpyro
Quantitative Economics with Python

Here we use truncated normal on \([0,1]\)

```python
loc = numpyro.param('loc', 0.5,
 constraint=nconstraints.interval(0.0, 1.0))
scale = numpyro.param('scale', 1,
 constraint=nconstraints.positive)
numpyro.sample('theta', ndist.TruncatedNormal(loc, scale, low=0.0, high=1.0))
```

```python
def SVI_init(self, guide_dist, lr=0.0005):

 Initiate SVI training mode with Adam optimizer
 NOTE: truncnormal_guide can only be used with numpyro solver

 adam_params = {
 "lr": lr
 }

 if guide_dist=='beta':
 if self.solver=='pyro':
 optimizer = Adam(adam_params)
 svi = SVI(self.model, self.beta_guide, optimizer, loss=Trace_ELBO())

 elif self.solver=='numpyro':
 optimizer = nAdam(step_size=lr)
 svi = nSVI(self.model, self.beta_guide, optimizer, loss=nTrace_ELBO())

 elif guide_dist=='normal':
 # only allow numpyro
 if self.solver=='pyro':
 print("WARNING: Please use Numpyro with TruncatedNormal guide")
 svi = None

 elif self.solver=='numpyro':
 optimizer = nAdam(step_size=lr)
 svi = nSVI(self.model, self.truncnormal_guide, optimizer, loss=nTrace_ELBO())

 else:
 print("WARNING: Please input either 'beta' or 'normal'")
 svi = None

 return svi

def SVI_run(self, data, guide_dist, n_steps=10000):

 Runs SVI and returns optimized parameters and losses

 Returns

 params : the learned parameters for guide
 losses : a vector of loss at each step

 # tensorize data
 if not torch.is_tensor(data):
 data = torch.tensor(data)

 # initiate SVI
 svi = self.SVI_init(guide_dist=guide_dist)
```

(continued on next page)
# do gradient steps

```python
if self.solver=='pyro':
 # store loss vector
 losses = np.zeros(n_steps)
 for step in range(n_steps):
 losses[step] = svi.step(data)

 # pyro only supports beta VI distribution
 params = {
 'alpha_q': pyro.param('alpha_q').item(),
 'beta_q': pyro.param('beta_q').item()
 }

elif self.solver=='numpyro':
 result = svi.run(self.rng_key, n_steps, data, progress_bar=False)
 params = dict(
 (key, np.asarray(value)) for key, value in result.params.items()
)
 losses = np.asarray(result.losses)

return params, losses
```

## 49.4 Alternative Prior Distributions

Let’s see how well our sampling algorithm does in approximating

- a log normal distribution
- a uniform distribution

To examine our alternative prior distributions, we’ll plot approximate prior distributions below by calling the `show_prior` method.

We verify that the rejection sampling strategy under *Pyro* produces the same log normal distribution as the truncated normal transformation under *Numpyro*.

```python
truncated log normal
exampleLN = BayesianInference(param=(0,2), name_dist='lognormal', solver='numpyro')
exampleLN.show_prior(size=100000, bins=20)

truncated uniform
exampleUN = BayesianInference(param=(0.1,0.8), name_dist='uniform', solver='numpyro')
exampleUN.show_prior(size=100000, bins=20)
```
The above graphs show that sampling seems to work well with both distributions.

Now let's see how well things work with a couple of von Mises distributions.
# shifted von Mises
exampleVM = BayesianInference(param=10, name_dist='vonMises', solver='numpyro')
exampleVM.show_prior(size=100000, bins=20)

# truncated von Mises
exampleVM_trunc = BayesianInference(param=20, name_dist='vonMises', solver='pyro')
exampleVM_trunc.show_prior(size=100000, bins=20)
These graphs look good too.

Now let’s try with a Laplace distribution.

```python
truncated Laplace
eampleLP = BayesianInference(param=(0.5, 0.05), name_dist='laplace', solver='numpyro')
eampleLP.show_prior(size=100000, bins=40)
```
Having assured ourselves that our sampler seems to do a good job, let's put it to work in using MCMC to compute posterior probabilities.

### 49.5 Posteriors Via MCMC and VI

We construct a class `BayesianInferencePlot` to implement MCMC or VI algorithms and plot multiple posteriors for different updating data sizes and different possible priors.

This class takes as inputs the true data generating parameter 'theta', a list of updating data sizes for multiple posterior plotting, and a defined and parametrized `BayesianInference` class.

It has two key methods:

- `BayesianInferencePlot.MCMC_plot()` takes wanted MCMC sample size as input and plot the output posteriors together with the prior defined in `BayesianInference` class.

- `BayesianInferencePlot.SVI_plot()` takes wanted VI distribution class ('beta' or 'normal') as input and plot the posteriors together with the prior.

```python
class BayesianInferencePlot:
 """
 Easily implement the MCMC and VI inference for a given instance of...
 «BayesianInference class and
 plot the prior together with multiple posteriors
 Parameters

 theta : float.
 the true DGP parameter
 """
```

(continues on next page)
N_list : list.
a list of sample size
BayesianInferenceClass : class.
a class initiated using BayesianInference()

```python
def __init__(self, theta, N_list, BayesianInferenceClass, binwidth=0.02):
 """
Enter Parameters for data generation and plotting
"""
self.theta = theta
self.N_list = N_list
self.BayesianInferenceClass = BayesianInferenceClass

plotting parameters
self.binwidth = binwidth
self.linewidth=0.05
self.colorlist = sns.color_palette(n_colors=len(N_list))

data generation
N_max = max(N_list)
self.data = simulate_draw(theta, N_max)

def MCMC_plot(self, num_samples, num_warmup=1000):
 """
Parameters as in MCMC_sampling except that data is already defined
"""
fig, ax = plt.subplots(figsize=(10, 6))

 # plot prior
prior_sample = self.BayesianInferenceClass.show_prior(disp_plot=0)
sns.histplot(
data=prior_sample, kde=True, stat='density',
 binwidth=self.binwidth,
 color='#4C4E52',
 linewidth=self.linewidth,
 alpha=0.1,
 ax=ax,
 label='Prior Distribution'
)

 # plot posteriors
for id, n in enumerate(self.N_list):
 samples = self.BayesianInferenceClass.MCMC_sampling(
 self.data[:n], num_samples, num_warmup
)
sns.histplot(
samples, kde=True, stat='density',
 binwidth=self.binwidth,
 linewidth=self.linewidth,
 alpha=0.2,
 color=self.colorlist[id-1],
 label=f'Posterior with $n={n}$'
)
```

(continues on next page)
def SVI_fitting(self, guide_dist, params):
    
    """
    Fit the beta/truncnormal curve using parameters trained by SVI.
    I create plot using PDF given by scipy.stats distributions since torch.dist...
    do not have embedded PDF methods.
    """
    # create x axis
    xaxis = np.linspace(0, 1, 1000)
    if guide_dist == 'beta':
        y = st.beta.pdf(xaxis, a=params['alpha_q'], b=params['beta_q'])
    elif guide_dist == 'normal':
        # rescale upper/lower bound. See Scipy's truncnorm doc
        lower, upper = (0, 1)
        loc, scale = params['loc'], params['scale']
        a, b = (lower - loc) / scale, (upper - loc) / scale
        y = st.truncnorm.pdf(xaxis, a=a, b=b, loc=params['loc'], scale=params['scale'])
    return (xaxis, y)

def SVI_plot(self, guide_dist, n_steps=2000):
    """
    Parameters as in SVI_run except that data is already defined
    """
    fig, ax = plt.subplots(figsize=(10, 6))
    # plot prior
    prior_sample = self.BayesianInferenceClass.show_prior(disp_plot=0)
    sns.histplot(
        data=prior_sample, kde=True, stat='density',
        binwidth=self.binwidth,
        color='#4C4E52',
        linewidth=self.linewidth,
        alpha=0.1,
        ax=ax,
        label='Prior Distribution'
    )
    # plot posteriors
    for id, n in enumerate(self.N_list):
        (params, losses) = self.BayesianInferenceClass.SVI_run(self.data[:n],
                                                               guide_dist, n_steps)
        x, y = self.SVI_fitting(guide_dist, params)
        ax.plot(x, y,
                alpha=1,
                color=self.colorlist[id-1],
                label=f'Posterior with $n={n}$'
Let's set some parameters that we'll use in all of the examples below.

To save computer time at first, notice that we'll set $MCMC_{\text{num\_samples}} = 2000$ and $SVI_{\text{num\_steps}} = 5000$. (Later, to increase accuracy of approximations, we'll want to increase these.)

```python
num_list = [5, 10, 50, 100, 1000]
MCMC_num_samples = 2000
SVI_num_steps = 5000

theta is the data generating process
true_theta = 0.8
```

### 49.5.1 Beta Prior and Posteriors:

Let's compare outcomes when we use a Beta prior. For the same Beta prior, we shall

- compute posteriors analytically
- compute posteriors using MCMC via Pyro and Numpyro.
- compute posteriors using VI via Pyro and Numpyro.

Let's start with the analytical method that we described in this quantecon lecture [https://python.quantecon.org/prob_meaning.html](https://python.quantecon.org/prob_meaning.html)

```python
First examine Beta priors
BETA_pyro = BayesianInference(param=(5,5), name_dist='beta', solver='pyro')
BETA_numpyro = BayesianInference(param=(5,5), name_dist='beta', solver='numpyro')

BETA_pyro_plot = BayesianInferencePlot(true_theta, num_list, BETA_pyro)
BETA_numpyro_plot = BayesianInferencePlot(true_theta, num_list, BETA_numpyro)

plot analytical Beta prior and posteriors
xaxis = np.linspace(0, 1, 1000)
y_prior = st.beta.pdf(xaxis, 5, 5)

fig, ax = plt.subplots(figsize=(10, 6))
plot analytical beta prior
ax.plot(xaxis, y_prior, label='Analytical Beta Prior', color='#4C4E52')

data, colorlist, N_list = BETA_pyro_plot.data, BETA_pyro_plot.colorlist, BETA_pyro_plot.N_list
plot analytical beta posteriors
for id, n in enumerate(N_list):
 func = analytical_beta_posterior(data[:n], alpha0=5, beta0=5)
```

(continues on next page)
Now let's use MCMC while still using a beta prior.

We'll do this for both MCMC and VI.

```python
BayesianInferencePlot(true_theta, num_list, BETA_pyro).MCMC_plot(num_samples=MCMC_num_samples)
BayesianInferencePlot(true_theta, num_list, BETA_numpyro).SVI_plot(guide_dist='beta', n_steps=SVI_num_steps)
```
Here the MCMC approximation looks good.

But the VI approximation doesn’t look so good.

- even though we use the beta distribution as our guide, the VI approximated posterior distributions do not closely resemble the posteriors that we had just computed analytically.
(Here, our initial parameter for Beta guide is \((0.5, 0.5)\).)

But if we increase the number of steps from 5000 to 10000 in VI as we now shall do, we’ll get VI-approximated posteriors will be more accurate, as we shall see next.

(Increasing the step size increases computational time though).

49.6 Non-conjugate Prior Distributions

Having assured ourselves that our MCMC and VI methods can work well when we have conjugate prior and so can also compute analytically, we next proceed to situations in which our prior is not a beta distribution, so we don’t have a conjugate prior.

So we will have non-conjugate priors and are cast into situations in which we can’t calculate posteriors analytically.

49.6.1 MCMC

First, we implement and display MCMC.

We first initialize the `BayesianInference` classes and then can directly call `BayesianInferencePlot` to plot both MCMC and SVI approximating posteriors.

```python
Initialize BayesianInference classes
try uniform
STD_UNIFORM_pyro = BayesianInference(param=(0,1), name_dist='uniform', solver='pyro')
UNIFORM_numpyro = BayesianInference(param=(0.2,0.7), name_dist='uniform', solver='numpyro')
```

(continues on next page)
# try truncated lognormal
LOGNORMAL_numpyro = BayesianInference(param=(0,2), name_dist='lognormal', solver='numpyro')
LOGNORMAL_pyro = BayesianInference(param=(0,2), name_dist='lognormal', solver='pyro')

# try von Mises
# shifted von Mises
VONMISES_numpyro = BayesianInference(param=10, name_dist='vonMises', solver='numpyro')
# truncated von Mises
VONMISES_pyro = BayesianInference(param=40, name_dist='vonMises', solver='pyro')

# try laplace
LAPLACE_numpyro = BayesianInference(param=(0.5, 0.07), name_dist='laplace', solver='numpyro')

# Uniform
example_CLASS = STD_UNIFORM_pyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

example_CLASS = UNIFORM_numpyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

=======INFO=======
Parameters: (0, 1)
Prior Dist: uniform
Solver: pyro
In the situation depicted above, we have assumed a $\text{Uniform}(\theta, \bar{\theta})$ prior that puts zero probability outside a bounded
support that excludes the true value. Consequently, the posterior cannot put positive probability above \( \bar{\theta} \) or below \( \bar{\theta} \).

Note how when the true data-generating \( \theta \) is located at 0.8 as it is here, when \( n \) gets large, the posterior concentrate on the upper bound of the support of the prior, 0.7 here.

```python
Log Normal
example_CLASS = LOGNORMAL_numpyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

example_CLASS = LOGNORMAL_pyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)
```

---

**MCMC Sampling density of Posterior Distributions**

---

```
=======INFO=======
Parameters: (0, 2)
Prior Dist: lognormal
Solver: numpyro
```

---

```
=======INFO=======
Parameters: (0, 2)
Prior Dist: lognormal
Solver: pyro
```
MCMC Sampling density of Posterior Distributions

# Von Mises
example_CLASS = VONMISES_numpyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

example_CLASS = VONMISES_pyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

NOTE: Shifted von Mises

======INFO======
Parameters: 10
Prior Dist: vonMises
Solver: numpyro

NOTE: Shifted von Mises

49.6. Non-conjugate Prior Distributions
MCMC Sampling density of Posterior Distributions

-----INFO-----
Parameters: 40
Prior Dist: vonMises
Solver: pyro

NOTE: Truncated von Mises
# Laplace

```python
Laplace
example_CLASS = LAPLACE_numpyro
print(f'======INFO======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).MCMC_plot(num_samples=MCMC_num_samples)

======INFO======
Parameters: (0.5, 0.07)
Prior Dist: laplace
Solver: numpyro
```

49.6. Non-conjugate Prior Distributions
To get more accuracy we will now increase the number of steps for Variational Inference (VI)

$SVI_{num\_steps} = 50000$

**VI with a Truncated Normal Guide**

```python
Uniform
eample_CLASS = BayesianInference(param=(0,1), name_dist='uniform', solver='numpyro')
print(f'======INFO======
Parameters: (example_CLASS.param)
Prior Dist: (example_CLASS.name_dist)
Solver: (example_CLASS.solver)')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='normal', n_steps=SVI_num_steps)
```

======INFO======
Parameters: (0, 1)
Prior Dist: uniform
Solver: numpyro
# Log Normal

```python
def example_CLASS = LOGNORMAL_numpyro
print(f'{\nParameters: {example_CLASS.param}\\nPrior Dist: {example_CLASS.name_dist}\\nSolver: {example_CLASS.solver}'}
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='normal ', n_steps=SVI_num_steps)
```

```
======INFO======
Parameters: (0, 2)
Prior Dist: lognormal
Solver: numpyro
```
```python
Von Mises
element_CLASS = VONMISES_numpyro
print(f'======INFO======
- Parameters: {element_CLASS.param}
- Prior Dist: {element_CLASS.name_dist}
- Solver: {element_CLASS.solver}
')
print('
NB: Shifted von Mises')
BayesianInferencePlot(true_theta, num_list, element_CLASS).SVI_plot(guide_dist='normal', n_steps=SVI_num_steps)

======INFO======
Parameters: 10
Prior Dist: vonMises
Solver: numpyro

NB: Shifted von Mises
```
# Laplace example

```python
def example_CLASS:
 # Laplace example
 print(f'========INFO========
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='normal', n_steps=SVI_num_steps)
```

```
 =====INFO========
Parameters: (0.5, 0.07)
Prior Dist: laplace
Solver: numpyro
```
Variational Inference with a Beta Guide Distribution

```python
Uniform
e_example_CLASS = STD_UNIFORM_pyro
print(f'

Parameters: \{example_CLASS.param
Prior Dist: \{example_CLASS.name_dist
Solver: \{example_CLASS.solver\}
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta',
_n_steps=SVI_num_steps)
```

```
======INFO======
Parameters: (0, 1)
Prior Dist: uniform
Solver: pyro
```
SVI density of Posterior Distributions with beta guide

# Log Normal
example_CLASS = LOGNORMAL_numpyro
print(f'======INFO======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta', n_steps=SVI_num_steps)

example_CLASS = LOGNORMAL_pyro
print(f'======INFO======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta', n_steps=SVI_num_steps)

======INFO======
Parameters: (0, 2)
Prior Dist: lognormal
Solver: numpyro
SVI density of Posterior Distributions with beta guide

Parameters: (0, 2)
Prior Dist: lognormal
Solver: pyro
# Von Mises

eexample_CLASS = VONMISES_numpyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta', n_steps=SVI_num_steps)

example_CLASS = VONMISES_pyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta', n_steps=SVI_num_steps)

=====INFO=======
Parameters: 10
Prior Dist: vonMises
Solver: numpyro

NB: Shifted von Mises

---

SVI density of Posterior Distributions with beta guide

---

=====INFO=======
Parameters: 40
Prior Dist: vonMises
Solver: pyro

NB: Truncated von Mises

49.6. Non-conjugate Prior Distributions
# Laplace

```python
example_CLASS = LAPLACE_numpyro
print(f'=======INFO=======
Parameters: {example_CLASS.param}
Prior Dist: {example_CLASS.name_dist}
Solver: {example_CLASS.solver}
')
BayesianInferencePlot(true_theta, num_list, example_CLASS).SVI_plot(guide_dist='beta',
n_steps=SVI_num_steps)
```

```
========INFO========
Parameters: (0.5, 0.07)
Prior Dist: laplace
Solver: numpyro
```
SVI density of Posterior Distributions with beta guide

- Posterior with $n = 5$
- Posterior with $n = 10$
- Posterior with $n = 50$
- Posterior with $n = 100$
- Posterior with $n = 1000$
- Prior Distribution

49.6. Non-conjugate Prior Distributions
POSTERIOR DISTRIBUTIONS FOR AR(1) PARAMETERS

We'll begin with some Python imports.

```python
!pip install arviz pymc numpyro jax

import arviz as az
import pymc as pmc
import numpyro
from numpyro import distributions as dist
import numpy as np
import jax.numpy as jnp
from jax import random
import matplotlib.pyplot as plt

%matplotlib inline

import logging
logging.basicConfig()
logger = logging.getLogger('pymc')
logger.setLevel(logging.CRITICAL)
```

This lecture uses Bayesian methods offered by pymc and numpyro to make statistical inferences about two parameters of a univariate first-order autoregression.

The model is a good laboratory for illustrating consequences of alternative ways of modeling the distribution of the initial $y_0$:

- As a fixed number
- As a random variable drawn from the stationary distribution of the $\{y_t\}$ stochastic process

The first component of the statistical model is

$$y_{t+1} = \rho y_t + \sigma_x \epsilon_{t+1}, \quad t \geq 0$$  \hspace{1cm} (50.1)

where the scalars $\rho$ and $\sigma_x$ satisfy $|\rho| < 1$ and $\sigma_x > 0$; $\{\epsilon_{t+1}\}$ is a sequence of i.i.d. normal random variables with mean 0 and variance 1.

The second component of the statistical model is

$$y_0 \sim N(\mu_0, \sigma_0^2)$$  \hspace{1cm} (50.2)
Consider a sample \( \{y_t\}_{t=0}^T \) governed by this statistical model.

The model implies that the likelihood function of \( \{y_t\}_{t=0}^T \) can be factored:

\[
f(y_T, y_{T-1}, \ldots, y_0) = f(y_T|y_{T-1})f(y_{T-1}|y_{T-2}) \cdots f(y_1|y_0)f(y_0)
\]

where we use \( f \) to denote a generic probability density.

The statistical model (50.1)-(50.2) implies

\[
f(y_t|y_{t-1}) \sim \mathcal{N}(\rho y_{t-1}, \sigma_x^2)
f(y_0) \sim \mathcal{N}(\mu_0, \sigma_0^2)
\]

We want to study how inferences about the unknown parameters \((\rho, \sigma_x)\) depend on what is assumed about the parameters \(\mu_0, \sigma_0\) of the distribution of \(y_0\).

Below, we study two widely used alternative assumptions:

- \((\mu_0, \sigma_0) = (y_0, 0)\) which means that \(y_0\) is drawn from the distribution \(\mathcal{N}(y_0, 0)\); in effect, we are conditioning on an observed initial value.

- \(\mu_0, \sigma_0\) are functions of \(\rho, \sigma_x\) because \(y_0\) is drawn from the stationary distribution implied by \(\rho, \sigma_x\).

**Note:** We do not treat a third possible case in which \(\mu_0, \sigma_0\) are free parameters to be estimated.

Unknown parameters are \(\rho, \sigma_x\).

We have independent prior probability distributions for \(\rho, \sigma_x\) and want to compute a posterior probability distribution after observing a sample \(\{y_t\}_{t=0}^T\).

The notebook uses `pymc4` and `numpyro` to compute a posterior distribution of \(\rho, \sigma_x\). We will use NUTS samplers to generate samples from the posterior in a chain. Both of these libraries support NUTS samplers.

NUTS is a form of Monte Carlo Markov Chain (MCMC) algorithm that bypasses random walk behaviour and allows for convergence to a target distribution more quickly. This not only has the advantage of speed, but allows for complex models to be fitted without having to employ specialised knowledge regarding the theory underlying those fitting methods.

Thus, we explore consequences of making these alternative assumptions about the distribution of \(y_0\):

- A first procedure is to condition on whatever value of \(y_0\) is observed. This amounts to assuming that the probability distribution of the random variable \(y_0\) is a Dirac delta function that puts probability one on the observed value of \(y_0\).

- A second procedure assumes that \(y_0\) is drawn from the stationary distribution of a process described by (50.1) so that \(y_0 \sim \mathcal{N} \left(0, \frac{\sigma_x^2}{1-\rho^2}\right)\).

When the initial value \(y_0\) is far out in a tail of the stationary distribution, conditioning on an initial value gives a posterior that is more accurate in a sense that we’ll explain.

Basically, when \(y_0\) happens to be in a tail of the stationary distribution and we don’t condition on \(y_0\), the likelihood function for \(\{y_t\}_{t=0}^T\) adjusts the posterior distribution of the parameter pair \(\rho, \sigma_x\) to make the observed value of \(y_0\) more likely than it really is under the stationary distribution, thereby adversely twisting the posterior in short samples.

An example below shows how not conditioning on \(y_0\) adversely shifts the posterior probability distribution of \(\rho\) toward larger values.

We begin by solving a direct problem that simulates an AR(1) process.

How we select the initial value \(y_0\) matters.

- If we think \(y_0\) is drawn from the stationary distribution \(\mathcal{N}(0, \frac{\sigma_x^2}{1-\rho^2})\), then it is a good idea to use this distribution as \(f(y_0)\). Why? Because \(y_0\) contains information about \(\rho, \sigma_x\).
If we suspect that \( y_0 \) is far in the tails of the stationary distribution – so that variation in early observations in the sample have a significant transient component – it is better to condition on \( y_0 \) by setting \( f(y_0) = 1 \).

To illustrate the issue, we’ll begin by choosing an initial \( y_0 \) that is far out in a tail of the stationary distribution.

```python
def ar1_simulate(rho, sigma, y0, T):
 # Allocate space and draw epsilons
 y = np.empty(T)
 eps = np.random.normal(0., sigma, T)
 # Initial condition and step forward
 y[0] = y0
 for t in range(1, T):
 y[t] = rho*y[t-1] + eps[t]
 return y

sigma = 1.
rho = 0.5
T = 50
np.random.seed(145353452)
y = ar1_simulate(rho, sigma, 10, T)
plt.plot(y)
plt.tight_layout()
```
Now we shall use Bayes’ law to construct a posterior distribution, conditioning on the initial value of \( y_0 \).
(Later we’ll assume that \( y_0 \) is drawn from the stationary distribution, but not now.)

First we’ll use \texttt{pymc4}.

### 50.1 \texttt{PyMC Implementation}

For a normal distribution in \texttt{pymc}, \( var = 1/\tau = \sigma^2 \).

```python
AR1_model = pmc.Model()

with AR1_model:
 # Start with priors
 rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho
 sigma = pmc.HalfNormal('sigma', sigma = np.sqrt(10))

 # Expected value of y at the next period (rho * y)
 yhat = rho * y[:-1]

 # Likelihood of the actual realization
 y_like = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=y[1:])
```

\texttt{pmc.sample} by default uses the NUTS samplers to generate samples as shown in the below cell:
with AR1_model:
    trace = pmc.sample(50000, tune=10000, return_inferencedata=True)

Evidently, the posteriors aren’t centered on the true values of .5, 1 that we used to generate the data.

This is a symptom of the classic Hurwicz bias for first order autoregressive processes (see Leonid Hurwicz [Hur50]).

The Hurwicz bias is worse the smaller is the sample (see [OW69]).

Be that as it may, here is more information about the posterior.

with AR1_model:
    summary = az.summary(trace, round_to=4)

summary

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>hdi_3%</th>
<th>hdi_97%</th>
<th>mcse_mean</th>
<th>mcse_sd</th>
<th>ess_bulk</th>
<th>ess_tail</th>
<th>r_hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho</td>
<td>0.5365</td>
<td>0.0710</td>
<td>0.4012</td>
<td>0.6683</td>
<td>0.0002</td>
<td>0.0001</td>
<td>160811.4412</td>
<td>123878.4765</td>
<td>1.0</td>
</tr>
<tr>
<td>sigma</td>
<td>1.0102</td>
<td>0.1061</td>
<td>0.8172</td>
<td>1.2085</td>
<td>0.0003</td>
<td>0.0002</td>
<td>157021.0049</td>
<td>134589.1549</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Now we shall compute a posterior distribution after seeing the same data but instead assuming that $y_0$ is drawn from the stationary distribution.

This means that

$$y_0 \sim N\left(0, \frac{\sigma^2}{1 - \rho^2}\right)$$

We alter the code as follows:
Quantitative Economics with Python

AR1_model_y0 = pmc.Model()

with AR1_model_y0:
    # Start with priors
    rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho
    sigma = pmc.HalfNormal('sigma', sigma=np.sqrt(10))

    # Standard deviation of ergodic y
    y_sd = sigma / np.sqrt(1 - rho**2)

    # yhat
    yhat = rho * y[:-1]
    y_data = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=y[1:])
    y0_data = pmc.Normal('y0_obs', mu=0., sigma=y_sd, observed=y[0])

with AR1_model_y0:
    trace_y0 = pmc.sample(50000, tune=10000, return_inferencedata=True)

    # Grey vertical lines are the cases of divergence

    <IPython.core.display.HTML object>
    <IPython.core.display.HTML object>

with AR1_model_y0:
    az.plot_trace(trace_y0, figsize=(17,6))

with AR1_model:
    summary_y0 = az.summary(trace_y0, round_to=4)

    summary_y0

    | mean  | sd    | hdhi_3% | hdhi_97% | mcse_mean | mcse_sd | ess_bulk |
    |-------|-------|---------|---------|-----------|---------|----------|
    | rho   | 0.8762| 0.0811  | 0.7333  | 0.9992    | 0.0002  | 108696.4434 |
    | sigma | 1.4040| 0.1466  | 1.1410  | 1.6833    | 0.0004  | 124194.9949 |
Please note how the posterior for $\psi$ has shifted to the right relative to when we conditioned on $y_0$ instead of assuming that $y_0$ is drawn from the stationary distribution.

Think about why this happens.

**Hint:** It is connected to how Bayes Law (conditional probability) solves an inverse problem by putting high probability on parameter values that make observations more likely.

We’ll return to this issue after we use numpyro to compute posteriors under our two alternative assumptions about the distribution of $y_0$.

We’ll now repeat the calculations using numpyro.

### 50.2 Numpyro Implementation

```python
def plot_posterior(sample):

 # Plot trace and histogram
 fig, axs = plt.subplots(2, 2, figsize=(17, 6))

 # Plot trace
 axs[0, 0].plot(rhos) # rho
 axs[0, 1].plot(sigmas) # sigma

 # Plot posterior
 axs[0, 1].hist(rhos, bins=50, density=True, alpha=0.7)
 axs[0, 1].set_xlim([0, 1])
 axs[1, 1].hist(sigmas, bins=50, density=True, alpha=0.7)

 axs[0, 0].set_title("rho")
 axs[0, 1].set_title("rho")
 axs[1, 0].set_title("sigma")
 axs[1, 1].set_title("sigma")
 plt.show()

def AR1_model(data):

 # set prior
 rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
 sigma = numpyro.sample('sigma', dist.HalfNormal(scale=np.sqrt(10)))

 # Expected value of y at the next period (rho * y)
 yhat = rho * data[:-1]
```

(continues on next page)
# Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal(loc=yhat, scale=sigma), obs=data[1:]):

# Make jnp array
y = jnp.array(y)

# Set NUTS kernel
NUTS_kernel = numpyro.infer.NUTS(AR1_model)

# Run MCMC
mcmc = numpyro.infer.MCMC(NUTS_kernel, num_samples=50000, num_warmup=10000, progress_bar=False)
mcmc.run(rng_key=random.PRNGKey(1), data=y)

plot_posterior(mcmc.get_samples())

mcmc.print_summary()

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>std</th>
<th>median</th>
<th>5.0%</th>
<th>95.0%</th>
<th>n_eff</th>
<th>r_hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho</td>
<td>0.54</td>
<td>0.07</td>
<td>0.54</td>
<td>0.42</td>
<td>0.65</td>
<td>31951.91</td>
<td>1.00</td>
</tr>
<tr>
<td>sigma</td>
<td>1.01</td>
<td>0.11</td>
<td>1.00</td>
<td>0.84</td>
<td>1.18</td>
<td>32441.11</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Number of divergences: 0

Next, we again compute the posterior under the assumption that \( y_0 \) is drawn from the stationary distribution, so that

\[
y_0 \sim N\left(0, \frac{\sigma^2}{1 - \rho^2}\right)
\]

Here’s the new code to achieve this.

def AR1_model_y0(data):
    # Set prior
    rho = numpyro.sample('rho', dist.Uniform(low=-1., high=1.))
sigma = numpyro.sample('sigma', dist.HalfNormal(scale=np.sqrt(10)))
# Standard deviation of ergodic y
y_sd = sigma / jnp.sqrt(1 - rho**2)

# Expected value of y at the next period (rho * y)
yhat = rho * data[:-1]

# Likelihood of the actual realization.
y_data = numpyro.sample('y_obs', dist.Normal(loc=yhat, scale=sigma), obs=data[1:1])
y0_data = numpyro.sample('y0_obs', dist.Normal(loc=0., scale=y_sd), obs=data[0])

# Make jnp array
y = jnp.array(y)

# Set NUTS kernel
NUTS_kernel = numpyro.infer.NUTS(AR1_model_y0)

# Run MCMC
mcmc2 = numpyro.infer.MCMC(NUTS_kernel, num_samples=50000, num_warmup=10000, progress_bar=False)
mcmc2.run(rng_key=random.PRNGKey(1), data=y)

plot_posterior(mcmc2.get_samples())
mcmc2.print_summary()

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>std</th>
<th>median</th>
<th>5.0%</th>
<th>95.0%</th>
<th>n_eff</th>
<th>r_hat</th>
</tr>
</thead>
<tbody>
<tr>
<td>rho</td>
<td>0.88</td>
<td>0.08</td>
<td>0.89</td>
<td>0.76</td>
<td>1.00</td>
<td>28934.75</td>
<td>1.00</td>
</tr>
<tr>
<td>sigma</td>
<td>1.40</td>
<td>0.15</td>
<td>1.39</td>
<td>1.17</td>
<td>1.64</td>
<td>25034.29</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Look what happened to the posterior!

It has moved far from the true values of the parameters used to generate the data because of how Bayes' Law (i.e., conditional probability) is telling numpyro to explain what it interprets as “explosive” observations early in the sample. Bayes' Law is able to generate a plausible likelihood for the first observation by driving $\rho \to 1$ and $\sigma \uparrow$ in order to raise the variance of the stationary distribution.
Our example illustrates the importance of what you assume about the distribution of initial conditions.
This lecture describes methods for forecasting statistics that are functions of future values of a univariate autoregressive process.

The methods are designed to take into account two possible sources of uncertainty about these statistics:

- random shocks that impinge of the transition law
- uncertainty about the parameter values of the AR(1) process

We consider two sorts of statistics:

- prospective values $y_{t+j}$ of a random process $\{y_t\}$ that is governed by the AR(1) process
- sample path properties that are defined as non-linear functions of future values $\{y_{t+j}\}_{j \geq 1}$ at time $t$

**Sample path properties** are things like “time to next turning point” or “time to next recession”.

To investigate sample path properties we’ll use a simulation procedure recommended by Wecker [Wec79].

To acknowledge uncertainty about parameters, we’ll deploy `pymc` to construct a Bayesian joint posterior distribution for unknown parameters.

Let’s start with some imports.

```python
import numpy as np
import arviz as az
import pymc as pmc
import matplotlib.pyplot as plt
import seaborn as sns

ts.set_style('white')
colors = sns.color_palette()

import logging
logging.basicConfig()
logger = logging.getLogger('pymc')
logger.setLevel(logging.CRITICAL)
```
51.1 A Univariate First-Order Autoregressive Process

Consider the univariate AR(1) model:

\[ y_{t+1} = \rho y_t + \sigma \epsilon_{t+1}, \quad t \geq 0 \]  

(51.1)

where the scalars \( \rho \) and \( \sigma \) satisfy \( |\rho| < 1 \) and \( \sigma > 0 \); \( \{\epsilon_{t+1}\} \) is a sequence of i.i.d. normal random variables with mean 0 and variance 1.

The initial condition \( y_0 \) is a known number.

Equation (51.1) implies that for \( t \geq 0 \), the conditional density of \( y_{t+1} \) is

\[ f(y_{t+1}|y_t; \rho, \sigma) \sim N(\rho y_t, \sigma^2) \]  

(51.2)

Further, equation (51.1) also implies that for \( t \geq 0 \), the conditional density of \( y_{t+j} \) for \( j \geq 1 \) is

\[ f(y_{t+j}|y_t; \rho, \sigma) \sim N \left( \rho^j y_t, \sigma^2 \frac{1 - \rho^{2j}}{1 - \rho^2} \right) \]  

(51.3)

The predictive distribution (51.3) that assumes that the parameters \( \rho, \sigma \) are known, which we express by conditioning on them.

We also want to compute a predictive distribution that does not condition on \( \rho, \sigma \) but instead takes account of our uncertainty about them.

We form this predictive distribution by integrating (51.3) with respect to a joint posterior distribution \( \pi_t(\rho, \sigma|y^t) \) that conditions on an observed history \( y^t = \{y_s\}_{s=0}^t \):

\[ f(y_{t+j}|y^t) = \int f(y_{t+j}|y_t; \rho, \sigma) \pi_t(\rho, \sigma|y^t) d\rho d\sigma \]  

(51.4)

Predictive distribution (51.3) assumes that parameters \( (\rho, \sigma) \) are known.

Predictive distribution (51.4) assumes that parameters \( (\rho, \sigma) \) are uncertain, but have known probability distribution \( \pi_t(\rho, \sigma|y^t) \).

We also want to compute some predictive distributions of “sample path statistics” that might include, for example

- the time until the next “recession”,
- the minimum value of \( Y \) over the next 8 periods,
- “severe recession”, and
- the time until the next turning point (positive or negative).

To accomplish that for situations in which we are uncertain about parameter values, we shall extend Wecker’s [Wec79] approach in the following way.

- first simulate an initial path of length \( T_0 \);
- for a given prior, draw a sample of size \( N \) from the posterior joint distribution of parameters \( (\rho, \sigma) \) after observing the initial path;
- for each draw \( n = 0, 1, \ldots, N \), simulate a “future path” of length \( T_1 \) with parameters \( (\rho_n, \sigma_n) \) and compute our three “sample path statistics”;
- finally, plot the desired statistics from the \( N \) samples as an empirical distribution.
51.2 Implementation

First, we'll simulate a sample path from which to launch our forecasts.

In addition to plotting the sample path, under the assumption that the true parameter values are known, we'll plot .9 and .95 coverage intervals using conditional distribution (51.3) described above.

We'll also plot a bunch of samples of sequences of future values and watch where they fall relative to the coverage interval.

```python
def AR1_simulate(rho, sigma, y0, T):
 # Allocate space and draw epsilons
 y = np.empty(T)
 eps = np.random.normal(0, sigma, T)

 # Initial condition and step forward
 y[0] = y0
 for t in range(1, T):
 y[t] = rho * y[t-1] + eps[t]

 return y

def plot_initial_path(initial_path):
 # Compute .9 confidence interval
 y0 = initial_path[-1]
 center = np.array([rho ** j * y0 for j in range(T1)]
 vars = np.array([sigma**2 * (1 - rho**(2 * j)) / (1 - rho**2) for j in range(T1)])
 y_bounds1_c95, y_bounds2_c95 = center + 1.96 * np.sqrt(vars), center - 1.96 * np.sqrt(vars)
 y_bounds1_c90, y_bounds2_c90 = center + 1.65 * np.sqrt(vars), center - 1.65 * np.sqrt(vars)

 # Plot
 fig, ax = plt.subplots(1, 1, figsize=(12, 6))
 ax.set_title("Initial Path and Predictive Densities", fontsize=15)
 ax.plot(np.arange(-T0 + 1, 1), initial_path)
 ax.set_xlim([-T0, T1])
 ax.axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

 # Simulate future paths
 for i in range(10):
 y_future = AR1_simulate(rho, sigma, y0, T1)
 ax.plot(np.arange(T1), y_future, color='grey', alpha=.5)

 # Plot 90% CI
 ax.fill_between(np.arange(T1), y_bounds1_c95, y_bounds2_c95, alpha=.3, label='95% CI')
 ax.fill_between(np.arange(T1), y_bounds1_c90, y_bounds2_c90, alpha=.35, label='90% CI')
 ax.plot(np.arange(T1), center, color='red', alpha=.7, label='expected mean')
 ax.legend(fontsize=12)
 plt.show()
```

(continues on next page)
As functions of forecast horizon, the coverage intervals have shapes like those described in https://python.quantecon.org/perm_income_cons.html

51.3 Predictive Distributions of Path Properties

Wecker [Wec79] proposed using simulation techniques to characterize predictive distribution of some statistics that are non-linear functions of $y$.

He called these functions “path properties” to contrast them with properties of single data points.

He studied two special prospective path properties of a given series $\{y_t\}$.

The first was **time until the next turning point**.

- he defined a “**turning point**” to be the date of the second of two successive declines in $y$.

To examine this statistic, let $Z$ be an indicator process
\[ Z_t(Y(\omega)) := \begin{cases} 1 & \text{if } Y_t(\omega) < Y_{t-1}(\omega) < Y_{t-2}(\omega) \geq Y_{t-3}(\omega) \\ 0 & \text{otherwise} \end{cases} \]

Then the random variable **time until the next turning point** is defined as the following **stopping time** with respect to \( Z \):

\[ W_t(\omega) := \inf \{ k \geq 1 \mid Z_{t+k}(\omega) = 1 \} \]

Wecker [Wec79] also studied the **minimum value of \( Y \) over the next 8 quarters** which can be defined as the random variable.

\[ M_t(\omega) := \min \{ Y_{t+1}(\omega); Y_{t+2}(\omega); \ldots; Y_{t+8}(\omega) \} \]

It is interesting to study yet another possible concept of a **turning point**.

Thus, let

\[ T_t(Y(\omega)) := \begin{cases} 1 & \text{if } Y_{t-2}(\omega) > Y_{t-1}(\omega) > Y_t(\omega) \text{ and } Y_t(\omega) < Y_{t+1}(\omega) < Y_{t+2}(\omega) \\ -1 & \text{if } Y_{t-2}(\omega) < Y_{t-1}(\omega) < Y_t(\omega) \text{ and } Y_t(\omega) > Y_{t+1}(\omega) > Y_{t+2}(\omega) \\ 0 & \text{otherwise} \end{cases} \]

Define a **positive turning point today or tomorrow** statistic as

\[ P_t(\omega) := \begin{cases} 1 & \text{if } T_t(\omega) = 1 \text{ or } T_{t+1}(\omega) = 1 \\ 0 & \text{otherwise} \end{cases} \]

This is designed to express the event

- “after one or two decrease(s), \( Y \) will grow for two consecutive quarters”

Following [Wec79], we can use simulations to calculate probabilities of \( P_t \) and \( N_t \) for each period \( t \).

### 51.4 A Wecker-Like Algorithm

The procedure consists of the following steps:

- index a sample path by \( \omega_i \)
- for a given date \( t \), simulate \( I \) sample paths of length \( N \)
  \[ Y(\omega_i) = \{ Y_{t+1}(\omega_i), Y_{t+2}(\omega_i), \ldots, Y_{t+N}(\omega_i) \}_{i=1}^I \]
- for each path \( \omega_i \), compute the associated value of \( W_t(\omega_i), W_{t+1}(\omega_i), \ldots \)
- consider the sets \( \{ W_t(\omega_i) \}_{i=1}^I, \{ W_{t+1}(\omega_i) \}_{i=1}^I, \ldots, \{ W_{t+N}(\omega_i) \}_{i=1}^I \) as samples from the predictive distributions
  \[ f(W_{t+1} \mid y_t, \ldots), f(W_{t+2} \mid y_t, y_{t-1}, \ldots), \ldots, f(W_{t+N} \mid y_t, y_{t-1}, \ldots). \]
51.5 Using Simulations to Approximate a Posterior Distribution

The next code cells use `pymc` to compute the time $t$ posterior distribution of $\rho, \sigma$.

Note that in defining the likelihood function, we choose to condition on the initial value $y_0$.

```python
def draw_from_posterior(sample):

 # Start with priors
 rho = pmc.Uniform('rho', lower=-1., upper=1.) # Assume stable rho
 sigma = pmc.HalfNormal('sigma', sigma=np.sqrt(10))

 # Expected value of y at the next period (rho * y)
 yhat = rho * sample[:-1]

 # Likelihood of the actual realization.
 y_like = pmc.Normal('y_obs', mu=yhat, sigma=sigma, observed=sample[1:])

 with AR1_model:
 trace = pmc.sample(10000, tune=5000)

 # check condition
 with AR1_model:
 az.plot_trace(trace, figsize=(17, 6))

 rhos = trace.posterior.rho.values.flatten()
 sigmas = trace.posterior.sigma.values.flatten()

 post_sample = {
 'rho': rhos,
 'sigma': sigmas
 }

 return post_sample

post_samples = draw_from_posterior(initial_path)
```

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>
The graphs on the left portray posterior marginal distributions.

## 51.6 Calculating Sample Path Statistics

Our next step is to prepare Python code to compute our sample path statistics.

```python
define statistics
def next_recession(omega):
 n = omega.shape[0] - 3
 z = np.zeros(n, dtype=int)

 for i in range(n):
 z[i] = int(omega[i] <= omega[i+1] and omega[i+1] > omega[i+2] and omega[i+2] > omega[i+3])

 if np.any(z) == False:
 return 500
 else:
 return np.where(z==1)[0][0] + 1

def minimum_value(omega):
 return min(omega[:8])

def severe_recession(omega):
 z = np.diff(omega)
 n = z.shape[0]

 sr = (z < -.02).astype(int)
 indices = np.where(sr == 1)[0]

 if len(indices) == 0:
 return T1
 else:
 return indices[0] + 1

def next_turning_point(omega):
 ""
 Suppose that omega is of length 6
 ""
```

(continues on next page)
\[ y_{t-2}, y_{t-1}, y_t, y_{t+1}, y_{t+2}, y_{t+3} \]

that is sufficient for determining the value of \( P/N \)

```python
n = np.asarray(omega).shape[0] - 4
T = np.zeros(n, dtype=int)

for i in range(n):
 if (omega[i] > omega[i+1] and omega[i+1] > omega[i+2]) and (omega[i+2] < omega[i+3] and omega[i+3] < omega[i+4]):
 T[i] = 1
 elif (omega[i] < omega[i+1] and omega[i+1] < omega[i+2]) and (omega[i+2] > omega[i+3] and omega[i+3] > omega[i+4]):
 T[i] = -1

up_turn = np.where(T == 1)[0][0] + 1 if (1 in T) == True else T
down_turn = np.where(T == -1)[0][0] + 1 if (-1 in T) == True else T

return up_turn, down_turn
```

51.7 Original Wecker Method

Now we apply Wecker's original method by simulating future paths and compute predictive distributions, conditioning on the true parameters associated with the data-generating model.

```python
def plot_Wecker(initial_path, N, ax):
 """
 Plot the predictive distributions from "pure" Wecker's method.
 """
 # Store outcomes
 next_reces = np.zeros(N)
 severe_rec = np.zeros(N)
 min_vals = np.zeros(N)
 next_up_turn, next_down_turn = np.zeros(N), np.zeros(N)

 # Compute .9 confidence interval
 y0 = initial_path[-1]
 center = np.array([rho**j * y0 for j in range(T1)])
 vars = np.array([sigma**2 * (1 - rho**(2 * j)) / (1 - rho**2) for j in range(T1)])
 y_bounds1_c95, y_bounds2_c95 = center + 1.96 * np.sqrt(vars), center - 1.96 * np.sqrt(vars)
 y_bounds1_c90, y_bounds2_c90 = center + 1.65 * np.sqrt(vars), center - 1.65 * np.sqrt(vars)

 # Plot
 ax[0, 0].set_title("Initial path and predictive densities", fontsize=15)
 ax[0, 0].plot(np.arange(-T0 + 1, 1), initial_path)
 ax[0, 0].set_xlim([-T0, T1])
 ax[0, 0].axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

 # Plot 90% CI
 ax[0, 0].fill_between(np.arange(T1), y_bounds1_c95, y_bounds2_c95, alpha=.3)
```

(continues on next page)
# Simulate future paths

```python
for n in range(N):
 sim_path = AR1_simulate(rho, sigma, initial_path[-1], T1)
 next_reces[n] = next_recession(np.hstack([initial_path[-3:-1], sim_path]))
 severe_rec[n] = severe_recession(sim_path)
 min_vals[n] = minimum_value(sim_path)
 next_up_turn[n], next_down_turn[n] = next_turning_point(sim_path)

if n%(N//10) == 0:
 ax[0, 0].plot(np.arange(T1), sim_path, color='gray', alpha=.3, lw=1)
```

# Return next_up_turn, next_down_turn
```python
sns.histplot(next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.8, label='True parameters')
ax[0, 1].set_title("Predictive distribution of time until the next recession", fontsize=13)

sns.histplot(severe_rec, kde=False, stat='density', ax=ax[1, 0], binwidth=0.9, alpha=.7, label='True parameters')
ax[1, 0].set_title("Predictive distribution of stopping time of growth $<-2\%$", fontsize=13)

sns.histplot(min_vals, kde=True, stat='density', ax=ax[1, 1], alpha=.8, label='True parameters')
ax[1, 1].set_title("Predictive distribution of minimum value in the next 8 periods", fontsize=13)

sns.histplot(next_up_turn, kde=True, stat='density', ax=ax[2, 0], alpha=.8, label='True parameters')
ax[2, 0].set_title("Predictive distribution of time until the next positive turn", fontsize=13)

sns.histplot(next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.8, label='True parameters')
ax[2, 1].set_title("Predictive distribution of time until the next negative turn", fontsize=13)
```

fig, ax = plt.subplots(3, 2, figsize=(15, 12))
plot_Wecker(initial_path, 1000, ax)
plt.show()
51.8 Extended Wecker Method

Now we apply our “extended” Wecker method based on predictive densities of \( y \) defined by (51.4) that acknowledge posterior uncertainty in the parameters \( \rho, \sigma \).

To approximate the integration on the right side of (51.4), we repeatedly draw parameters from the joint posterior distribution each time we simulate a sequence of future values from model (51.1).

```python
def plot_extended_Wecker(post_samples, initial_path, N, ax):
 # Select a sample
 index = np.random.choice(np.arange(len(post_samples['rho'])), N + 1,
 replace=False)
 rho_sample = post_samples['rho'][index]
 sigma_sample = post_samples['sigma'][index]

 # Store outcomes
 next_reces = np.zeros(N)
 severe_rec = np.zeros(N)
 min_vals = np.zeros(N)
```

(continues on next page)
next_up_turn, next_down_turn = np.zeros(N), np.zeros(N)

# Plot
ax[0, 0].set_title("Initial path and future paths simulated from posterior draws",
 fontsize=15)
ax[0, 0].plot(np.arange(-T0 + 1, 1), initial_path)
ax[0, 0].set_xlim([-T0, T1])
ax[0, 0].axvline(0, linestyle='--', alpha=.4, color='k', lw=1)

# Simulate future paths
for n in range(N):
    sim_path = AR1_simulate(rho_sample[n], sigma_sample[n], initial_path[-1], T1)
    next_reces[n] = next_recession(np.hstack([initial_path[-3:-1], sim_path]))
    severe_rec[n] = severe_recession(sim_path)
    min_vals[n] = minimum_value(sim_path)
    next_up_turn[n], next_down_turn[n] = next_turning_point(sim_path)
    sns.histplot(next_reces, kde=True, stat='density', ax=ax[0, 1], alpha=.6,
                 color=colors[1], label='Sampling from posterior')
    ax[0, 1].set_title("Predictive distribution of time until the next recession",
                     fontsize=13)

    sns.histplot(severe_rec, kde=False, stat='density', ax=ax[1, 0], binwidth=.3,
                 alpha=.6, color=colors[1], label='Sampling from posterior')
    ax[1, 0].set_title(r"Predictive distribution of stopping time of growth\$<-2\$",
                       fontsize=13)

    sns.histplot(min_vals, kde=True, stat='density', ax=ax[1, 1], alpha=.6,
                 color=colors[1], label='Sampling from posterior')
    ax[1, 1].set_title("Predictive distribution of minimum value in the next 8 periods",
                       fontsize=13)

    sns.histplot(next_up_turn, kde=True, stat='density', ax=ax[2, 0], alpha=.6,
                 color=colors[1], label='Sampling from posterior')
    ax[2, 0].set_title("Predictive distribution of time until the next positive turn",
                       fontsize=13)

    sns.histplot(next_down_turn, kde=True, stat='density', ax=ax[2, 1], alpha=.6,
                 color=colors[1], label='Sampling from posterior')
    ax[2, 1].set_title("Predictive distribution of time until the next negative turn",
                       fontsize=13)

fig, ax = plt.subplots(3, 2, figsize=(15, 12))
plot_extended_Wecker(post_samples, initial_path, 1000, ax)
plt.show()
51.9 Comparison

Finally, we plot both the original Wecker method and the extended method with parameter values drawn from the posterior together to compare the differences that emerge from pretending to know parameter values when they are actually uncertain.

```python
fig, ax = plt.subplots(3, 2, figsize=(15, 12))
plot_Wecker(initial_path, 1000, ax)
ax[0, 0].clear()
plot_extended_Wecker(post_samples, initial_path, 1000, ax)
plt.legend()
plt.show()
```
51.9. Comparison
Part VIII

Information
In addition to what's in Anaconda, this lecture deploys the libraries:

```bash
!pip install quantecon
!pip install interpolation
```

### 52.1 Overview

In this lecture, we consider an extension of the previously studied job search model of McCall [McC70].

We'll build on a model of Bayesian learning discussed in this lecture on the topic of exchangeability and its relationship to the concept of IID (identically and independently distributed) random variables and to Bayesian updating.

In the McCall model, an unemployed worker decides when to accept a permanent job at a specific fixed wage, given

- his or her discount factor
- the level of unemployment compensation
• the distribution from which wage offers are drawn

In the version considered below, the wage distribution is unknown and must be learned.

• The following is based on the presentation in [LS18], section 6.6.

Let’s start with some imports

```python
matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
from numba import njit, prange, vectorize
from interpolation import mlinterp, interp
from math import gamma
import numpy as np
from matplotlib import cm
import scipy.optimize as op
from scipy.stats import cumfreq, beta
```

### 52.1.1 Model Features

• Infinite horizon dynamic programming with two states and one binary control.

• Bayesian updating to learn the unknown distribution.

### 52.2 Model

Let’s first review the basic McCall model [McC70] and then add the variation we want to consider.

#### 52.2.1 The Basic McCall Model

Recall that, in the baseline model, an unemployed worker is presented in each period with a permanent job offer at wage $W_t$.

At time $t$, our worker either

1. accepts the offer and works permanently at constant wage $W_t$

2. rejects the offer, receives unemployment compensation $c$ and reconsiders next period

The wage sequence $W_t$ is IID and generated from known density $q$.

The worker aims to maximize the expected discounted sum of earnings $\mathbb{E} \sum_{t=0}^{\infty} \beta^t y_t$.

Let $v(w)$ be the optimal value of the problem for a previously unemployed worker who has just received offer $w$ and is yet to decide whether to accept or reject the offer.

The value function $v$ satisfies the recursion

$$v(w) = \max \left\{ \frac{w}{1 - \beta}, c + \beta \int v(w') q(w') dw' \right\} \quad (52.1)$$

The optimal policy has the form $\mathbf{1}\{w \geq \bar{w}\}$, where $\bar{w}$ is a constant called the reservation wage.
52.2.2 Offer Distribution Unknown

Now let’s extend the model by considering the variation presented in [LS18], section 6.6.

The model is as above, apart from the fact that

- the density \( q \) is unknown
- the worker learns about \( q \) by starting with a prior and updating based on wage offers that he/she observes

The worker knows there are two possible distributions \( F \) and \( G \).

These two distributions have densities \( f \) and \( g \), respectively.

Just before time starts, “nature” selects \( q \) to be either \( f \) or \( g \).

This is then the wage distribution from which the entire sequence \( W_t \) will be drawn.

The worker does not know which distribution nature has drawn, but the worker does know the two possible distributions \( f \) and \( g \).

The worker puts a (subjective) prior probability \( \pi_0 \) on \( f \) having been chosen.

The worker’s time 0 subjective distribution for the distribution of \( W_0 \) is

\[
\pi_0 f + (1 - \pi_0) g
\]

The worker’s time \( t \) subjective belief about the the distribution of \( W_t \) is

\[
\pi_t f + (1 - \pi_t) g,
\]

where \( \pi_t \) updates via

\[
\pi_{t+1} = \frac{\pi_t f(w_{t+1})}{\pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1})}
\]  

(52.2)

This last expression follows from Bayes’ rule, which tells us that

\[
P\{q = f \mid W = w\} = \frac{P\{W = w \mid q = f\}P\{q = f\}}{P\{W = w\}} \quad \text{and} \quad P\{W = w\} = \sum_{\omega \in \{f, g\}} P\{W = w \mid q = \omega\} P\{q = \omega\}
\]

The fact that (52.2) is recursive allows us to progress to a recursive solution method.

Letting

\[
q_\pi(w) := \pi f(w) + (1 - \pi) g(w) \quad \text{and} \quad \kappa(w, \pi) := \frac{\pi f(w)}{\pi f(w) + (1 - \pi) g(w)}
\]

we can express the value function for the unemployed worker recursively as follows

\[
v(w, \pi) = \max \left\{ \frac{w}{1 - \beta}, c + \beta \int v(w', \pi') q_\pi(w') \, dw' \right\} \quad \text{where} \quad \pi' = \kappa(w', \pi)
\]  

(52.3)

Notice that the current guess \( \pi \) is a state variable, since it affects the worker’s perception of probabilities for future rewards.

52.2.3 Parameterization

Following section 6.6 of [LS18], our baseline parameterization will be

- \( f \) is Beta(1, 1)
- \( g \) is Beta(3, 1.2)
• $\beta = 0.95$ and $c = 0.3$

The densities $f$ and $g$ have the following shape

```python
@vectorize
def p(x, a, b):
 r = gamma(a + b) / (gamma(a) * gamma(b))
 return r * x**(a-1) * (1 - x)**(b-1)

x_grid = np.linspace(0, 1, 100)
f = lambda x: p(x, 1, 1)
g = lambda x: p(x, 3, 1.2)

fig, ax = plt.subplots(figsize=(10, 8))
ax.plot(x_grid, f(x_grid), label='f', lw=2)
ax.plot(x_grid, g(x_grid), label='g', lw=2)
ax.legend()
plt.show()
```
52.2.4 Looking Forward

What kind of optimal policy might result from (52.3) and the parameterization specified above?

Intuitively, if we accept at \( w_a \) and \( w_a \leq w_b \), then — all other things being given — we should also accept at \( w_b \).

This suggests a policy of accepting whenever \( w \) exceeds some threshold value \( \bar{w} \).

But \( \bar{w} \) should depend on \( \pi \) — in fact, it should be decreasing in \( \pi \) because

- \( f \) is a less attractive offer distribution than \( g \)
- larger \( \pi \) means more weight on \( f \) and less on \( g \)

Thus, larger \( \pi \) depresses the worker’s assessment of her future prospects, so relatively low current offers become more attractive.

**Summary:** We conjecture that the optimal policy is of the form \( \bar{w} \geq \bar{w}(\pi) \) for some decreasing function \( \bar{w} \).

52.3 Take 1: Solution by VFI

Let’s set about solving the model and see how our results match with our intuition.

We begin by solving via value function iteration (VFI), which is natural but ultimately turns out to be second best.

The class `SearchProblem` is used to store parameters and methods needed to compute optimal actions.

```python
class SearchProblem:
 """
 A class to store a given parameterization of the "offer distribution unknown" model.
 """

def __init__(self,
 β=0.95, # Discount factor
 c=0.3, # Unemployment compensation
 F_a=1, F_b=1, # Offer distribution parameters
 G_a=3, G_b=1.2, # Offer distribution parameters
 w_max=1, # Maximum wage possible
 w_grid_size=100, # Grid size for wages
 n_grid_size=100, # Grid size for state
 mc_size=500): # Monte Carlo size

 self.β, self.c, self.w_max = β, c, w_max

 self.f = njit(lambda x: p(x, F_a, F_b))
 self.g = njit(lambda x: p(x, G_a, G_b))

 self.n_min, self.n_max = 1e-3, 1-1e-3 # Avoids instability
 self.w_grid = np.linspace(0, w_max, w_grid_size)
 self.n_grid = np.linspace(self.n_min, self.n_max, n_grid_size)

 self.mc_size = mc_size

 self.w_f = np.random.beta(F_a, F_b, mc_size)
 self.w_g = np.random.beta(G_a, G_b, mc_size)
```

52.3. Take 1: Solution by VFI
The following function takes an instance of this class and returns jitted versions of the Bellman operator $T$, and a `get_greedy()` function to compute the approximate optimal policy from a guess $v$ of the value function.

```python
def operator_factory(sp, parallel_flag=True):
 f, g = sp.f, sp.g
 w_f, w_g = sp.w_f, sp.w_g
 c = sp.c
 mc_size = sp.mc_size
 w_grid, n_grid = sp.w_grid, sp.n_grid

 @njit
def v_func(x, y, v):
 return mlinterp((w_grid, n_grid), v, (x, y))

 @njit
def κ(w, π):
 """Updates π using Bayes' rule and the current wage observation w."
 """
 pf, pg = π * f(w), (1 - π) * g(w)
 n_new = pf / (pf + pg)
 return n_new

 @njit(parallel=parallel_flag)
def T(v):
 """The Bellman operator."
 """
 v_new = np.empty_like(v)
 for i in prange(len(w_grid)):
 for j in prange(len(n_grid)):
 w = w_grid[i]
 n = n_grid[j]
 v_1 = w / (1 - β)
 integral_f, integral_g = 0, 0
 for m in prange(mc_size):
 integral_f += v_func(w_f[m], κ(w_f[m], n), v)
 integral_g += v_func(w_g[m], κ(w_g[m], n), v)
 integral = (n * integral_f + (1 - n) * integral_g) / mc_size
 v_2 = c + β * integral
 v_new[i, j] = max(v_1, v_2)
 return v_new

 @njit(parallel=parallel_flag)
def get_greedy(v):
 """Compute optimal actions taking v as the value function."
 """
 σ = np.empty_like(v)
```

(continues on next page)
for i in prange(len(w_grid)):
    for j in prange(len(n_grid)):
        w = w_grid[i]
        π = n_grid[j]

        v_1 = w / (1 - β)

        integral_f, integral_g = 0, 0
        for m in prange(mc_size):
            integral_f += v_func(w_f[m], κ(w_f[m], n), v)
            integral_g += v_func(w_g[m], κ(w_g[m], n), v)
        integral = (n * integral_f + (1 - n) * integral_g) / mc_size

        v_2 = c + β * integral

        σ[i, j] = v_1 > v_2  # Evaluates to 1 or 0

return σ

return T, get_greedy

We will omit a detailed discussion of the code because there is a more efficient solution method that we will use later.

To solve the model we will use the following function that iterates using T to find a fixed point

```python
def solve_model(sp, use_parallel=True, tol=1e-4, max_iter=1000, verbose=True, print_skip=5):

 """
 Solves for the value function
 * sp is an instance of SearchProblem
 """

 T, _ = operator_factory(sp, use_parallel)

 # Set up loop
 i = 0
 error = tol + 1
 m, n = len(sp.w_grid), len(sp.n_grid)

 # Initialize v
 v = np.zeros((m, n)) + sp.c / (1 - sp.β)

 while i < max_iter and error > tol:
 v_new = T(v)
 error = np.max(np.abs(v - v_new))
 i += 1

 if verbose and i % print_skip == 0:
 print(f"Error at iteration {i} is {error}.")

 v = v_new
```

(continues on next page)
if error > tol:
    print("Failed to converge!")
elif verbose:
    print(f"\nConverged in {i} iterations."

return v_new

Let's look at solutions computed from value function iteration

sp = SearchProblem()
sp = solve_model(sp)
fig, ax = plt.subplots(figsize=(6, 6))
ax.contourf(sp.n_grid, sp.w_grid, v_star, 12, alpha=0.6, cmap=cm.jet)
cs = ax.contour(sp.n_grid, sp.w_grid, v_star, 12, colors="black")
ax.clabel(cs, inline=1, fontsize=10)
ax.set(xlabel='$\pi$', ylabel='$w$')
plt.show()

Error at iteration 5 is 0.6330678476425078.
Error at iteration 10 is 0.09405242615911646.
Error at iteration 15 is 0.01878100756479384.
Error at iteration 20 is 0.004027041193312542.
Error at iteration 25 is 0.0008639012783540068.
Error at iteration 30 is 0.00018533502138495805.
Converged in 33 iterations.
We will also plot the optimal policy

```python
T, get_greedy = operator_factory(sp)
g_star = get_greedy(v_star)

fig, ax = plt.subplots(figsize=(6, 6))
ax.contourf(sp.pi_grid, sp.w_grid, g_star, 1, alpha=0.6, cmap=cm.jet)
ax.contour(sp.pi_grid, sp.w_grid, g_star, 1, colors="black")
ax.set(xlabel='π', ylabel='w')
ax.text(0.5, 0.6, 'reject')
ax.text(0.7, 0.9, 'accept')
plt.show()
```
The results fit well with our intuition from section *looking forward*.

- The black line in the figure above corresponds to the function $\bar{w}(\pi)$ introduced there.
- It is decreasing as expected.

### 52.4 Take 2: A More Efficient Method

Let’s consider another method to solve for the optimal policy.

We will use iteration with an operator that has the same contraction rate as the Bellman operator, but

- one dimensional rather than two dimensional
- no maximization step

As a consequence, the algorithm is orders of magnitude faster than VFI.

This section illustrates the point that when it comes to programming, a bit of mathematical analysis goes a long way.
52.5 Another Functional Equation

To begin, note that when \( w = \bar{w}(\pi) \), the worker is indifferent between accepting and rejecting. Hence the two choices on the right-hand side of (52.3) have equal value:

\[
\frac{\bar{w}(\pi)}{1 - \beta} = c + \beta \int v(w', \pi') q_\pi(w') dw'
\] (52.4)

Together, (52.3) and (52.4) give

\[
v(w, \pi) = \max \left\{ \frac{w}{1 - \beta}, \frac{\bar{w}(\pi)}{1 - \beta} \right\}
\] (52.5)

Combining (52.4) and (52.5), we obtain

\[
\frac{\bar{w}(\pi)}{1 - \beta} = c + \beta \int \max \left\{ \frac{w'}{1 - \beta}, \frac{\bar{w}(\pi')}{1 - \beta} \right\} q_\pi(w') dw'
\]

Multiplying by \( 1 - \beta \), substituting in \( \pi' = \kappa(w', \pi) \) and using \( \circ \) for composition of functions yields

\[
\bar{w}(\pi) = (1 - \beta)c + \beta \int \max \{ w', \bar{w} \circ \kappa(w', \pi) \} q_\pi(w') dw'
\] (52.6)

Equation (52.6) can be understood as a functional equation, where \( \bar{w} \) is the unknown function.

- Let’s call it the reservation wage functional equation (RWFE).
- The solution \( \bar{w} \) to the RWFE is the object that we wish to compute.

52.6 Solving the RWFE

To solve the RWFE, we will first show that its solution is the fixed point of a contraction mapping. To this end, let

- \( b[0, 1] \) be the bounded real-valued functions on \([0, 1]\)
- \( \|\omega\| := \sup_{x \in [0, 1]} |\omega(x)| \)

Consider the operator \( Q \) mapping \( \omega \in b[0, 1] \) into \( Q\omega \in b[0, 1] \) via

\[
(Q\omega)(\pi) = (1 - \beta)c + \beta \int \max \{ w', \omega \circ \kappa(w', \pi) \} q_\pi(w') dw'
\] (52.7)

Comparing (52.6) and (52.7), we see that the set of fixed points of \( Q \) exactly coincides with the set of solutions to the RWFE.

- If \( Q\bar{w} = \bar{w} \) then \( \bar{w} \) solves (52.6) and vice versa.

Moreover, for any \( \omega, \omega' \in b[0, 1] \), basic algebra and the triangle inequality for integrals tells us that

\[
|(Q\omega)(\pi) - (Q\omega')(\pi)| \leq \beta \int \max \{ w', \omega \circ \kappa(w', \pi) \} - \max \{ w', \omega' \circ \kappa(w', \pi) \} | q_\pi(w') | q_\pi(w') \] (52.8)

Working case by case, it is easy to check that for real numbers \( a, b, c \) we always have

\[
|\max\{a, b\} - \max\{a, c\}| \leq |b - c|
\] (52.9)
Combining (52.8) and (52.9) yields
\[
|(Q\omega)(\pi) - (Q\omega')(\pi)| \leq \beta \int |\omega \circ \kappa(w', \pi) - \omega' \circ \kappa(w', \pi)| q(w') dw' \leq \beta \|\omega - \omega'\| \tag{52.10}
\]
Taking the supremum over \(\pi\) now gives us
\[
\|Q\omega - Q\omega'\| \leq \beta \|\omega - \omega'\| \tag{52.11}
\]
In other words, \(Q\) is a contraction of modulus \(\beta\) on the complete metric space \((b[0, 1], \| \cdot \|)\).

Hence
\begin{itemize}
  \item A unique solution \(\bar{w}\) to the RWFE exists in \(b[0, 1]\).
  \item \(Q^k\omega \rightarrow \bar{w}\) uniformly as \(k \rightarrow \infty\), for any \(\omega \in b[0, 1]\).
\end{itemize}

52.7 Implementation

The following function takes an instance of SearchProblem and returns the operator \(Q\)

```python
def Q_factory(sp, parallel_flag=True):
 f, g = sp.f, sp.g
 w_f, w_g = sp.w_f, sp.w_g
 β, c = sp.β, sp.c
 mc_size = sp.mc_size
 w_grid, π_grid = sp.w_grid, sp.π_grid

 @njit
 def ω_func(p, ω):
 return interp(π_grid, ω, p)

 @njit(parallel=parallel_flag)
 def κ(w, π):
 """
 Updates π using Bayes’ rule and the current wage observation w.
 """
 pf, pg = π * f(w), (1 - π) * g(w)
 n_new = pf / (pf + pg)
 return n_new

 @njit(parallel=parallel_flag)
 def Q(ω):
 """
 Updates the reservation wage function guess ω via the operator Q.
 """
 ω_new = np.empty_like(ω)
 for i in prange(len(n_grid)):
 n = n_grid[i]
 integral_f, integral_g = 0, 0
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
for m in prange(mc_size):
 integral_f += max(w_f[m], ω_func(κ(w_f[m], π), ω))
 integral_g += max(w_g[m], ω_func(κ(w_g[m], π), ω))
 integral = (n * integral_f + (1 - n) * integral_g) / mc_size

 ω_new[i] = (1 - β) * c + β * integral

return ω_new

return Q
```

In the next exercise, you are asked to compute an approximation to $\bar{w}$.

## 52.8 Exercises

**Exercise 52.8.1**

Use the default parameters and Q_factory to compute an optimal policy.

Your result should coincide closely with the figure for the optimal policy shown above.

Try experimenting with different parameters, and confirm that the change in the optimal policy coincides with your intuition.

## 52.9 Solutions

**Solution to Exercise 52.8.1**

This code solves the “Offer Distribution Unknown” model by iterating on a guess of the reservation wage function.

You should find that the run time is shorter than that of the value function approach.

Similar to above, we set up a function to iterate with Q to find the fixed point

```python
def solve_wbar(sp,
 use_parallel=True,
 tol=1e-4,
 max_iter=1000,
 verbose=True,
 print_skip=5):
 Q = Q_factory(sp, use_parallel)

 # Set up loop
 i = 0
 error = tol + 1
 m, n = len(sp.w_grid), len(sp.n_grid)

 # Initialize w
 w = np.ones_like(sp.n_grid)
```

(continues on next page)
while i < max_iter and error > tol:
    w_new = Q(w)
    error = np.max(np.abs(w - w_new))
    i += 1
    if verbose and i % print_skip == 0:
        print(f"Error at iteration {i} is {error}.")
    w = w_new

if error > tol:
    print("Failed to converge!")
elif verbose:
    print(f"\nConverged in {i} iterations."

return w_new

The solution can be plotted as follows

sp = SearchProblem()
w_bar = solve_wbar(sp)

fig, ax = plt.subplots(figsize=(9, 7))

ax.plot(sp.p_grid, w_bar, color='k')
ax.fill_between(sp.p_grid, 0, w_bar, color='blue', alpha=0.15)
ax.fill_between(sp.p_grid, w_bar, sp.w_max, color='green', alpha=0.15)
ax.text(0.5, 0.6, 'reject')
ax.text(0.7, 0.9, 'accept')
ax.set(xlabel='$\pi$', ylabel='$w$')
ax.grid()
plt.show()

Error at iteration 5 is 0.022245922588685407.
Error at iteration 10 is 0.007471320913189361.
Error at iteration 15 is 0.002051815583704708.
Error at iteration 20 is 0.000506908011311813.
Error at iteration 25 is 0.00012350170719566123.

Converged in 26 iterations.
The next piece of code generates a fun simulation to see what the effect of a change in the underlying distribution on the unemployment rate is.

At a point in the simulation, the distribution becomes significantly worse.

It takes a while for agents to learn this, and in the meantime, they are too optimistic and turn down too many jobs.

As a result, the unemployment rate spikes

```python
F_a, F_b, G_a, G_b = 1, 1, 3, 1.2
sp = SearchProblem(F_a=F_a, F_b=F_b, G_a=G_a, G_b=G_b)
f, g = sp.f, sp.g

Solve for reservation wage
w_bar = solve_wbar(sp, verbose=False)

Interpolate reservation wage function
n_grid = sp.n_grid
w_func = njit(lambda x: interp(n_grid, w_bar, x))
```

(continues on next page)
@njit
def update(a, b, e, π):
    "Update e and π by drawing wage offer from beta distribution with parameters a and b"
    if e == False:
        w = np.random.beta(a, b)  # Draw random wage
        if w >= w_func(π):
            e = True  # Take new job
    else:
        n = 1 / (1 + ((1 - π) * g(w)) / (π * f(w)))
    return e, π

@njit
def simulate_path(F_a=F_a, F_b=F_b, G_a=G_a, G_b=G_b, N=5000, T=600, d=200, s=0.025):
    """Simulates path of employment for N number of works over T periods""
    e = np.ones((N, T+1))
    π = np.full((N, T+1), 1e-3)
    a, b = G_a, G_b  # Initial distribution parameters
    for t in range(T+1):
        if t == d:
            a, b = F_a, F_b  # Change distribution parameters

        # Update each agent
        for n in range(N):
            if e[n, t] == 1:
                p = np.random.uniform(0, 1)
                if p <= s:
                    e[n, t] = 0

        new_e, new_π = update(a, b, e[n, t], π[n, t])
        e[n, t+1] = new_e
        π[n, t+1] = new_π

    return e[:, 1:]

d = 200  # Change distribution at time d
unemployment_rate = 1 - simulate_path(d=d).mean(axis=0)

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(unemployment_rate)
ax.axvline(d, color="#f", alpha=0.6, label='Change date')
52.11 Appendix B

In this appendix we provide more details about how Bayes’ Law contributes to the workings of the model.

We present some graphs that bring out additional insights about how learning works.

We build on graphs proposed in this lecture.

In particular, we’ll add actions of our searching worker to a key graph presented in that lecture.

To begin, we first define two functions for computing the empirical distributions of unemployment duration and \( \pi \) at the time of employment.

```python
@njit
def empirical_dist(F_a, F_b, G_a, G_b, w_bar, \pi_grid,
 N=10000, T=600):
 ""
 Simulates population for computing empirical cumulative
distribution of unemployment duration and \(\pi \) at time when
the worker accepts the wage offer. For each job searching
problem, we simulate for two cases that either \(f \) or \(g \) is
the true offer distribution.
 ""
```

(continues on next page)
Parameters
--------

F_a, F_b, G_a, G_b : parameters of beta distributions F and G.
w_bar : the reservation wage
π_grid : grid points of π, for interpolation
N : number of workers for simulation, optional
T : maximum of time periods for simulation, optional

Returns
-------

accept_t : 2 by N ndarray. the empirical distribution of
unemployment duration when f or g generates offers.
accept_π : 2 by N ndarray. the empirical distribution of
π at the time of employment when f or g generates offers.

accept_t = np.empty((2, N))
accept_π = np.empty((2, N))

# f or g generates offers
for i, (a, b) in enumerate([(F_a, F_b), (G_a, G_b)]):
    # update each agent
    for n in range(N):
        # initial priori
        n = 0.5

        for t in range(T+1):
            # Draw random wage
            w = np.random.beta(a, b)
            lw = p(w, F_a, F_b) / p(w, G_a, G_b)
            n = n * lw / (n * lw + 1 - n)

            # move to next agent if accepts
            if w >= interp(π_grid, w_bar, π):
                break

            # record the unemployment duration
            # and π at the time of acceptance
            accept_t[i, n] = t
            accept_π[i, n] = n

    return accept_t, accept_π

def cumfreq_x(res):
    ""
    A helper function for calculating the x grids of
    the cumulative frequency histogram.
    ""

cumcount = res.cumcount
lowerlimit, binsize = res.lowerlimit, res.binshape
x = lowerlimit + np.linspace(0, binsize*cumcount.size, cumcount.size)

return x

Now we define a wrapper function for analyzing job search models with learning under different parameterizations. The wrapper takes parameters of beta distributions and unemployment compensation as inputs and then displays various things we want to know to interpret the solution of our search model. In addition, it computes empirical cumulative distributions of two key objects.

def job_search_example(F_a=1, F_b=1, G_a=3, G_b=1.2, c=0.3):
    
    Given the parameters that specify F and G distributions, calculate and display the rejection and acceptance area, the evolution of belief π, and the probability of accepting an offer at different π level, and simulate and calculate the empirical cumulative distribution of the duration of unemployment and π at the time the worker accepts the offer.
    
    # construct a search problem
    sp = SearchProblem(F_a=F_a, F_b=F_b, G_a=G_a, G_b=G_b, c=c)
    f, g = sp.f, sp.g
    n_grid = sp.n_grid
    
    # Solve for reservation wage
    w_bar = solve_wbar(sp, verbose=False)
    
    # l(w) = f(w) / g(w)
    l = lambda w: f(w) / g(w)
    # objective function for solving l(w) = 1
    obj = lambda w: l(w) - 1.
    
    # the mode of beta distribution
    # use this to divide w into two intervals for root finding
    G_mode = (G_a - 1) / (G_a + G_b - 2)
    roots = np.empty(2)
    roots[0] = op.root_scalar(obj, bracket=[1e-10, G_mode]).root
    roots[1] = op.root_scalar(obj, bracket=[G_mode, 1-1e-10]).root
    
    fig, axs = plt.subplots(2, 2, figsize=(12, 9))
    
    # part 1: display the details of the model settings and some results
    w_grid = np.linspace(1e-12, 1-1e-12, 100)
    axs[0, 0].plot(l(w_grid), w_grid, label='$l$', lw=2)
    axs[0, 0].vlines(1., 0., 1., linestyle='--')
    axs[0, 0].hlines(roots, 0., 2., linestyle='--')
    axs[0, 0].set_xlim([0., 2.])
    axs[0, 0].legend(loc=4)
    axs[0, 0].set(xlabel='$l(w)=f(w)/g(w)$', ylabel='$w$')
    
    axs[0, 1].plot(sp.n_grid, w_bar, color='k')
    axs[0, 1].fill_between(sp.n_grid, 0, w_bar, color='blue', alpha=0.15)
    axs[0, 1].fill_between(sp.n_grid, sp.w_max, sp.w_max, color='green', alpha=0.15)
axs[0, 1].text(0.5, 0.6, 'reject')
axs[0, 1].text(0.7, 0.9, 'accept')

\[ W = \text{np}.\text{arange}(0.01, 0.99, 0.08) \]
\[ \Pi = \text{np}.\text{arange}(0.01, 0.99, 0.08) \]

\[ \Delta N = \text{np}.\text{zeros}((\text{len}(W), \text{len}(\Pi))) \]
\[ \Delta \Pi = \text{np}.\text{empty}((\text{len}(W), \text{len}(\Pi))) \]

for i, w in enumerate(W):
    for j, n in enumerate(\Pi):
        lw = 1(w)
        \[ \Delta \Pi[i, j] = n \ast (lw / (n \ast lw + 1 - n) - 1) \]

q = axs[0, 1].quiver(\Pi, W, \Delta N, \Delta \Pi, scale=2, color='r', alpha=0.8)

axs[0, 1].hlines(roots, 0., 1., linestyle='--')
axs[0, 1].set(xlabel='$\pi$', ylabel='$\pi w$')
axs[0, 1].grid()

axs[1, 0].plot(f(x_grid), x_grid, label='$g$', lw=2)
axs[1, 0].plot(g(x_grid), x_grid, label='$f$', lw=2)
axs[1, 0].vlines(1., 0., 1., linestyle='--')
axs[1, 0].hlines(roots, 0., 2., linestyle='--')
axs[1, 0].legend(loc=4)
axs[1, 0].set(xlabel='$f(w)$, $g(w)$', ylabel='$\pi w$')

axs[1, 1].plot(sp.n_grid, 1 - beta.cdf(w_bar, F_a, F_b), label='$g$')
axs[1, 1].plot(sp.n_grid, 1 - beta.cdf(w_bar, G_a, G_b), label='$f$')
axs[1, 1].set_xlim([0., 1.])
axs[1, 1].grid()
axs[1, 1].legend(loc=4)
axs[1, 1].set(xlabel='$\pi$', ylabel='$\pi w$')

plt.show()

# part 2: simulate empirical cumulative distribution
accept_t, accept_n = empirical_dist(F_a, F_b, G_a, G_b, w_bar, n_grid)
N = accept_t.shape[1]

cfq_t_F = cumfreq(accept_t[0, :], numbins=100)
cfq_n_F = cumfreq(accept_n[0, :], numbins=100)

cfq_t_G = cumfreq(accept_t[1, :], numbins=100)
cfq_n_G = cumfreq(accept_n[1, :], numbins=100)

fig, axs = plt.subplots(2, 1, figsize=(12, 9))

axs[0].plot(cumfreq_x(cfq_t_F), cfq_t_F.cumcount/N, label='f generates')
axs[0].plot(cumfreq_x(cfq_t_G), cfq_t_G.cumcount/N, label='g generates')
axs[0].grid(linestyle='--')
axs[0].legend(loc=4)
axs[0].title.set_text('CDF of duration of unemployment')
axs[0].set(xlabel='time', ylabel='Prob(time)')

axs[1].plot(cumfreq_x(cfq_n_F), cfq_n_F.cumcount/N, label='f generates')
axs[1].plot(cumfreq_x(cfq_n_G), cfq_n_G.cumcount/N, label='g generates')

(continues on next page)
We now provide some examples that provide insights about how the model works.

### 52.12 Examples

#### 52.12.1 Example 1 (Baseline)

$F \sim \text{Beta}(1, 1)$, $G \sim \text{Beta}(3, 1.2)$, $c=0.3$.

In the graphs below, the red arrows in the upper right figure show how $\pi_t$ is updated in response to the new information $w_t$.

Recall the following formula from this lecture

\[
\frac{\pi_{t+1}}{\pi_t} = \frac{l(w_{t+1})}{\pi_t l(w_{t+1}) + (1 - \pi_t)} \begin{cases} 
> 1 & \text{if } l(w_{t+1}) > 1 \\
\leq 1 & \text{if } l(w_{t+1}) \leq 1
\end{cases}
\]

The formula implies that the direction of motion of $\pi_t$ is determined by the relationship between $l(w_t)$ and 1.

The magnitude is small if

- $l(w)$ is close to 1, which means the new $w$ is not very informative for distinguishing two distributions,
- $\pi_{t-1}$ is close to either 0 or 1, which means the prior is strong.

Will an unemployed worker accept an offer earlier or not, when the actual ruling distribution is $g$ instead of $f$?

Two countervailing effects are at work.

- if $f$ generates successive wage offers, then $w$ is more likely to be low, but $\pi$ is moving up toward 1, which lowers the reservation wage, i.e., the worker becomes less selective the longer he or she remains unemployed.
- if $g$ generates wage offers, then $w$ is more likely to be high, but $\pi$ is moving downward toward 0, increasing the reservation wage, i.e., the worker becomes more selective the longer he or she remains unemployed.

Quantitatively, the lower right figure sheds light on which effect dominates in this example.

It shows the probability that a previously unemployed worker accepts an offer at different values of $\pi$ when $f$ or $g$ generates wage offers.

That graph shows that for the particular $f$ and $g$ in this example, the worker is always more likely to accept an offer when $f$ generates the data even when $\pi$ is close to zero so that the worker believes the true distribution is $g$ and therefore is relatively more selective.

The empirical cumulative distribution of the duration of unemployment verifies our conjecture.
52.12.2 Example 2

$F \sim \text{Beta}(1, 1), \ G \sim \text{Beta}(1.2, 1.2), \ c=0.3$.

Now $G$ has the same mean as $F$ with a smaller variance.

Since the unemployment compensation $c$ serves as a lower bound for bad wage offers, $G$ is now an “inferior” distribution to $F$.

Consequently, we observe that the optimal policy $w(\pi)$ is increasing in $\pi$.

\[
\text{job\_search\_example}(1, 1, 1.2, 1.2, 0.3)
\]
52.12.3 Example 3

$F \sim \text{Beta}(1, 1)$, $G \sim \text{Beta}(2, 2)$, $c=0.3$.

If the variance of $G$ is smaller, we observe in the result that $G$ is even more “inferior” and the slope of $\overline{w}(\pi)$ is larger.

```python
job_search_example(1, 1, 2, 2, 0.3)
```

---

**Figure:**
- CDF of duration of unemployment, $F$ generates $\sim \text{Beta}(1, 1)$, $G$ generates $\sim \text{Beta}(2, 2)$, $c=0.3$.
- CDF of $\pi$ at time worker accepts wage and leaves unemployment, $f$ generates $\sim \text{Beta}(1, 1)$, $g$ generates $\sim \text{Beta}(2, 2)$, $c=0.3$. 
52.12.4 Example 4

\( F \sim \text{Beta}(1, 1), G \sim \text{Beta}(3, 1.2), \) and \( c=0.8. \)

In this example, we keep the parameters of beta distributions to be the same with the baseline case but increase the unemployment compensation \( c. \)

Comparing outcomes to the baseline case (example 1) in which unemployment compensation is low \( (c=0.3), \) now the worker can afford a longer learning period.

As a result, the worker tends to accept wage offers much later.

Furthermore, at the time of accepting employment, the belief \( \pi \) is closer to either 0 or 1.

That means that the worker has a better idea about what the true distribution is when he eventually chooses to accept a wage offer.

\[ \text{job_search_example}(1, 1, 3, 1.2, c=0.8) \]
52.12.5 Example 5

\( F \sim \text{Beta}(1, 1), \ G \sim \text{Beta}(3, 1.2), \) and \( c=0.1. \)

As expected, a smaller \( c \) makes an unemployed worker accept wage offers earlier after having acquired less information about the wage distribution.

```
job_search_example(1, 1, 3, 1.2, c=0.1)
```
53.1 Overview

This lecture describes likelihood ratio processes and some of their uses.

We’ll use a setting described in this lecture.

Among things that we’ll learn are

- A peculiar property of likelihood ratio processes
- How a likelihood ratio process is a key ingredient in frequentist hypothesis testing
- How a receiver operator characteristic curve summarizes information about a false alarm probability and power in frequentist hypothesis testing
- How during World War II the United States Navy devised a decision rule that Captain Garret L. Schyler challenged and asked Milton Friedman to justify to him, a topic to be studied in this lecture

Let’s start by importing some Python tools.

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
```
from numba import vectorize, njit
from math import gamma
from scipy.integrate import quad

53.2 Likelihood Ratio Process

A nonnegative random variable \( W \) has one of two probability density functions, either \( f \) or \( g \).

Before the beginning of time, nature once and for all decides whether she will draw a sequence of IID draws from either \( f \) or \( g \).

We will sometimes let \( q \) be the density that nature chose once and for all, so that \( q \) is either \( f \) or \( g \), permanently.

Nature knows which density it permanently draws from, but we the observers do not.

We do know both \( f \) and \( g \) but we don’t know which density nature chose.

But we want to know.

To do that, we use observations.

We observe a sequence \( \{ w_t \}_{t=1}^{T} \) of \( T \) IID draws from either \( f \) or \( g \).

We want to use these observations to infer whether nature chose \( f \) or \( g \).

A likelihood ratio process is a useful tool for this task.

To begin, we define key component of a likelihood ratio process, namely, the time \( t \) likelihood ratio as the random variable

\[
\ell(w_t) = \frac{f(w_t)}{g(w_t)}, \quad t \geq 1.
\]

We assume that \( f \) and \( g \) both put positive probabilities on the same intervals of possible realizations of the random variable \( W \).

That means that under the \( g \) density, \( \ell(w_t) = \frac{f(w_t)}{g(w_t)} \) is evidently a nonnegative random variable with mean 1.

A likelihood ratio process for sequence \( \{ w_t \}_{t=1}^{\infty} \) is defined as

\[
L(w^t) = \prod_{i=1}^{t} \ell(w_i),
\]

where \( w^t = \{ w_1, \ldots, w_t \} \) is a history of observations up to and including time \( t \).

Sometimes for shorthand we’ll write \( L_t = L(w^t) \).

Notice that the likelihood process satisfies the recursion or multiplicative decomposition

\[
L(w^t) = \ell(w_t) L(w^{t-1}).
\]

The likelihood ratio and its logarithm are key tools for making inferences using a classic frequentist approach due to Neyman and Pearson [NP33].

To help us appreciate how things work, the following Python code evaluates \( f \) and \( g \) as two different beta distributions, then computes and simulates an associated likelihood ratio process by generating a sequence \( w^t \) from one of the two probability distributionss, for example, a sequence of IID draws from \( g \).
# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):
    r = gamma(a + b) / (gamma(a) * gamma(b))
    return r * x**(a-1) * (1 - x)**(b-1)

# The two density functions.
f = njit(lambda x: p(x, F_a, F_b))
g = njit(lambda x: p(x, G_a, G_b))

@njit
def simulate(a, b, T=50, N=500):
    ""
    Generate N sets of T observations of the likelihood ratio,
    return as N x T matrix.
    ""
    l_arr = np.empty((N, T))
    for i in range(N):
        for j in range(T):
            w = np.random.beta(a, b)
            l_arr[i, j] = f(w) / g(w)
    return l_arr

53.3 Nature Permanently Draws from Density g

We first simulate the likelihood ratio process when nature permanently draws from $g$.

l_arr_g = simulate(G_a, G_b)
l_seq_g = np.cumprod(l_arr_g, axis=1)

N, T = l_arr_g.shape
for i in range(N):
    plt.plot(range(T), l_seq_g[i, :], color='b', lw=0.8, alpha=0.5)
plt.ylim([0, 3])
plt.title("$L(w^\{t\})$ paths");
Evidently, as sample length $T$ grows, most probability mass shifts toward zero.

To see it more clearly, we plot over time the fraction of paths $L(w^t)$ that fall in the interval $[0, 0.01]$.

```python
plt.plot(range(T), np.sum(l_seq_g <= 0.01, axis=0) / N)
```

Despite the evident convergence of most probability mass to a very small interval near 0, the unconditional mean of $L(w^t)$ under probability density $g$ is identically 1 for all $t$. 
To verify this assertion, first notice that as mentioned earlier the unconditional mean \( E[\ell(w_t) \mid q = g] \) is 1 for all \( t \):

\[
E[\ell(w_t) \mid q = g] = \int \frac{f(w_t)}{g(w_t)} g(w_t) \, dw_t \\
= \int f(w_t) \, dw_t \\
= 1,
\]

which immediately implies

\[
E[L(w^t) \mid q = g] = E[\ell(w_1) \mid q = g] = 1.
\]

Because \( L(w^t) = \ell(w_t)L(w^{t-1}) \) and \( \{w_t\}_{t=1} \) is an IID sequence, we have

\[
E[L(w^t) \mid q = g] = E[L(w^{t-1}) \ell(w_t) \mid q = g] \\
= E[L(w^{t-1}) E[\ell(w_t) \mid q = g, w^{t-1}] \mid q = g] \\
= E[L(w^{t-1}) E[\ell(w_t) \mid q = g] \mid q = g] \\
= E[L(w^{t-1}) \mid q = g]
\]

for any \( t \geq 1 \).

Mathematical induction implies \( E[L(w^t) \mid q = g] = 1 \) for all \( t \geq 1 \).

### 53.4 Peculiar Property

How can \( E[L(w^t) \mid q = g] = 1 \) possibly be true when most probability mass of the likelihood ratio process is piling up near 0 as \( t \to +\infty \)?

The answer has to be that as \( t \to +\infty \), the distribution of \( L_t \) becomes more and more fat-tailed: enough mass shifts to larger and larger values of \( L_t \) to make the mean of \( L_t \) continue to be one despite most of the probability mass piling up near 0.

To illustrate this peculiar property, we simulate many paths and calculate the unconditional mean of \( L(w^t) \) by averaging across these many paths at each \( t \).

```python
l_arr_g = simulate(G_a, G_b, N=50000)
l_seq_g = np.cumprod(l_arr_g, axis=1)
```

It would be useful to use simulations to verify that unconditional means \( E[L(w^t)] \) equal unity by averaging across sample paths.

But it would be too computer-time-consuming for us to that here simply by applying a standard Monte Carlo simulation approach.

The reason is that the distribution of \( L(w^t) \) is extremely skewed for large values of \( t \).

Because the probability density in the right tail is close to 0, it just takes too much computer time to sample enough points from the right tail.

We explain the problem in more detail in this lecture.

There we describe a way to an alternative way to compute the mean of a likelihood ratio by computing the mean of a different random variable by sampling from a different probability distribution.
53.5 Nature Permanently Draws from Density $f$

Now suppose that before time $0$ nature permanently decided to draw repeatedly from density $f$.

While the mean of the likelihood ratio $\ell(w_t)$ under density $g$ is 1, its mean under the density $f$ exceeds one.

To see this, we compute

$$E[\ell(w_t) \mid q = f] = \int \frac{f(w_t)}{g(w_t)} f(w_t) dw_t$$

$$= \int \frac{f(w_t) f(w_t)}{g(w_t) g(w_t)} g(w_t) dw_t$$

$$= \int \ell(w_t)^2 g(w_t) dw_t$$

$$= E[\ell(w_t)^2 \mid q = g]$$

$$= E[\ell(w_t) \mid q = g]^2 + Var(\ell(w_t) \mid q = g)$$

$$> E[\ell(w_t) \mid q = g]^2 = 1$$

This in turn implies that the unconditional mean of the likelihood ratio process $L(w^t)$ diverges toward $+\infty$.

Simulations below confirm this conclusion.

Please note the scale of the $y$ axis.

```python
l_arr_f = simulate(F_a, F_b, N=50000)
l_seq_f = np.cumprod(l_arr_f, axis=1)

N, T = l_arr_f.shape
plt.plot(range(T), np.mean(l_seq_f, axis=0))
```

We also plot the probability that $L(w^t)$ falls into the interval $[10000, \infty)$ as a function of time and watch how fast probability mass diverges to $+\infty$. 

We also plot the probability that $L(w^t)$ falls into the interval $[10000, \infty)$ as a function of time and watch how fast probability mass diverges to $+\infty$. 

908 Chapter 53. Likelihood Ratio Processes
53.6 Likelihood Ratio Test

We now describe how to employ the machinery of Neyman and Pearson [NP33] to test the hypothesis that history $w^t$ is generated by repeated IID draws from density $g$.

Denote $q$ as the data generating process, so that $q = f$ or $g$.

Upon observing a sample $\{W_i\}_{i=1}^t$, we want to decide whether nature is drawing from $g$ or from $f$ by performing a (frequentist) hypothesis test.

We specify

- Null hypothesis $H_0$: $q = f$,
- Alternative hypothesis $H_1$: $q = g$.

Neyman and Pearson proved that the best way to test this hypothesis is to use a likelihood ratio test that takes the form:

- reject $H_0$ if $L(W^t) < c$,
- accept $H_0$ otherwise.

where $c$ is a given discrimination threshold, to be chosen in a way we'll soon describe.

This test is best in the sense that it is a uniformly most powerful test.

To understand what this means, we have to define probabilities of two important events that allow us to characterize a test associated with a given threshold $c$.

The two probabilities are:

- Probability of detection (= power = 1 minus probability of Type II error):

$$1 - \beta \equiv \Pr \{ L(w^t) < c \mid q = g \}$$
• Probability of false alarm (= significance level = probability of Type I error):

$$\alpha \equiv \Pr\{L(w^t) < c \mid q = f\}$$

The Neyman-Pearson Lemma states that among all possible tests, a likelihood ratio test maximizes the probability of detection for a given probability of false alarm.

Another way to say the same thing is that among all possible tests, a likelihood ratio test maximizes power for a given significance level.

To have made a good inference, we want a small probability of false alarm and a large probability of detection.

With sample size \(t\) fixed, we can change our two probabilities by adjusting \(c\).

A troublesome “that’s life” fact is that these two probabilities move in the same direction as we vary the critical value \(c\).

Without specifying quantitative losses from making Type I and Type II errors, there is little that we can say about how we should trade off probabilities of the two types of mistakes.

We do know that increasing sample size \(t\) improves statistical inference.

Below we plot some informative figures that illustrate this.

We also present a classical frequentist method for choosing a sample size \(t\).

Let’s start with a case in which we fix the threshold \(c\) at 1.

Below we plot empirical distributions of logarithms of the cumulative likelihood ratios simulated above, which are generated by either \(f\) or \(g\).

Taking logarithms has no effect on calculating the probabilities because the log is a monotonic transformation.

As \(t\) increases, the probabilities of making Type I and Type II errors both decrease, which is good.

This is because most of the probability mass of \(\log(L(w^t))\) moves toward \(-\infty\) when \(g\) is the data generating process, while \(\log(L(w^t))\) goes to \(\infty\) when data are generated by \(f\).

That disparate behavior of \(\log(L(w^t))\) under \(f\) and \(g\) is what makes it possible to distinguish \(q = f\) from \(q = g\).
The graph below shows more clearly that, when we hold the threshold $c$ fixed, the probability of detection monotonically increases with increases in $t$ and that the probability of a false alarm monotonically decreases.

```python
PD = np.empty(T)
PFA = np.empty(T)
for t in range(T):
 PD[t] = np.sum(l_seq_g[:, t] < c) / N
 PFA[t] = np.sum(l_seq_f[:, t] < c) / N
plt.plot(range(T), PD, label="Probability of detection")
plt.plot(range(T), PFA, label="Probability of false alarm")
plt.xlabel("t")
plt.title("$c=1$")
plt.legend()
plt.show()
```
For a given sample size $t$, the threshold $c$ uniquely pins down probabilities of both types of error.

If for a fixed $t$ we now free up and move $c$, we will sweep out the probability of detection as a function of the probability of false alarm.

This produces what is called a receiver operating characteristic curve.

Below, we plot receiver operating characteristic curves for different sample sizes $t$.

```python
PFA = np.arange(0, 100, 1)
for t in range(1, 15, 4):
 percentile = np.percentile(l_seq_f[:, t], PFA)
 PD = [np.sum(l_seq_g[:, t] < p) / N for p in percentile]
 plt.plot(PFA / 100, PD, label=f"t={t}")
plt.scatter(0, 1, label="perfect detection")
plt.plot([0, 1], [0, 1], color='k', ls='--', label="random detection")
plt.arrow(0.5, 0.5, -0.15, 0.15, head_width=0.03)
plt.text(0.35, 0.7, "better")
plt.xlabel("Probability of false alarm")
plt.ylabel("Probability of detection")
plt.legend()
plt.title("Receiver Operating Characteristic Curve")
plt.show()
```
Notice that as $t$ increases, we are assured a larger probability of detection and a smaller probability of false alarm associated with a given discrimination threshold $c$.

As $t \to +\infty$, we approach the perfect detection curve that is indicated by a right angle hinging on the blue dot.

For a given sample size $t$, the discrimination threshold $c$ determines a point on the receiver operating characteristic curve.

It is up to the test designer to trade off probabilities of making the two types of errors.

But we know how to choose the smallest sample size to achieve given targets for the probabilities.

Typically, frequentists aim for a high probability of detection that respects an upper bound on the probability of false alarm.

Below we show an example in which we fix the probability of false alarm at 0.05.

The required sample size for making a decision is then determined by a target probability of detection, for example, 0.9, as depicted in the following graph.

```python
PFA = 0.05
PD = np.empty(T)
for t in range(T):
 c = np.percentile(l_seq_f[:, t], PFA * 100)
 PD[t] = np.sum(l_seq_g[:, t] < c) / N
plt.plot(range(T), PD)
plt.axhline(0.9, color="k", ls="--")
plt.xlabel("t")
plt.ylabel("Probability of detection")
plt.title("Probability of false alarm={PFA}")
plt.show()
```
The United States Navy evidently used a procedure like this to select a sample size $t$ for doing quality control tests during World War II.

A Navy Captain who had been ordered to perform tests of this kind had doubts about it that he presented to Milton Friedman, as we describe in this lecture.

### 53.7 Kullback–Leibler Divergence

Now let’s consider a case in which neither $g$ nor $f$ generates the data.

Instead, a third distribution $h$ does.

Let’s watch how how the cumulated likelihood ratios $f/g$ behave when $h$ governs the data.

A key tool here is called Kullback–Leibler divergence.

It is also called relative entropy.

It measures how one probability distribution differs from another.

In our application, we want to measure how $f$ or $g$ diverges from $h$.

The two Kullback–Leibler divergences pertinent for us are $K_f$ and $K_g$ defined as

$$K_f = E_h \left[ \log \left( \frac{f(w)}{h(w)} \right) \frac{f(w)}{h(w)} \right]$$

$$= \int \log \left( \frac{f(w)}{h(w)} \right) \frac{f(w)}{h(w)} h(w) dw$$

$$= \int \log \left( \frac{f(w)}{h(w)} \right) f(w) dw$$
\[ K_g = E_h \left[ \log \left( \frac{g(w)}{h(w)} \right) \frac{g(w)}{h(w)} \right] \]

\[
= \int \log \left( \frac{g(w)}{h(w)} \right) \frac{g(w)}{h(w)} h(w) \, dw \\
= \int \log \left( \frac{g(w)}{h(w)} \right) g(w) \, dw
\]

When \( K_g < K_f \), \( g \) is closer to \( h \) than \( f \) is.

- In that case we’ll find that \( L(w^f) \to 0 \).

When \( K_g > K_f \), \( f \) is closer to \( h \) than \( g \) is.

- In that case we’ll find that \( L(w^f) \to +\infty \)

We’ll now experiment with an \( h \) is also a beta distribution

We’ll start by setting parameters \( G_a \) and \( G_b \) so that \( h \) is closer to \( g \)

\[
H_a, H_b = 3.5, 1.8 \\
h = njit(\lambda x: p(x, H_a, H_b))
\]

\[
x\_range = np.linspace(0, 1, 100) \\
plt.plot(x\_range, f(x\_range), label='f') \\
plt.plot(x\_range, g(x\_range), label='g') \\
plt.plot(x\_range, h(x\_range), label='h') \\
plt.legend() \\
plt.show()
\]

Let’s compute the Kullback–Leibler discrepancies by quadrature integration.

```python

def KL_integrand(w, q, h):
 m = q(w) / h(w)
 return np.log(m) * q(w)
```

53.7. Kullback–Leibler Divergence
def compute_KL(h, f, g):
    Kf, _ = quad(KL_integrand, 0, 1, args=(f, h))
    Kg, _ = quad(KL_integrand, 0, 1, args=(g, h))
    return Kf, Kg

Kf, Kg = compute_KL(h, f, g)
Kf, Kg

(0.7902536603660161, 0.08554075759988769)

We have $K_g < K_f$.

Next, we can verify our conjecture about $L(w^t)$ by simulation.

l_arr_h = simulate(H_a, H_b)
l_seq_h = np.cumprod(l_arr_h, axis=1)

The figure below plots over time the fraction of paths $L(w^t)$ that fall in the interval $[0, 0.01]$.

Notice that it converges to 1 as expected when $g$ is closer to $h$ than $f$ is.

N, T = l_arr_h.shape
plt.plot(range(T), np.sum(l_seq_h <= 0.01, axis=0) / N)

We can also try an $h$ that is closer to $f$ than is $g$ so that now $K_g$ is larger than $K_f$.

H_a, H_b = 1.2, 1.2
h = njit(lambda x: p(x, H_a, H_b))
Kf, Kg = compute_KL(h, f, g)
Kf, Kg

(0.01239249754452668, 0.35377684280997646)

l_arr_h = simulate(H_a, H_b)
l_seq_h = np.cumprod(l_arr_h, axis=1)

Now probability mass of $L(u^t)$ falling above 10000 diverges to $+\infty$.

N, T = l_arr_h.shape
plt.plot(range(T), np.sum(l_seq_h > 10000, axis=0) / N)

53.8 Sequels

Likelihood processes play an important role in Bayesian learning, as described in this lecture and as applied in this lecture. Likelihood ratio processes appear again in this lecture, which contains another illustration of the peculiar property of likelihood ratio processes described above.
54.1 Overview

In this lecture we described a peculiar property of a likelihood ratio process, namely, that its mean equals one for all \( t \geq 0 \) despite it's converging to zero almost surely.

While it is easy to verify that peculiar property analytically (i.e., in population), it is challenging to use a computer simulation to verify it via an application of a law of large numbers that entails studying sample averages of repeated simulations.

To confront this challenge, this lecture puts importance sampling to work to accelerate convergence of sample averages to population means.

We use importance sampling to estimate the mean of a cumulative likelihood ratio \( L (\omega) = \prod_{i=1}^{t} \ell (\omega_i) \).

We start by importing some Python packages.

```python
import numpy as np
from numba import njit, vectorize, prange
import matplotlib.pyplot as plt

#matplotlib inline
from math import gamma
from scipy.stats import beta
```
## 54.2 Mathematical Expectation of Likelihood Ratio

In this lecture, we studied a likelihood ratio \( \ell (\omega_t) \)

\[
\ell (\omega_t) = \frac{f (\omega_t)}{g (\omega_t)}
\]

where \( f \) and \( g \) are densities for Beta distributions with parameters \( F_a, F_b, G_a, G_b \).

Assume that an i.i.d. random variable \( \omega_t \in \Omega \) is generated by \( g \).

The cumulative likelihood ratio \( L (\omega^t) \) is

\[
L (\omega^t) = \prod_{i=1}^{t} \ell (\omega_i)
\]

Our goal is to approximate the mathematical expectation \( E [L (\omega^t)] \) well.

In this lecture, we showed that \( E [L (\omega^t)] \) equals 1 for all \( t \). We want to check out how well this holds if we replace \( E \) by with sample averages from simulations.

This turns out to be easier said than done because for Beta distributions assumed above, \( L (\omega^t) \) has a very skewed distribution with a very long tail as \( t \to \infty \).

This property makes it difficult efficiently and accurately to estimate the mean by standard Monte Carlo simulation methods.

In this lecture we explore how a standard Monte Carlo method fails and how importance sampling provides a more computationally efficient way to approximate the mean of the cumulative likelihood ratio.

We first take a look at the density functions \( f \) and \( g \).

```python
Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(w, a, b):
 r = gamma(a + b) / (gamma(a) * gamma(b))
 return r * w ** (a-1) * (1 - w) ** (b-1)

The two density functions.
f = njit(lambda w: p(w, F_a, F_b))
g = njit(lambda w: p(w, G_a, G_b))

w_range = np.linspace(1e-5, 1-1e-5, 1000)
plt.plot(w_range, g(w_range), label='g')
plt.plot(w_range, f(w_range), label='f')
plt.xlabel('ω')
plt.legend()
plt.title('density functions f and g')
plt.show()
```
The likelihood ratio is \( l(w) = \frac{f(w)}{g(w)} \).

```python
l = njit(lambda w: f(w) / g(w))
plt.plot(w_range, l(w_range))
plt.title('$\ell(\omega)$')
plt.xlabel('ω')
plt.show()
```
The above plots shows that as $\omega \to 0$, $f(\omega)$ is unchanged and $g(\omega) \to 0$, so the likelihood ratio approaches infinity.

A Monte Carlo approximation of $\hat{E}[L(\omega)] = \hat{E}\left[\prod_{i=1}^{T} \ell(\omega_i)\right]$ would repeatedly draw $\omega$ from $g$, calculate the likelihood ratio $\ell(\omega) = \frac{f(\omega)}{g(\omega)}$ for each draw, then average these over all draws.

Because $g(\omega) \to 0$ as $\omega \to 0$, such a simulation procedure undersamples a part of the sample space $[0, 1]$ that it is important to visit often in order to do a good job of approximating the mathematical expectation of the likelihood ratio $\ell(\omega)$.

We illustrate this numerically below.

### 54.3 Importance sampling

We circumvent the issue by using a change of distribution called importance sampling. Instead of drawing from $g$ to generate data during the simulation, we use an alternative distribution $h$ to generate draws of $\omega$.

The idea is to design $h$ so that it oversamples the region of $\Omega$ where $\ell(\omega_i)$ has large values but low density under $g$.

After we construct a sample in this way, we must then weight each realization by the likelihood ratio of $g$ and $h$ when we compute the empirical mean of the likelihood ratio.

By doing this, we properly account for the fact that we are using $h$ and not $g$ to simulate data.

To illustrate, suppose were interested in $E[\ell(\omega)]$. 
We could simply compute:

$$\hat{E}^g[\ell(\omega)] = \frac{1}{N} \sum_{i=1}^{N} \ell(w_i^g)$$

where $\omega_i^g$ indicates that $\omega_i$ is drawn from $g$.

But using our insight from importance sampling, we could instead calculate the object:

$$\hat{E}^h[\ell(\omega) \cdot \frac{g(w)}{h(w)}] = \frac{1}{N} \sum_{i=1}^{N} \ell(w_i^h) \cdot \frac{g(w_i^h)}{h(w_i^h)}$$

where $w_i$ is now drawn from importance distribution $h$.

Notice that the above two are exactly the same population objects:

$$E^g[\ell(\omega)] = \int_{\Omega} \ell(\omega) g(\omega) d\omega = \int_{\Omega} \ell(\omega) \cdot \frac{g(\omega)}{h(\omega)} h(\omega) d\omega = E^h[\ell(\omega) \cdot \frac{g(\omega)}{h(\omega)}]$$

### 54.4 Selecting a Sampling Distribution

Since we must use an $h$ that has larger mass in parts of the distribution to which $g$ puts low mass, we use $h = Beta(0.5, 0.5)$ as our importance distribution.

The plots compare $g$ and $h$.

```python

```
Approximating a cumulative likelihood ratio

We now study how to use importance sampling to approximate \( E[L(\omega^t)] = \prod_{t=1}^{T} \ell(\omega_t) \).

As above, our plan is to draw sequences \( \omega^t \) from \( q \) and then re-weight the likelihood ratio appropriately:

\[
\hat{E}^p [L(\omega^t)] = \hat{E}^p \left[ \prod_{t=1}^{T} \ell(\omega_t) \right] = \hat{E}^q \left[ \prod_{t=1}^{T} \ell(\omega_t) \frac{p(\omega_t)}{q(\omega_t)} \right] = \frac{1}{N} \sum_{i=1}^{N} \left( \prod_{t=1}^{T} \ell(\omega^q_{i,t}) \frac{p(\omega^q_{i,t})}{q(\omega^q_{i,t})} \right)
\]

where the last equality uses \( \omega^q_{i,t} \) drawn from the importance distribution \( q \).

Here \( \frac{p(\omega^q_{i,t})}{q(\omega^q_{i,t})} \) is the weight we assign to each data point \( \omega^q_{i,t} \).

Below we prepare a Python function for computing the importance sampling estimates given any beta distributions \( p, q \).

```python
@njit(parallel=True)
def estimate(p_a, p_b, q_a, q_b, T=1, N=10000):
 L = 1
 weight = 1
 for t in range(T):
 w = np.random.beta(q_a, q_b)
```

(continues on next page)
Consider the case when $T = 1$, which amounts to approximating $E_0 [\ell (\omega)]$.

For the standard Monte Carlo estimate, we can set $p = g$ and $q = g$.

For our importance sampling estimate, we set $q = h$.

Evidently, even at $T = 1$, our importance sampling estimate is closer to 1 than is the Monte Carlo estimate.

Bigger differences arise when computing expectations over longer sequences, $E_0 [L (\omega^t)]$.

Setting $T = 10$, we find that the Monte Carlo method severely underestimates the mean while importance sampling still produces an estimate close to its theoretical value of unity.

54.6 Distribution of Sample Mean

We next study the bias and efficiency of the Monte Carlo and importance sampling approaches.

The code below produces distributions of estimates using both Monte Carlo and importance sampling methods.
Again, we first consider estimating $E[\ell(\omega)]$ by setting $T=1$.

We simulate 1000 times for each method.

```
N_simu = 1000
μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu)
```

# standard Monte Carlo (mean and std)
np.nanmean(μ_L_p), np.nanvar(μ_L_p)

```
(1.000497752740655, 0.019965863788310573)
```

# importance sampling (mean and std)
np.nanmean(μ_L_q), np.nanvar(μ_L_q)

```
(0.9997925064553926, 2.2880507403448997e-05)
```

Although both methods tend to provide a mean estimate of $E[\ell(\omega)]$ close to 1, the importance sampling estimates have smaller variance.

Next, we present distributions of estimates for $\hat{E}[L(\omega^t)]$, in cases for $T = 1, 5, 10, 20$.

```
fig, axs = plt.subplots(2, 2, figsize=(14, 10))
μ_range = np.linspace(0, 2, 100)
for i, t in enumerate([1, 5, 10, 20]):
 row = i // 2
 col = i % 2
 μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu, t)
 μ_hat_p, μ_hat_q = np.nanmean(μ_L_p), np.nanmean(μ_L_q)
 σ_hat_p, σ_hat_q = np.nanvar(μ_L_p), np.nanvar(μ_L_q)
 axs[row, col].set_xlabel('$μ_L$')
 axs[row, col].set_ylabel('frequency')
 axs[row, col].set_title(f'$T=${t}')
 n_p, bins_p, _ = axs[row, col].hist(μ_L_p, bins=μ_range, color='r', alpha=0.5,
 label='g generating')
 n_q, bins_q, _ = axs[row, col].hist(μ_L_q, bins=μ_range, color='b', alpha=0.5,
 label='h generating')
 axs[row, col].legend(loc=4)
 for n, bins, μ_hat, σ_hat in [[n_p, bins_p, μ_hat_p, σ_hat_p],
(continues on next page)
The simulation exercises above show that the importance sampling estimates are unbiased under all T while the standard Monte Carlo estimates are biased downwards. Evidently, the bias increases with increases in T.

54.7 More Thoughts about Choice of Sampling Distribution

Above, we arbitrarily chose $h = Beta(0.5, 0.5)$ as the importance distribution. Is there an optimal importance distribution? In our particular case, since we know in advance that $E_0 [L (\omega^t)] = 1$. We can use that knowledge to our advantage. Thus, suppose that we simply use $h = f$.
When estimating the mean of the likelihood ratio (T=1), we get:

\[
\hat{E}_f \left[\frac{\ell(\omega) g(\omega)}{f(\omega)} \right] = \hat{E}_f \left[\frac{f(\omega) g(\omega)}{g(\omega) f(\omega)} \right] = \frac{1}{N} \sum_{i=1}^{N} \frac{\ell(w_i^f) g(w_i^f)}{f(w_i^f)} = 1
\]

\[\mu_L_p, \mu_L_q = \text{simulate}(g_a, g_b, F_a, F_b, N_{simu})\]

\[
\text{# importance sampling (mean and std)}
\text{np.nanmean(\mu_L_q), np.nanvar(\mu_L_q)}
\]

\[(1.0, 0.0)\]

We could also use other distributions as our importance distribution.

Below we choose just a few and compare their sampling properties.

\[\text{a_list} = [0.5, 1., 2.]\]
\[\text{b_list} = [0.5, 1.2, 5.]\]

\[\text{w_range} = \text{np.linspace(1e-5, 1-1e-5, 1000)}\]
\[\text{plt.plot(w_range, q(w_range), label='p=\text{Beta}(g_a, g_b)')}\]
\[\text{plt.plot(w_range, p(w_range, a_list[0], b_list[0]), label='g=\text{Beta}(a_list[0], b_list[0])')}\]
\[\text{plt.plot(w_range, p(w_range, a_list[1], b_list[1]), label='g=\text{Beta}(a_list[1], b_list[1])')}\]
\[\text{plt.plot(w_range, p(w_range, a_list[2], b_list[2]), label='g=\text{Beta}(a_list[2], b_list[2])')}\]
\[\text{plt.title('real data generating process g and importance distribution h')}\]
\[\text{plt.legend()}\]
\[\text{plt.ylim([0., 3.])}\]
\[\text{plt.show()}\]
We consider two additional distributions.

As a reminder h_1 is the original $Beta(0.5, 0.5)$ distribution that we used above.

h_2 is the $Beta(1, 1.2)$ distribution.

Note how h_2 has a similar shape to g at higher values of distribution but more mass at lower values.

Our hunch is that h_2 should be a good importance sampling distribution.

h_3 is the $Beta(2, 5)$ distribution.

Note how h_3 has zero mass at values very close to 0 and at values close to 1.

Our hunch is that h_3 will be a poor importance sampling distribution.

We first simulate a plot the distribution of estimates for $\hat{E}[L(\omega^j)]$ using h_2 as the importance sampling distribution.

```python
h_a = a_list[1]
h_b = b_list[1]

fig, axs = plt.subplots(1, 2, figsize=(14, 10))

μ_range = np.linspace(0, 2, 100)

for i, t in enumerate([1, 20]):
    μ_L_p, μ_L_q = simulate(g_a, g_b, h_a, h_b, N_simu, T=t)
    μ_hat_p, μ_hat_q = np.nanmean(μ_L_p), np.nanmean(μ_L_q)
    σ_hat_p, σ_hat_q = np.nanvar(μ_L_p), np.nanvar(μ_L_q)
```

(continues on next page)
Our simulations suggest that indeed h_2 is a quite good importance sampling distribution for our problem. Even at $T = 20$, the mean is very close to 1 and the variance is small.

$h_a = a_list[2]$
$h_b = b_list[2]$

fig, axs = plt.subplots(1, 2, figsize=(14, 10))
\[\mu_{\text{range}} = \text{np.linspace}(0, 2, 100) \]

\begin{verbatim}
for i, t in enumerate([1, 20]):

 \[\mu_{\text{L}, p}, \mu_{\text{L}, q} = \text{simulate}(g_a, g_b, h_a, h_b, N_{\text{simu}}, T=t) \]
 \[\mu_{\text{hat}, p}, \mu_{\text{hat}, q} = \text{np.nanmean}(\mu_{\text{L}, p}), \text{np.nanmean}(\mu_{\text{L}, q}) \]
 \[\sigma_{\text{hat}, p}, \sigma_{\text{hat}, q} = \text{np.nanvar}(\mu_{\text{L}, p}), \text{np.nanvar}(\mu_{\text{L}, q}) \]

 axs[i].set_xlabel('\textit{\$\mu_{L}\$}')
 axs[i].set_ylabel('frequency')
 axs[i].set_title(f'\textit{\T=\{t\}}')
 n_p, bins_p, _ = axs[i].hist(\mu_{\text{L}, p}, bins=\mu_{\text{range}}, color='r', alpha=0.5, label='\textit{\$g \hookrightarrow \$ generating}')
 n_q, bins_q, _ = axs[i].hist(\mu_{\text{L}, q}, bins=\mu_{\text{range}}, color='b', alpha=0.5, label='\textit{\$h_\hookrightarrow \$ generating}')
 axs[i].legend(loc=4)

 for n, bins, \mu_{\text{hat}}, \sigma_{\text{hat}} in [[n_p, bins_p, \mu_{\text{hat}, p}, \sigma_{\text{hat}, p}],
 [n_q, bins_q, \mu_{\text{hat}, q}, \sigma_{\text{hat}, q}]]:
 idx = \text{np.argmax}(n)
 axs[i].text(bins[idx], n[idx], '\textit{\$\hat{\mu}$='+f'(\mu_{\text{hat}}:.4g)'+', \$\hat{\sigma}$='+f'(\sigma_{\text{hat}}:.4g)'}

plt.show()
\end{verbatim}
However, h_3 is evidently a poor importance sampling distribution for the problem, with a mean estimate far away from 1 for $T = 20$.

Notice that even at $T = 1$, the mean estimate with importance sampling is more biased than just sampling with g itself. Thus, our simulations suggest that we would be better off simply using Monte Carlo approximations under g than using h_3 as an importance sampling distribution for our problem.
A PROBLEM THAT STUMPED MILTON FRIEDMAN

(and that Abraham Wald solved by inventing sequential analysis)

Contents

• A Problem that Stumped Milton Friedman
 – Overview
 – Origin of the Problem
 – A Dynamic Programming Approach
 – Implementation
 – Analysis
 – Comparison with Neyman-Pearson Formulation
 – Sequels

In addition to what’s in Anaconda, this lecture will need the following libraries:

```
pip install quantecon
pip install interpolation
```

55.1 Overview

This lecture describes a statistical decision problem encountered by Milton Friedman and W. Allen Wallis during World War II when they were analysts at the U.S. Government’s Statistical Research Group at Columbia University.

This problem led Abraham Wald [Wal47] to formulate sequential analysis, an approach to statistical decision problems intimately related to dynamic programming.

In this lecture, we apply dynamic programming algorithms to Friedman and Wallis and Wald’s problem.

Key ideas in play will be:

• Bayes’ Law
• Dynamic programming
• Type I and type II statistical errors
 – a type I error occurs when you reject a null hypothesis that is true
Quantitative Economics with Python

- a type II error is when you accept a null hypothesis that is false

- Abraham Wald's sequential probability ratio test
- The power of a statistical test
- The critical region of a statistical test
- A uniformly most powerful test

We'll begin with some imports:

```python
import numpy as np
import matplotlib.pyplot as plt
from numba import jit, prange, float64, int64
from numba.experimental import jitclass
from interpolation import interp
from math import gamma
```

This lecture uses ideas studied in this lecture, this lecture, and this lecture.

55.2 Origin of the Problem

On pages 137-139 of his 1998 book *Two Lucky People* with Rose Friedman [FF98], Milton Friedman described a problem presented to him and Allen Wallis during World War II, when they worked at the US Government's Statistical Research Group at Columbia University.

Let's listen to Milton Friedman tell us what happened

In order to understand the story, it is necessary to have an idea of a simple statistical problem, and of the standard procedure for dealing with it. The actual problem out of which sequential analysis grew will serve. The Navy has two alternative designs (say A and B) for a projectile. It wants to determine which is superior. To do so it undertakes a series of paired firings. On each round, it assigns the value 1 or 0 to A accordingly as its performance is superior or inferior to that of B and conversely 0 or 1 to B. The Navy asks the statistician how to conduct the test and how to analyze the results.

The standard statistical answer was to specify a number of firings (say 1,000) and a pair of percentages (e.g., 53% and 47%) and tell the client that if A receives a 1 in more than 53% of the firings, it can be regarded as superior; if it receives a 1 in fewer than 47%, B can be regarded as superior; if the percentage is between 47% and 53%, neither can be so regarded.

When Allen Wallis was discussing such a problem with (Navy) Captain Garret L. Schyler, the captain objected that such a test, to quote from Allen's account, may prove wasteful. If a wise and seasoned ordnance officer like Schyler were on the premises, he would see after the first few thousand or even few hundred rounds that the experiment need not be completed either because the new method is obviously inferior or because it is obviously superior beyond what was hoped for

Friedman and Wallis struggled with the problem but, after realizing that they were not able to solve it, described the problem to Abraham Wald.

That started Wald on the path that led him to *Sequential Analysis* [Wal47].

We'll formulate the problem using dynamic programming.
55.3 A Dynamic Programming Approach

The following presentation of the problem closely follows Dmitri Berskekas’s treatment in *Dynamic Programming and Stochastic Control* [Ber75].

A decision-maker can observe a sequence of draws of a random variable z.

He (or she) wants to know which of two probability distributions f_0 or f_1 governs z.

Conditional on knowing that successive observations are drawn from distribution f_0, the sequence of random variables is independently and identically distributed (IID).

Conditional on knowing that successive observations are drawn from distribution f_1, the sequence of random variables is also independently and identically distributed (IID).

But the observer does not know which of the two distributions generated the sequence.

For reasons explained in *Exchangeability and Bayesian Updating*, this means that the sequence is not IID.

The observer has something to learn, namely, whether the observations are drawn from f_0 or from f_1.

The decision maker wants to decide which of the two distributions is generating outcomes.

We adopt a Bayesian formulation.

The decision maker begins with a prior probability

$$
\pi_{-1} = \mathbb{P}\{ f = f_0 \mid \text{no observations} \} \in (0, 1)
$$

After observing $k + 1$ observations $z_k, z_{k-1}, \ldots, z_0$, he updates his personal probability that the observations are described by distribution f_0 to

$$
\pi_k = \mathbb{P}\{ f = f_0 \mid z_k, z_{k-1}, \ldots, z_0 \}
$$

which is calculated recursively by applying Bayes’ law:

$$
\pi_{k+1} = \frac{\pi_k f_0(z_{k+1})}{\pi_k f_0(z_{k+1}) + (1 - \pi_k) f_1(z_{k+1})}, \quad k = -1, 0, 1, \ldots
$$

After observing $z_k, z_{k-1}, \ldots, z_0$, the decision-maker believes that z_{k+1} has probability distribution

$$
f_{\pi_k}(v) = \pi_k f_0(v) + (1 - \pi_k) f_1(v),
$$

which is a mixture of distributions f_0 and f_1, with the weight on f_0 being the posterior probability that $f = f_0$.

To illustrate such a distribution, let’s inspect some mixtures of beta distributions.

The density of a beta probability distribution with parameters a and b is

$$
f(z; a, b) = \frac{\Gamma(a + b) z^{a-1} (1 - z)^{b-1}}{\Gamma(a) \Gamma(b)} \quad \text{where} \quad \Gamma(t) := \int_0^\infty x^{t-1} e^{-x} dx
$$

The next figure shows two beta distributions in the top panel.

The bottom panel presents mixtures of these distributions, with various mixing probabilities π_k.

1 The decision maker acts as if he believes that the sequence of random variables $[z_0, z_1, \ldots]$ is *exchangeable*. See *Exchangeability and Bayesian Updating* and [Kre88] chapter 11, for discussions of exchangeability.
@jit(nopython=True)
def p(x, a, b):
 r = gamma(a + b) / (gamma(a) * gamma(b))
 return r * x**(a-1) * (1 - x)**(b-1)

f0 = lambda x: p(x, 1, 1)
f1 = lambda x: p(x, 9, 9)
grid = np.linspace(0, 1, 50)

fig, axes = plt.subplots(2, figsize=(10, 8))

axes[0].set_title("Original Distributions")
axes[0].plot(grid, f0(grid), lw=2, label="f_0")
axes[0].plot(grid, f1(grid), lw=2, label="f_1")

axes[1].set_title("Mixtures")
for π in 0.25, 0.5, 0.75:
 y = π * f0(grid) + (1 - π) * f1(grid)
 axes[1].plot(y, lw=2, label=f"$\pi_k = \{π\}$")

for ax in axes:
 ax.legend()
 ax.set(xlabel="z values", ylabel="probability of z_k")

plt.tight_layout()
plt.show()
55.3.1 Losses and Costs

After observing $z_k, z_{k-1}, \ldots, z_0$, the decision-maker chooses among three distinct actions:

- He decides that $f = f_0$ and draws no more z’s
- He decides that $f = f_1$ and draws no more z’s
- He postpones deciding now and instead chooses to draw a z_{k+1}

Associated with these three actions, the decision-maker can suffer three kinds of losses:

- A loss L_0 if he decides $f = f_0$ when actually $f = f_1$
- A loss L_1 if he decides $f = f_1$ when actually $f = f_0$
- A cost c if he postpones deciding and chooses instead to draw another z
55.3.2 Digression on Type I and Type II Errors

If we regard \(f = f_0 \) as a null hypothesis and \(f = f_1 \) as an alternative hypothesis, then \(L_1 \) and \(L_0 \) are losses associated with two types of statistical errors

- a type I error is an incorrect rejection of a true null hypothesis (a “false positive”)
- a type II error is a failure to reject a false null hypothesis (a “false negative”)

So when we treat \(f = f_0 \) as the null hypothesis

- We can think of \(L_1 \) as the loss associated with a type I error.
- We can think of \(L_0 \) as the loss associated with a type II error.

55.3.3 Intuition

Before proceeding, let’s try to guess what an optimal decision rule might look like.

Suppose at some given point in time that \(\pi \) is close to 1.

Then our prior beliefs and the evidence so far point strongly to \(f = f_0 \).

If, on the other hand, \(\pi \) is close to 0, then \(f = f_1 \) is strongly favored.

Finally, if \(\pi \) is in the middle of the interval \([0, 1]\), then we are confronted with more uncertainty.

This reasoning suggests a decision rule such as the one shown in the figure

As we’ll see, this is indeed the correct form of the decision rule.

Our problem is to determine threshold values \(\alpha, \beta \) that somehow depend on the parameters described above.

You might like to pause at this point and try to predict the impact of a parameter such as \(c \) or \(L_0 \) on \(\alpha \) or \(\beta \).

55.3.4 A Bellman Equation

Let \(J(\pi) \) be the total loss for a decision-maker with current belief \(\pi \) who chooses optimally.

With some thought, you will agree that \(J \) should satisfy the Bellman equation

\[
J(\pi) = \min \{ (1 - \pi)L_0, \ \pi L_1, \ c + \mathbb{E}[J(\pi')] \} \tag{55.1}
\]

where \(\pi' \) is the random variable defined by Bayes’ Law

\[
\pi' = \kappa(z', \pi) = \frac{\pi f_0(z')}{\pi f_0(z') + (1 - \pi) f_1(z')}
\]

when \(\pi \) is fixed and \(z' \) is drawn from the current best guess, which is the distribution \(f \) defined by

\[
f_\pi(v) = \pi f_0(v) + (1 - \pi) f_1(v)
\]

In the Bellman equation, minimization is over three actions:
1. Accept the hypothesis that \(f = f_0 \)
2. Accept the hypothesis that \(f = f_1 \)
3. Postpone deciding and draw again

We can represent the Bellman equation as

\[
J(\pi) = \min \{(1 - \pi)L_0, \pi L_1, h(\pi)\}
\]

(55.2)

where \(\pi \in [0, 1] \) and

- \((1 - \pi)L_0\) is the expected loss associated with accepting \(f_0 \) (i.e., the cost of making a type II error).
- \(\pi L_1 \) is the expected loss associated with accepting \(f_1 \) (i.e., the cost of making a type I error).
- \(h(\pi) := c + E[J(\pi')] \); this is the continuation value; i.e., the expected cost associated with drawing one more \(z \).

The optimal decision rule is characterized by two numbers \(\alpha, \beta \in (0, 1) \times (0, 1) \) that satisfy

\[
(1 - \pi)L_0 < \min\{(1 - \pi)L_0, c + E[J(\pi')]\} \text{ if } \pi \geq \alpha
\]

and

\[
\pi L_1 < \min\{(1 - \pi)L_0, c + E[J(\pi')]\} \text{ if } \pi \leq \beta
\]

The optimal decision rule is then

- accept \(f = f_0 \) if \(\pi \geq \alpha \)
- accept \(f = f_1 \) if \(\pi \leq \beta \)
- draw another \(z \) if \(\beta \leq \pi \leq \alpha \)

Our aim is to compute the cost function \(J \), and from it the associated cutoffs \(\alpha \) and \(\beta \).

To make our computations manageable, using (55.2), we can write the continuation cost \(h(\pi) \) as

\[
h(\pi) = c + E[J(\pi')] \\
= c + \mathbb{E}_{\pi'} \min\{(1 - \pi')L_0, \pi' L_1, h(\pi')\} \\
= c + \int \min\{(1 - \kappa(z', \pi))L_0, \kappa(z', \pi)L_1, h(\kappa(z', \pi))\} f_{\pi}(z')dz'
\]

(55.3)

The equality

\[
h(\pi) = c + \int \min\{(1 - \kappa(z', \pi))L_0, \kappa(z', \pi)L_1, h(\kappa(z', \pi))\} f_{\pi}(z')dz'
\]

(55.4)

is a functional equation in an unknown function \(h \).

Using the functional equation, (55.4), for the continuation cost, we can back out optimal choices using the right side of (55.2).

This functional equation can be solved by taking an initial guess and iterating to find a fixed point.

Thus, we iterate with an operator \(Q \), where

\[
Qh(\pi) = c + \int \min\{(1 - \kappa(z', \pi))L_0, \kappa(z', \pi)L_1, h(\kappa(z', \pi))\} f_{\pi}(z')dz'
\]
55.4 Implementation

First, we will construct a `jitclass` to store the parameters of the model:

```python
wf_data = [('a0', float64), 'b0', float64),
('a1', float64), ('b1', float64),
('c', float64),
('n_grid_size', int64),
('L0', float64),
('L1', float64),
('n_grid', float64[:]),
('mc_size', int64),
('z0', float64[:]),
('z1', float64[:])]  # Parameters of beta distributions

@jitclass(wf_data)
class WaldFriedman:
    def __init__(self,
c=1.25,
a0=1,
b0=1,
a1=3,
b1=1.2,
L0=25,
L1=25,
n_grid_size=200,
mc_size=1000):
        self.a0, self.b0 = a0, b0
        self.a1, self.b1 = a1, b1
        self.c, self.n_grid_size = c, n_grid_size
        self.L0, self.L1 = L0, L1
        self.n_grid = np.linspace(0, 1, n_grid_size)
        self.mc_size = mc_size
        self.z0 = np.random.beta(a0, b0, mc_size)
        self.z1 = np.random.beta(a1, b1, mc_size)

    def f0(self, x):
        return p(x, self.a0, self.b0)

    def f1(self, x):
        return p(x, self.a1, self.b1)

    def f0_rvs(self):
        return np.random.beta(self.a0, self.b0)

    def f1_rvs(self):
        return np.random.beta(self.a1, self.b1)

    def κ(self, z, n):
```

(continues on next page)
Updates \(\pi \) using Bayes' rule and the current observation \(z \)

\[
f_0, f_1 = self.f0, self.f1
\]

\[
n_{f0}, n_{f1} = n \ast f_0(z), (1 - n) \ast f_1(z)
\]

\[
n_{\text{new}} = n_{f0} / (n_{f0} + n_{f1})
\]

\[
\pi_{\text{new}} = \pi_{f0} / (\pi_{f0} + \pi_{f1})
\]

As in the optimal growth lecture, to approximate a continuous value function

- We iterate at a finite grid of possible values of \(\pi \).
- When we evaluate \(E[J(\pi')] \) between grid points, we use linear interpolation.

We define the operator function \(Q \) below.

```python
@jit(nopython=True, parallel=True)
def Q(h, wf):
    c, n_grid = wf.c, wf.n_grid
    L0, L1 = wf.L0, wf.L1
    z0, z1 = wf.z0, wf.z1
    mc_size = wf.mc_size

    x = wf.x

    h_new = np.empty_like(n_grid)
    h_func = lambda p: interp(n_grid, h, p)

    for i in prange(len(n_grid)):
        n = n_grid[i]

        # Find the expected value of J by integrating over z
        integral_f0, integral_f1 = 0, 0
        for m in range(mc_size):
            n_0 = x(z0[m], n)  # Draw z from f0 and update n
            integral_f0 += min((1 - n_0) * L0, n_0 * L1, h_func(n_0))

            n_1 = x(z1[m], n)  # Draw z from f1 and update n
            integral_f1 += min((1 - n_1) * L0, n_1 * L1, h_func(n_1))

        integral = (n * integral_f0 + (1 - n) * integral_f1) / mc_size

        h_new[i] = c + integral

    return h_new
```

To solve the key functional equation, we will iterate using \(Q \) to find the fixed point

```python
@jit(nopython=True)
def solve_model(wf, tol=le-4, max_iter=1000):
    """
    Compute the continuation cost function
    """
```

(continues on next page)
"wf is an instance of WaldFriedman"

Set up loop
h = np.zeros(len(wf.n_grid))
i = 0
error = tol + 1

while i < max_iter and error > tol:
 h_new = Q(h, wf)
 error = np.max(np.abs(h - h_new))
i += 1
 h = h_new

if error > tol:
 print("Failed to converge!")

return h_new

55.5 Analysis

Let's inspect outcomes.

We will be using the default parameterization with distributions like so

```python
wf = WaldFriedman()

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(wf.f0(wf.n_grid), label="$f_0$")
ax.plot(wf.f1(wf.n_grid), label="$f_1$")
ax.set(ylabel="probability of $z_k$", xlabel="$z_k$", title="Distributions")
ax.legend()

plt.show()
```
55.5.1 Value Function

To solve the model, we will call our `solve_model` function

```python
h_star = solve_model(wf)  # Solve the model
```

We will also set up a function to compute the cutoffs α and β and plot these on our cost function plot

```python
@jit(nopython=True)
def find_cutoff_rule(wf, h):
    """
    This function takes a continuation cost function and returns the corresponding
cutoffs of where you transition between continuing and choosing a specific
type of model
    """

    n_grid = wf.n_grid
    L0, L1 = wf.L0, wf.L1

    # Evaluate cost at all points on grid for choosing a model
    payoff_f0 = (1 - n_grid) * L0
    payoff_f1 = n_grid * L1

    # The cutoff points can be found by differencing these costs with
    # The Bellman equation ($J$ is always less than or equal to $p_{c_1}$)
    beta = n_grid[np.searchsorted(
        payoff_f1 - np.minimum(h, payoff_f0),
        1e-10)
    )
```

(continues on next page)
\[-1\]
\[
\alpha = n_{\text{grid}}[\text{np.searchsorted(}
 \quad \text{np.minimum}(h, \text{payoff}_{f1}) - \text{payoff}_{f0},
 \quad 1e-10)
\quad - 1]
\]

- 1]
\[
\text{return } (\beta, \alpha)
\]

\[
\beta, \alpha = \text{find_cutoff_rule}(\text{wf, } h_{\text{star}})
\]
\[
cost_{L0} = (1 - \text{wf.n}_{\text{grid}}) \times \text{wf.L0}
\]
\[
cost_{L1} = \text{wf.n}_{\text{grid}} \times \text{wf.L1}
\]

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(wf.n_grid, h_star, label='sample again')
ax.plot(wf.n_grid, cost_L1, label='choose f1')
ax.plot(wf.n_grid, cost_L0, label='choose f0')
ax.plot(wf.n_grid, np.amin(np.column_stack([h_star, cost_L0, cost_L1]),axis=1),
 lw=15, alpha=0.1, color='b', label='J(\pi)')

ax.annotate(r'$$\beta$$', xy=(\beta + 0.01, 0.5), fontsize=14)
ax.annotate(r'$$\alpha$$', xy=(\alpha + 0.01, 0.5), fontsize=14)

plt.vlines(\beta, 0, \beta \times \text{wf.L0}, linestyle='--')
plt.vlines(\alpha, 0, (1 - \alpha) \times \text{wf.L1}, linestyle='--')

ax.set(xlim=(0, 1), ylim=(0, 0.5 * max(wf.L0, wf.L1)), ylabel="cost",
 xlabel="$$\pi$$", title="Cost function $J(\pi)$")

plt.legend(borderpad=1.1)
plt.show()
The cost function J equals πL_1 for $\pi \leq \beta$, and $(1 - \pi)L_0$ for $\pi \geq \alpha$.

The slopes of the two linear pieces of the cost function $J(\pi)$ are determined by L_1 and $-L_0$.

The cost function J is smooth in the interior region, where the posterior probability assigned to f_0 is in the indecisive region $\pi \in (\beta, \alpha)$.

The decision-maker continues to sample until the probability that he attaches to model f_0 falls below β or above α.

55.5.2 Simulations

The next figures show the outcomes of 500 simulations of the decision process.

On the left is a histogram of stopping times, i.e., the number of draws of z_k required to make a decision.

The average number of draws is around 6.6.

On the right is the fraction of correct decisions at the stopping time.

In this case, the decision-maker is correct 80% of the time.

def simulate(wf, true_dist, h_star, n_0=0.5):

 ""
 This function takes an initial condition and simulates until it stops (when a decision is made)
 ""

 f0, f1 = wf.f0, wf.f1
 f0_rvs, f1_rvs = wf.f0_rvs, wf.f1_rvs
 n_grid = wf.n_grid
 x = wf.x

 (continues on next page)
if true_dist == "f0":
 f, f_rvs = wf.f0, wf.f0_rvs
elif true_dist == "f1":
 f, f_rvs = wf.f1, wf.f1_rvs

Find cutoffs
β, α = find_cutoff_rule(wf, h_star)

Initialize a couple of useful variables
decision_made = False
π = π_0
t = 0

while decision_made is False:
 # Maybe should specify which distribution is correct one so that
 # the draws come from the "right" distribution
 z = f_rvs()
 t = t + 1
 n = κ(z, n)
 if n < β:
 decision_made = True
 decision = 1
 elif n > α:
 decision_made = True
 decision = 0

if true_dist == "f0":
 if decision == 0:
 correct = True
 else:
 correct = False
elif true_dist == "f1":
 if decision == 1:
 correct = True
 else:
 correct = False

return correct, π, t

def stopping_dist(wf, h_star, ndraws=250, true_dist="f0"):

 """Simulates repeatedly to get distributions of time needed to make a
decision and how often they are correct
 ""

 tdist = np.empty(ndraws, int)
cdist = np.empty(ndraws, bool)

 for i in range(ndraws):
 correct, n, t = simulate(wf, true_dist, h_star)
 tdist[i] = t
cdist[i] = correct

(continued on next page)
return cdist, tdist

def simulation_plot(wf):
 h_star = solve_model(wf)
 ndraws = 500
 cdist, tdist = stopping_dist(wf, h_star, ndraws)

 fig, ax = plt.subplots(1, 2, figsize=(16, 5))

 ax[0].hist(tdist, bins=np.max(tdist))
 ax[0].set_title(f"Stopping times over {ndraws} replications")
 ax[0].set(xlabel="time", ylabel="number of stops")
 ax[0].annotate(f"mean = {np.mean(tdist)}", xy=(max(tdist) / 2, max(np.histogram(tdist, bins=max(tdist))[0]) / 2))

 ax[1].hist(cdist.astype(int), bins=2)
 ax[1].set_title(f"Correct decisions over {ndraws} replications")
 ax[1].annotate(f"% correct = {np.mean(cdist)}", xy=(0.05, ndraws / 2))

 plt.show()

simulation_plot(wf)

55.5.3 Comparative Statics

Now let’s consider the following exercise.

We double the cost of drawing an additional observation.

Before you look, think about what will happen:

- Will the decision-maker be correct more or less often?
- Will he make decisions sooner or later?

wf = WaldFriedman(c=2.5)
simulation_plot(wf)
Increased cost per draw has induced the decision-maker to take fewer draws before deciding.

Because he decides with fewer draws, the percentage of time he is correct drops.

This leads to him having a higher expected loss when he puts equal weight on both models.

55.5.4 A Notebook Implementation

To facilitate comparative statics, we provide a Jupyter notebook that generates the same plots, but with sliders.

With these sliders, you can adjust parameters and immediately observe

- effects on the smoothness of the value function in the indecisive middle range as we increase the number of grid points in the piecewise linear approximation.
- effects of different settings for the cost parameters L_0, L_1, c, the parameters of two beta distributions f_0 and f_1, and the number of points and linear functions m to use in the piece-wise continuous approximation to the value function.
- various simulations from f_0 and associated distributions of waiting times to making a decision.
- associated histograms of correct and incorrect decisions.

55.6 Comparison with Neyman-Pearson Formulation

For several reasons, it is useful to describe the theory underlying the test that Navy Captain G. S. Schuyler had been told to use and that led him to approach Milton Friedman and Allan Wallis to convey his conjecture that superior practical procedures existed.

Evidently, the Navy had told Captail Schuyler to use what it knew to be a state-of-the-art Neyman-Pearson test.

We’ll rely on Abraham Wald’s [Wal47] elegant summary of Neyman-Pearson theory.

For our purposes, watch for there features of the setup:

- the assumption of a fixed sample size n
- the application of laws of large numbers, conditioned on alternative probability models, to interpret the probabilities α and β defined in the Neyman-Pearson theory

Recall that in the sequential analytic formulation above, that

- The sample size n is not fixed but rather an object to be chosen; technically n is a random variable.
- The parameters β and α characterize cut-off rules used to determine n as a random variable.
• Laws of large numbers make no appearances in the sequential construction.

In chapter 1 of **Sequential Analysis** [Wal47] Abraham Wald summarizes the Neyman-Pearson approach to hypothesis testing.

Wald frames the problem as making a decision about a probability distribution that is partially known.

(You have to assume that *something* is already known in order to state a well-posed problem – usually, *something* means *a lot*)

By limiting what is unknown, Wald uses the following simple structure to illustrate the main ideas:

• A decision-maker wants to decide which of two distributions f_0, f_1 govern an IID random variable z.
• The null hypothesis H_0 is the statement that f_0 governs the data.
• The alternative hypothesis H_1 is the statement that f_1 governs the data.
• The problem is to devise and analyze a test of hypothesis H_0 against the alternative hypothesis H_1 on the basis of a sample of a fixed number n independent observations z_1, z_2, \ldots, z_n of the random variable z.

To quote Abraham Wald,

A test procedure leading to the acceptance or rejection of the [null] hypothesis in question is simply a rule specifying, for each possible sample of size n, whether the [null] hypothesis should be accepted or rejected on the basis of the sample. This may also be expressed as follows: A test procedure is simply a subdivision of the totality of all possible samples of size n into two mutually exclusive parts, say part 1 and part 2, together with the application of the rule that the [null] hypothesis be accepted if the observed sample is contained in part 2. Part 1 is also called the critical region. Since part 2 is the totality of all samples of size n which are not included in part 1, part 2 is uniquely determined by part 1. Thus, choosing a test procedure is equivalent to determining a critical region.

Let’s listen to Wald longer:

As a basis for choosing among critical regions the following considerations have been advanced by Neyman and Pearson: In accepting or rejecting H_0 we may commit errors of two kinds. We commit an error of the first kind if we reject H_0 when it is true; we commit an error of the second kind if we accept H_0 when H_1 is true. After a particular critical region W has been chosen, the probability of committing an error of the first kind, as well as the probability of committing an error of the second kind is uniquely determined. The probability of committing an error of the first kind is equal to the probability, determined by the assumption that H_0 is true, that the observed sample will be included in the critical region W. The probability of committing an error of the second kind is equal to the probability, determined on the assumption that H_1 is true, that the probability will fall outside the critical region W. For any given critical region W we shall denote the probability of an error of the first kind by α and the probability of an error of the second kind by β.

Let’s listen carefully to how Wald applies law of large numbers to interpret α and β:

The probabilities α and β have the following important practical interpretation: Suppose that we draw a large number of samples of size n. Let M be the number of such samples drawn. Suppose that for each of these M samples we reject H_0 if the sample is included in W and accept H_0 if the sample lies outside W. In this way we make M statements of rejection or acceptance. Some of these statements will in general be wrong. If H_0 is true and if M is large, the probability is nearly 1 (i.e., it is practically certain) that the proportion of wrong statements (i.e., the number of wrong statements divided by M) will be approximately α. If H_1 is true, the probability is nearly 1 that the proportion of wrong statements will be approximately β. Thus, we can say that in the long run [here Wald applies law of large numbers by driving $M \to \infty$ (our comment, not Wald’s)] the proportion of wrong statements will be α if H_0 is true and β if H_1 is true.

The quantity α is called the *size* of the critical region, and the quantity $1 - \beta$ is called the *power* of the critical region.

Wald notes
one critical region W is more desirable than another if it has smaller values of α and β. Although either α or β can be made arbitrarily small by a proper choice of the critical region W, it is possible to make both α and β arbitrarily small for a fixed value of n, i.e., a fixed sample size.

Wald summarizes Neyman and Pearson’s setup as follows:

Neyman and Pearson show that a region consisting of all samples (z_1, z_2, \ldots, z_n) which satisfy the inequality

$$\frac{f_1(z_1) \cdots f_1(z_n)}{f_0(z_1) \cdots f_0(z_n)} \geq k$$

is a most powerful critical region for testing the hypothesis H_0 against the alternative hypothesis H_1. The term k on the right side is a constant chosen so that the region will have the required size α.

Wald goes on to discuss Neyman and Pearson’s concept of uniformly most powerful test.

Here is how Wald introduces the notion of a sequential test

A rule is given for making one of the following three decisions at any stage of the experiment (at the mth trial for each integral value of m): (1) to accept the hypothesis H, (2) to reject the hypothesis H, (3) to continue the experiment by making an additional observation. Thus, such a test procedure is carried out sequentially. On the basis of the first observation, one of the aforementioned decision is made. If the first or second decision is made, the process is terminated. If the third decision is made, a second trial is performed. Again, on the basis of the first two observations, one of the three decision is made. If the third decision is made, a third trial is performed, and so on. The process is continued until either the first or the second decisions is made. The number n of observations required by such a test procedure is a random variable, since the value of n depends on the outcome of the observations.

55.7 Sequels

We’ll dig deeper into some of the ideas used here in the following lectures:

- **this lecture** discusses the key concept of exchangeability that rationalizes statistical learning
- **this lecture** describes likelihood ratio processes and their role in frequentist and Bayesian statistical theories
- **this lecture** discusses the role of likelihood ratio processes in Bayesian learning
- **this lecture** returns to the subject of this lecture and studies whether the Captain’s hunch that the (frequentist) decision rule that the Navy had ordered him to use can be expected to be better or worse than the rule sequential rule that Abraham Wald designed
56.1 Overview

This lecture studies learning via Bayes’ Law.

We touch foundations of Bayesian statistical inference invented by Bruno DeFinetti [dF37].

The relevance of DeFinetti’s work for economists is presented forcefully in chapter 11 of [Kre88] by David Kreps.

An example that we study in this lecture is a key component of this lecture that augments the classic job search model of McCall [McC70] by presenting an unemployed worker with a statistical inference problem.

Here we create graphs that illustrate the role that a likelihood ratio plays in Bayes’ Law.

We’ll use such graphs to provide insights into mechanics driving outcomes in this lecture about learning in an augmented McCall job search model.

Among other things, this lecture discusses connections between the statistical concepts of sequences of random variables that are

- independently and identically distributed
- exchangeable (also known as conditionally independently and identically distributed)
Understanding these concepts is essential for appreciating how Bayesian updating works. You can read about exchangeability here.

Because another term for exchangeable is conditionally independent, we want to convey an answer to the question conditional on what?

We also tell why an assumption of independence precludes learning while an assumption of conditional independence makes learning possible.

Below, we’ll often use

- W to denote a random variable
- w to denote a particular realization of a random variable W

Let’s start with some imports:

```python
# Quantitative Economics with Python

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5)  # set default figure size
from numba import njit, vectorize
from math import gamma
import scipy.optimize as op
from scipy.integrate import quad
import numpy as np
```

56.2 Independently and Identically Distributed

We begin by looking at the notion of an independently and identically distributed sequence of random variables. An independently and identically distributed sequence is often abbreviated as IID.

Two notions are involved

- independence
- identically distributed

A sequence W_0, W_1, \ldots is independently distributed if the joint probability density of the sequence is the product of the densities of the components of the sequence.

The sequence W_0, W_1, \ldots is independently and identically distributed (IID) if in addition the marginal density of W_t is the same for all $t = 0, 1, \ldots$.

For example, let $p(W_0, W_1, \ldots)$ be the joint density of the sequence and let $p(W_t)$ be the marginal density for a particular W_t for all $t = 0, 1, \ldots$.

Then the joint density of the sequence W_0, W_1, \ldots is IID if

$$p(W_0, W_1, \ldots) = p(W_0)p(W_1)\ldots$$

so that the joint density is the product of a sequence of identical marginal densities.
56.2.1 IID Means Past Observations Don’t Tell Us Anything About Future Observations

If a sequence is random variables is IID, past information provides no information about future realizations. Therefore, there is nothing to learn from the past about the future.

To understand these statements, let the joint distribution of a sequence of random variables \(\{W_t\}_{t=0}^T \) that is not necessarily IID, be

\[
p(W_T, W_{T-1}, \ldots, W_1, W_0)
\]

Using the laws of probability, we can always factor such a joint density into a product of conditional densities:

\[
p(W_T, W_{T-1}, \ldots, W_1, W_0) = p(W_T|W_{T-1}, \ldots, W_0)p(W_{T-1}|W_{T-2}, \ldots, W_0) \ldots \]

\[
\ldots p(W_1|W_0)p(W_0)
\]

In general,

\[
p(W_t|W_{t-1}, \ldots, W_0) \neq p(W_t)
\]

which states that the conditional density on the left side does not equal the marginal density on the right side. But in the special IID case,

\[
p(W_t|W_{t-1}, \ldots, W_0) = p(W_t)
\]

and partial history \(W_{t-1}, \ldots, W_0 \) contains no information about the probability of \(W_t \).

So in the IID case, there is nothing to learn about the densities of future random variables from past random variables. In the general case, there is something to learn from observations of past random variables.

We turn next to an instance of this general case.

Please watch for what can be learned from the past and when.

56.3 A Setting in Which Past Observations Are Informative

Let \(\{W_t\}_{t=0}^\infty \) be a sequence of nonnegative scalar random variables with a joint probability distribution constructed as follows.

There are two distinct cumulative distribution functions \(F \) and \(G \) that have densities \(f \) and \(g \), respectively, for a nonnegative scalar random variable \(W \).

Before the start of time, say at time \(t = -1 \), “nature” once and for all selects either \(f \) or \(g \).

Thereafter at each time \(t \geq 0 \), nature draws a random variable \(W_t \) from the selected distribution.

So the data are permanently generated as independently and identically distributed (IID) draws from either \(F \) or \(G \).

We could say that objectively the probability that the data are generated as draws from \(F \) is either 0 or 1.

We now drop into this setting a partially informed decision maker who knows

- both \(F \) and \(G \), and
- but not the \(F \) or \(G \) that nature drew once-and-for-all at \(t = -1 \)
So our decision maker does not know which of the two distributions nature selected. The decision maker summarizes his ignorance with a subjective probability \(\tilde{\pi} \) and reasons as if nature had selected \(F \) with probability \(\tilde{\pi} \in (0, 1) \) and \(G \) with probability \(1 - \tilde{\pi} \).

Thus, we assume that the decision maker

- knows both \(F \) and \(G \)
- doesn’t know which of these two distributions that nature has drawn
- expresses his ignorance by acting as if or thinking that nature chose distribution \(F \) with probability \(\tilde{\pi} \in (0, 1) \) and distribution \(G \) with probability \(1 - \tilde{\pi} \)
- at date \(t \geq 0 \) knows the partial history \(w_t, w_{t-1}, \ldots, w_0 \)

To proceed, we want to know the decision maker’s belief about the joint distribution of the partial history.

We’ll discuss that next and in the process describe the concept of exchangeability.

56.4 Relationship Between IID and Exchangeable

Conditional on nature selecting \(F \), the joint density of the sequence \(W_0, W_1, \ldots \) is

\[
f(W_0)f(W_1)\cdots
\]

Conditional on nature selecting \(G \), the joint density of the sequence \(W_0, W_1, \ldots \) is

\[
g(W_0)g(W_1)\cdots
\]

Thus, conditional on nature having selected \(F \), the sequence \(W_0, W_1, \ldots \) is independently and identically distributed. Furthermore, conditional on nature having selected \(G \), the sequence \(W_0, W_1, \ldots \) is also independently and identically distributed.

But what about the unconditional distribution of a partial history? The unconditional distribution of \(W_0, W_1, \ldots \) is evidently

\[
h(W_0, W_1, \ldots) \equiv \tilde{\pi}[f(W_0)f(W_1)\cdots] + (1 - \tilde{\pi})[g(W_0)g(W_1)\cdots]
\]

(56.1)

Under the unconditional distribution \(h(W_0, W_1, \ldots) \), the sequence \(W_0, W_1, \ldots \) is not independently and identically distributed.

To verify this claim, it is sufficient to notice, for example, that

\[
h(W_0, W_1) = \tilde{\pi} f(W_0)f(W_1) + (1 - \tilde{\pi})g(W_0)g(W_1) \neq (\tilde{\pi} f(W_0) + (1 - \tilde{\pi})g(W_0))(\tilde{\pi} f(W_1) + (1 - \tilde{\pi})g(W_1))
\]

Thus, the conditional distribution

\[
h(W_1|W_0) = \frac{h(W_0, W_1)}{(\tilde{\pi} f(W_0) + (1 - \tilde{\pi})g(W_0))(\tilde{\pi} f(W_1) + (1 - \tilde{\pi})g(W_1))} \neq (\tilde{\pi} f(W_1) + (1 - \tilde{\pi})g(W_1))
\]

This means that random variable \(W_0 \) contains information about random variable \(W_1 \).

So there is something to learn.

But what and how?
56.5 Exchangeability

While the sequence W_0, W_1, \ldots is not IID, it can be verified that it is exchangeable, which means that the "re-ordered" joint distributions $h(W_0, W_1)$ and $h(W_1, W_0)$ satisfy

$$h(W_0, W_1) = h(W_1, W_0)$$

and so on.

More generally, a sequence of random variables is said to be exchangeable if the joint probability distribution for a sequence does not change when the positions in the sequence in which finitely many of random variables appear are altered.

Equation (56.1) represents our instance of an exchangeable joint density over a sequence of random variables as a mixture of two IID joint densities over a sequence of random variables.

For a Bayesian statistician, the mixing parameter $\bar{\pi} \in (0, 1)$ has a special interpretation as a prior probability that nature selected probability distribution F.

DeFinetti [dF37] established a related representation of an exchangeable process created by mixing sequences of IID Bernoulli random variables with parameter $\theta \in (0, 1)$ and mixing probability density $\pi(\theta)$ that a Bayesian statistician would interpret as a prior over the unknown Bernoulli parameter θ.

56.6 Bayes’ Law

We noted above that in our example model there is something to learn about the future from past data drawn from our particular instance of a process that is exchangeable but not IID.

But how can we learn?

And about what?

The answer to the about what question is $\bar{\pi}$.

The answer to the how question is to use Bayes’ Law.

Another way to say use Bayes’ Law is to say from a (subjective) joint distribution, compute an appropriate conditional distribution.

Let’s dive into Bayes’ Law in this context.

Let q represent the distribution that nature actually draws w from and let

$$\pi = P\{q = f\}$$

where we regard π as a decision maker’s subjective probability (also called a personal probability).

Suppose that at $t \geq 0$, the decision maker has observed a history $w^t = [w_t, w_{t-1}, \ldots, w_0]$.

We let

$$\pi_t = P\{q = f|w^t\}$$

where we adopt the convention

$$\pi_{-1} = \bar{\pi}$$

The distribution of w_{t+1} conditional on w^t is then

$$\pi_t f + (1 - \pi_t) g.$$
Bayes’ rule for updating π_{t+1} is

$$
\pi_{t+1} = \frac{\pi_t f(w_{t+1})}{\pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1})}
$$

(56.2)

Equation (56.2) follows from Bayes’ rule, which tells us that

$$
P\{q = f \mid W = w\} = \frac{P\{W = w \mid q = f\}P\{q = f\}}{P\{W = w\}}
$$

where

$$
P\{W = w\} = \sum_{a \in \{f, g\}} P\{W = w \mid q = a\}P\{q = a\}
$$

56.7 More Details about Bayesian Updating

Let’s stare at and rearrange Bayes’ Law as represented in equation (56.2) with the aim of understanding how the posterior probability π_{t+1} is influenced by the prior probability π_t and the likelihood ratio $l(w) = \frac{f(w)}{g(w)}$.

It is convenient for us to rewrite the updating rule (56.2) as

$$
\pi_{t+1} = \frac{\pi_t f(w_{t+1})}{\pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1})} = \frac{\pi_t f(w_{t+1})}{\pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1})} = \frac{\pi_t l(w_{t+1})}{\pi_t l(w_{t+1}) + (1 - \pi_t)}
$$

This implies that

$$
\frac{\pi_{t+1}}{\pi_t} = \frac{l(w_{t+1})}{\pi_t l(w_{t+1}) + (1 - \pi_t)} \begin{cases}
> 1 & \text{if } l(w_{t+1}) > 1 \\
\leq 1 & \text{if } l(w_{t+1}) \leq 1
\end{cases}
$$

(56.3)

Notice how the likelihood ratio and the prior interact to determine whether an observation w_{t+1} leads the decision maker to increase or decrease the subjective probability he/she attaches to distribution F.

When the likelihood ratio $l(w_{t+1})$ exceeds one, the observation w_{t+1} nudges the probability π put on distribution F upward, and when the likelihood ratio $l(w_{t+1})$ is less than one, the observation w_{t+1} nudges π downward.

Representation (56.3) is the foundation of some graphs that we’ll use to display the dynamics of $\{\pi_t\}_{t=0}^{\infty}$ that are induced by Bayes’ Law.

We’ll plot $l(w)$ as a way to enlighten us about how learning – i.e., Bayesian updating of the probability π that nature has chosen distribution f – works.

To create the Python infrastructure to do our work for us, we construct a wrapper function that displays informative graphs given parameters of f and g.

```python
@vectorize
def p(x, a, b):
    "The general beta distribution function."
    r = gamma(a + b) / (gamma(a) * gamma(b))
    return r * x ** (a-1) * (1 - x) ** (b-1)

def learning_example(F_a=1, F_b=1, G_a=3, G_b=1.2):
    # (continues on next page)
```
A wrapper function that displays the updating rule of belief π,
given the parameters which specify F and G distributions.

```python
f = njit(lambda x: p(x, F_a, F_b))
g = njit(lambda x: p(x, G_a, G_b))

# $l(w) = \frac{f(w)}{g(w)}$
l = lambda w: f(w) / g(w)
# objective function for solving $l(w) = 1$
obj = lambda w: l(w) - 1

x_grid = np.linspace(0, 1, 100)
mu_grid = np.linspace(1e-3, 1-1e-3, 100)

w_max = 1
w_grid = np.linspace(1e-12, w_max-1e-12, 100)

# the mode of beta distribution
# use this to divide $w$ into two intervals for root finding
G_mode = (G_a - 1) / (G_a + G_b - 2)
roots = np.empty(2)
roots[0] = op.root_scalar(obj, bracket=[1e-10, G_mode]).root
roots[1] = op.root_scalar(obj, bracket=[G_mode, 1e-10]).root

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 5))

ax1.plot(l(w_grid), w_grid, label='$f/w$', lw=2)
ax1.vlines(1., 0., 1., linestyle='--')
ax1.hlines(roots, 0., 2., linestyle='--')
ax1.set_xlim([0., 2.])
ax1.legend(loc=4)
ax1.set_xlabel('$l(w)=f(w)/g(w)$', ylabel='$w$')

ax2.plot(f(x_grid), x_grid, label='$f$', lw=2)
ax2.plot(g(x_grid), x_grid, label='$g$', lw=2)
ax2.vlines(1., 0., 1., linestyle='--')
ax2.hlines(roots, 0., 2., linestyle='--')
ax2.legend(loc=4)
ax2.set_xlabel('$f(w)$, $g(w)$', ylabel='$w$')

area1 = quad(f, 0, roots[0])[0]
area2 = quad(g, roots[0], roots[1])[0]
area3 = quad(f, roots[1], 1)[0]

ax2.text((f(0) + f(roots[0])) / 4, roots[0] / 2, f'\(\text{area1: .3g}\)')
ax2.fill_between([0, 1], 0, roots[0], color='blue', alpha=0.15)
ax2.text(np.mean(g(roots)) / 2, np.mean(roots), f'\(\text{area2: .3g}\)')
w_roots = np.linspace(roots[0], roots[1], 20)
ax2.fill_between(x=w_roots, 0, g(w_roots), color='orange', alpha=0.15)
ax2.text((f(roots[1]) + f(1)) / 4, (roots[1] + 1) / 2, f'\(\text{area3: .3g}\)')
ax2.fill_between([0, 1], roots[1], 1, color='blue', alpha=0.15)

W = np.arange(0.01, 0.99, 0.08)
\(\Pi\) = np.arange(0.01, 0.99, 0.08)
```

(continued on next page)
ΔW = np.zeros((len(W), len(Π)))
ΔΠ = np.empty((len(W), len(Π)))
for i, w in enumerate(W):
 for j, π in enumerate(Π):
 lw = l(w)
 ΔΠ[i, j] = π * (lw / (n * lw + 1 - n)) - 1

q = ax3.quiver(Π, W, ΔΠ, ΔW, scale=2, color='r', alpha=0.8)

ax3.fill_between(n_grid, 0, roots[0], color='blue', alpha=0.15)
ax3.fill_between(n_grid, roots[0], roots[1], color='green', alpha=0.15)
ax3.fill_between(n_grid, roots[1], w_max, color='blue', alpha=0.15)
ax3.hlines(roots, 0., 1., linestyle='--')

ax3.set(xlabel='π', ylabel='w')
ax3.grid()
plt.show()

Now we’ll create a group of graphs that illustrate dynamics induced by Bayes’ Law.

We’ll begin with Python function default values of various objects, then change them in a subsequent example.

learning_example()

Please look at the three graphs above created for an instance in which \(f\) is a uniform distribution on \([0, 1]\) (i.e., a Beta distribution with parameters \(F_a = 1, F_b = 1\)), while \(g\) is a Beta distribution with the default parameter values \(G_a = 3, G_b = 1.2\).

The graph on the left plots the likelihood ratio \(l(w)\) as the abscissa axis against \(w\) as the ordinate.

The middle graph plots both \(f(w)\) and \(g(w)\) against \(w\), with the horizontal dotted lines showing values of \(w\) at which the likelihood ratio equals 1.

The graph on the right plots arrows to the right that show when Bayes’ Law makes \(\pi\) increase and arrows to the left that show when Bayes’ Law make \(\pi\) decrease.

Lengths of the arrows show magnitudes of the force from Bayes’ Law impelling \(\pi\) to change.

These lengths depend on both the prior probability \(\pi\) on the abscissa axis and the evidence in the form of the current draw of \(w\) on the ordinate axis.

The fractions in the colored areas of the middle graphs are probabilities under \(F\) and \(G\), respectively, that realizations of \(w\) fall into the interval that updates the belief \(\pi\) in a correct direction (i.e., toward 0 when \(G\) is the true distribution, and toward 1 when \(F\) is the true distribution).
For example, in the above example, under true distribution F, π will be updated toward 0 if w falls into the interval $[0.524, 0.999]$, which occurs with probability $1 - .524 = .476$ under F.

But this would occur with probability 0.816 if G were the true distribution.

The fraction 0.816 in the orange region is the integral of $g(w)$ over this interval.

Next we use our code to create graphs for another instance of our model.

We keep F the same as in the preceding instance, namely a uniform distribution, but now assume that G is a Beta distribution with parameters $G_a = 2, G_b = 1.6$.

Notice how the likelihood ratio, the middle graph, and the arrows compare with the previous instance of our example.

56.8 Appendix

56.8.1 Sample Paths of π_t

Now we’ll have some fun by plotting multiple realizations of sample paths of π_t under two possible assumptions about nature’s choice of distribution, namely

- that nature permanently draws from F
- that nature permanently draws from G

Outcomes depend on a peculiar property of likelihood ratio processes discussed in this lecture.

To proceed, we create some Python code.

```python
def function_factory(F_a=1, F_b=1, G_a=3, G_b=1.2):
    # define f and g
    f = njit(lambda x: p(x, F_a, F_b))
    g = njit(lambda x: p(x, G_a, G_b))

    @njit
    def update(a, b, π):
        """Update π by drawing from beta distribution with parameters a and b""

        # Draw
        w = np.random.beta(a, b)
```

(continues on next page)
Update belief
\[\pi = \frac{1}{1 + ((1 - \pi) \cdot g(w)) / (\pi \cdot f(w))} \]

```
# Update belief
\nπ = 1 / (1 + ((1 - π) * g(ω)) / (π * f(ω)))

return π
```

@njit
def simulate_path(a, b, T=50):
 "Simulates a path of beliefs π with length T"

 π = np.empty(T+1)

 # initial condition
 π[0] = 0.5

 for t in range(1, T+1):
 π[t] = update(a, b, π[t-1])

 return π

def simulate(a=1, b=1, T=50, N=200, display=True):
 "Simulates N paths of beliefs π with length T"

 n_paths = np.empty((N, T+1))
 if display:
 fig = plt.figure()

 for i in range(N):
 n_paths[i] = simulate_path(a=a, b=b, T=T)
 if display:
 plt.plot(range(T+1), n_paths[i], color='b', lw=0.8, alpha=0.5)

 if display:
 plt.show()

 return n_paths

return simulate

simulate = function_factory()

We begin by generating \(N \) simulated \(\{\pi_t\} \) paths with \(T \) periods when the sequence is truly IID draws from \(F \). We set an initial prior \(\pi_{-1} = .5 \).

```
T = 50

# when nature selects F
n_paths_F = simulate(a=1, b=1, T=T, N=1000)
```
In the above example, for most paths $\pi_t \to 1$.

So Bayes’ Law evidently eventually discovers the truth for most of our paths.

Next, we generate paths with T periods when the sequence is truly IID draws from G. Again, we set the initial prior $\pi_{-1} = .5$.

```python
# when nature selects G
n_paths_G = simulate(a=3, b=1.2, T=T, N=1000)
```

In the above graph we observe that now most paths $\pi_t \to 0$.
56.8.2 Rates of convergence

We study rates of convergence of π_t to 1 when nature generates the data as IID draws from F and of convergence of π_t to 0 when nature generates IID draws from G.

We do this by averaging across simulated paths of $\{\pi_t\}_{t=0}^T$.

Using N simulated π_t paths, we compute $1 - \sum_{i=1}^N \pi_{i,t}$ at each t when the data are generated as draws from F and compute $\sum_{i=1}^N \pi_{i,t}$ when the data are generated as draws from G.

```python
plt.plot(range(T+1), 1 - np.mean(n_paths_F, 0), label='F generates')
plt.plot(range(T+1), np.mean(n_paths_G, 0), label='G generates')
plt.legend()
plt.title("convergence");
```

From the above graph, rates of convergence appear not to depend on whether F or G generates the data.

56.8.3 Graph of Ensemble Dynamics of π_t

More insights about the dynamics of $\{\pi_t\}$ can be gleaned by computing conditional expectations of $\frac{\pi_{t+1}}{\pi_t}$ as functions of π_t via integration with respect to the pertinent probability distribution:

$$E\left[\frac{\pi_{t+1}}{\pi_t} \right | q = a, \pi_t] = E\left[\frac{l(w_{t+1})}{\pi_t l(w_{t+1}) + (1 - \pi_t)} \right | q = a, \pi_t],$$

$$= \int_0^1 \frac{l(w_{t+1})}{\pi_t l(w_{t+1}) + (1 - \pi_t)} a(w_{t+1}) dw_{t+1}$$

where $a = f, g$.

The following code approximates the integral above:

```python
def expected_ratio(F_a=1, F_b=1, G_a=3, G_b=1.2):
    # define f and g
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
f = njit(lambda x: p(x, F_a, F_b))
g = njit(lambda x: p(x, G_a, G_b))

l = lambda w: f(w) / g(w)
integrand_f = lambda w, n: f(w) * l(w) / (n * l(w) + 1 - n)
integrand_g = lambda w, n: g(w) * l(w) / (n * l(w) + 1 - n)

n_grid = np.linspace(0.02, 0.98, 100)

expected_ratio = np.empty(len(n_grid))
for q, inte in zip(['f', 'g'], [integrand_f, integrand_g]):
    for i, n in enumerate(n_grid):
        expected_ratio[i] = quad(inte, 0, 1, args=(n,))[0]
plt.plot(n_grid, expected_ratio, label=f'{q} generates')
plt.hlines(1, 0, 1, linestyle="--")
plt.xlabel('\$\pi_t\$')
plt.ylabel('\$E[\pi_{t+1}/\pi_t]\$')
plt.legend()
plt.show()
```

First, consider the case where \(F_a = F_b = 1 \) and \(G_a = 3, G_b = 1.2 \).

```python
expected_ratio()
```

![Graph showing expected ratio](image.png)

The above graphs show that when \(F \) generates the data, \(\pi_t \) on average always heads north, while when \(G \) generates the data, \(\pi_t \) heads south.

Next, we’ll look at a degenerate case in which \(f \) and \(g \) are identical beta distributions, and \(F_a = G_a = 3, F_b = G_b = 1.2 \). In a sense, here there is nothing to learn.

```python
expected_ratio(F_a=3, F_b=1.2)
```
The above graph says that π_t is inert and remains at its initial value.

Finally, let’s look at a case in which f and g are neither very different nor identical, in particular one in which $F_a = 2, F_b = 1$ and $G_a = 3, G_b = 1.2$.

```python
expected_ratio(F_a=2, F_b=1, G_a=3, G_b=1.2)
```
56.9 Sequels

We'll apply and dig deeper into some of the ideas presented in this lecture:

- *this lecture* describes **likelihood ratio processes** and their role in frequentist and Bayesian statistical theories
- *this lecture* studies whether a World War II US Navy Captain’s hunch that a (frequentist) decision rule that the Navy had told him to use was inferior to a sequential rule that Abraham Wald had not yet designed.
LIKELIHOOD RATIO PROCESSES AND BAYESIAN LEARNING

57.1 Overview

This lecture describes the role that likelihood ratio processes play in Bayesian learning. As in this lecture, we’ll use a simple statistical setting from this lecture.

We’ll focus on how a likelihood ratio process and a prior probability determine a posterior probability.

We’ll derive a convenient recursion for today’s posterior as a function of yesterday’s posterior and today’s multiplicative increment to a likelihood process.

We’ll also present a useful generalization of that formula that represents today’s posterior in terms of an initial prior and today’s realization of the likelihood ratio process.

We’ll study how, at least in our setting, a Bayesian eventually learns the probability distribution that generates the data, an outcome that rests on the asymptotic behavior of likelihood ratio processes studied in this lecture.

We’ll also drill down into the psychology of our Bayesian learner and study dynamics under his subjective beliefs.

This lecture provides technical results that underly outcomes to be studied in this lecture and this lecture and this lecture.

We’ll begin by loading some Python modules.

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from numba import vectorize, njit, prange
from math import gamma
import pandas as pd

import seaborn as sns
colors = sns.color_palette()

@njit
def set_seed():
    np.random.seed(142857)
set_seed()
```
57.2 The Setting

We begin by reviewing the setting in this lecture, which we adopt here too.

A nonnegative random variable W has one of two probability density functions, either f or g.

Before the beginning of time, nature once and for all decides whether she will draw a sequence of IID draws from f or from g.

We will sometimes let q be the density that nature chose once and for all, so that q is either f or g, permanently.

Nature knows which density it permanently draws from, but we the observers do not.

We do know both f and g, but we don’t know which density nature chose.

But we want to know.

To do that, we use observations.

We observe a sequence $\{w_t\}_{t=1}^T$ of T IID draws from either f or g.

We want to use these observations to infer whether nature chose f or g.

A likelihood ratio process is a useful tool for this task.

To begin, we define the key component of a likelihood ratio process, namely, the time t likelihood ratio as the random variable

$$\ell(w_t) = \frac{f(w_t)}{g(w_t)}, \quad t \geq 1.$$

We assume that f and g both put positive probabilities on the same intervals of possible realizations of the random variable W.

That means that under the g density, $\ell(w_t) = \frac{f(w_t)}{g(w_t)}$ is evidently a nonnegative random variable with mean 1.

A likelihood ratio process for sequence $\{w_t\}_{t=1}^\infty$ is defined as

$$L(w^t) = \prod_{i=1}^{t} \ell(w_i),$$

where $w^t = \{w_1, \ldots, w_t\}$ is a history of observations up to and including time t.

Sometimes for shorthand we’ll write $L_t = L(w^t)$.

Notice that the likelihood process satisfies the recursion or multiplicative decomposition

$$L(w^t) = \ell(w_t)L(w^{t-1}).$$

The likelihood ratio and its logarithm are key tools for making inferences using a classic frequentist approach due to Neyman and Pearson [NP33].

We’ll again deploy the following Python code from this lecture that evaluates f and g as two different beta distributions, then computes and simulates an associated likelihood ratio process by generating a sequence w^t from some probability distribution, for example, a sequence of IID draws from g.

```python
# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2
@vectorize
```
def p(x, a, b):
 r = gamma(a + b) / (gamma(a) * gamma(b))
 return r * x**(a-1) * (1 - x)**(b-1)

The two density functions.
f = njit(lambda x: p(x, F_a, F_b))
g = njit(lambda x: p(x, G_a, G_b))

@njit
def simulate(a, b, T=50, N=500):
 '''
 Generate N sets of T observations of the likelihood ratio,
 return as N x T matrix.
 '''
 l_arr = np.empty((N, T))
 for i in range(N):
 for j in range(T):
 w = np.random.beta(a, b)
 l_arr[i, j] = f(w) / g(w)
 return l_arr

We'll also use the following Python code to prepare some informative simulations

l_arr_g = simulate(G_a, G_b, N=50000)
l_seq_g = np.cumprod(l_arr_g, axis=1)
l_arr_f = simulate(F_a, F_b, N=50000)
l_seq_f = np.cumprod(l_arr_f, axis=1)

57.3 Likelihood Ratio Process and Bayes’ Law

Let π_t be a Bayesian posterior defined as

$$
\pi_t = \text{Prob}(q = f|w^t)
$$

The likelihood ratio process is a principal actor in the formula that governs the evolution of the posterior probability π_t, an instance of Bayes’ Law.

Bayes’ law implies that $\{\pi_t\}$ obeys the recursion

$$
\pi_t = \frac{\pi_{t-1}l_t(w_t)}{\pi_{t-1}l_t(w_t) + 1 - \pi_{t-1}} \quad (57.1)
$$

with π_0 being a Bayesian prior probability that $q = f$, i.e., a personal or subjective belief about q based on our having seen no data.

Below we define a Python function that updates belief π using likelihood ratio ℓ according to recursion (57.1)
@njit

def update(n, l):
 "Update n using likelihood l"
 # Update belief
 n = n * l / (n * l + 1 - n)
 return n

Formula (57.1) can be generalized by iterating on it and thereby deriving an expression for the time t posterior π_{t+1} as a function of the time 0 prior π_0 and the likelihood ratio process $L(w^{t+1})$ at time t.

To begin, notice that the updating rule

$$
\pi_{t+1} = \frac{\pi_t \ell(w_{t+1})}{\pi_t \ell(w_{t+1}) + (1 - \pi_t)}
$$

implies

$$
\frac{1}{\pi_{t+1}} = \frac{\pi_t \ell(w_{t+1}) + (1 - \pi_t)}{\pi_t \ell(w_{t+1})} = 1 - \frac{1}{\ell(w_{t+1})} + \frac{1}{\ell(w_{t+1}) \pi_t}
$$

$$
\Rightarrow \frac{1}{\pi_{t+1}} - 1 = \frac{1}{\ell(w_{t+1})} \left(\frac{1}{\pi_t} - 1 \right).
$$

Therefore

$$
\frac{1}{\pi_{t+1}} - 1 = \frac{1}{\prod_{i=1}^{t+1} \ell(w_i)} \left(\frac{1}{\pi_0} - 1 \right) = \frac{1}{L(w^{t+1})} \left(\frac{1}{\pi_0} - 1 \right).
$$

Since $\pi_0 \in (0, 1)$ and $L(w^{t+1}) > 0$, we can verify that $\pi_{t+1} \in (0, 1)$.

After rearranging the preceding equation, we can express π_{t+1} as a function of $L(w^{t+1})$, the likelihood ratio process at $t + 1$, and the initial prior π_0

$$
\pi_{t+1} = \frac{\pi_0 L(w^{t+1})}{\pi_0 L(w^{t+1}) + 1 - \pi_0}.
$$

(57.2)

Formula (57.2) generalizes formula (57.1).

Formula (57.2) can be regarded as a one step revision of prior probability π_0 after seeing the batch of data $\{w_i\}_{i=1}^{t+1}$.

Formula (57.2) shows the key role that the likelihood ratio process $L(w^{t+1})$ plays in determining the posterior probability π_{t+1}.

Formula (57.2) is the foundation for the insight that, because of how the likelihood ratio process behaves as $t \to +\infty$, the likelihood ratio process dominates the initial prior π_0 in determining the limiting behavior of π_t.

To illustrate this insight, below we will plot graphs showing one simulated path of the likelihood ratio process L_t along with two paths of π_t that are associated with the same realization of the likelihood ratio process but different initial prior probabilities π_0.

First, we tell Python two values of π_0.

$n1, n2 = 0.2, 0.8$

Next we generate paths of the likelihood ratio process L_t and the posterior π_t for a history of IID draws from density f.

970 Chapter 57. Likelihood Ratio Processes and Bayesian Learning
Quantitative Economics with Python

```python
T = l_arr_f.shape[1]
n_seq_f = np.empty((2, T+1))
n_seq_f[:, 0] = n1, n2

for t in range(T):
    for i in range(2):
        n_seq_f[i, t+1] = update(n_seq_f[i, t], l_arr_f[0, t])

fig, ax1 = plt.subplots()

for i in range(2):
    ax1.plot(range(T+1), n_seq_f[i, :], label=f'$\pi_0$={n_seq_f[i, 0]}')

ax1.set_ylabel('$\pi_t$')
ax1.set_xlabel('t')
ax1.legend()
ax1.set_title('when f governs data')

ax2 = ax1.twinx()
ax2.plot(range(1, T+1), np.log(l_seq_f[0, :]), '--', color='b')
ax2.set_ylabel('$\log(L(w^t))$')

plt.show()
```

The dotted line in the graph above records the logarithm of the likelihood ratio process \(\log L(w^t) \).

Please note that there are two different scales on the \(y \) axis.

Now let's study what happens when the history consists of IID draws from density \(g \)

```python
T = l_arr_g.shape[1]
n_seq_g = np.empty((2, T+1))
n_seq_g[:, 0] = n1, n2

for t in range(T):
    for i in range(2):
        n_seq_g[i, t+1] = update(n_seq_g[i, t], l_arr_g[0, t])
```

57.3. Likelihood Ratio Process and Bayes’ Law
Below we offer Python code that verifies that nature chose permanently to draw from density f.

```python
n_seq = np.empty((2, T + 1))
n_seq[:, 0] = n1, n2

for i in range(2):
    nL = n_seq[i, 0] * l_seq_f[0, :]
    n_seq[i, 1:] = nL / (nL + 1 - n_seq[i, 0])

np.abs(n_seq - n_seq_f).max() < 1e-10

True
```

We thus conclude that the likelihood ratio process is a key ingredient of the formula (57.2) for a Bayesian's posterior probability that nature has drawn history w^t as repeated draws from density g.

Quantitative Economics with Python
57.4 Behavior of posterior probability \(\{ \pi_t \} \) under the subjective probability distribution

We’ll end this lecture by briefly studying what our Bayesian learner expects to learn under the subjective beliefs \(\pi_t \) cranked out by Bayes’ law.

This will provide us with some perspective on our application of Bayes’s law as a theory of learning.

As we shall see, at each time \(t \), the Bayesian learner knows that he will be surprised.

But he expects that new information will not lead him to change his beliefs.

And it won’t on average under his subjective beliefs.

We’ll continue with our setting in which a McCall worker knows that successive draws of his wage are drawn from either \(F \) or \(G \), but does not know which of these two distributions nature has drawn once-and-for-all before time \(0 \).

We’ll review and reiterate and rearrange some formulas that we have encountered above and in associated lectures.

The worker’s initial beliefs induce a joint probability distribution over a potentially infinite sequence of draws \(w_0, w_1, \ldots \).

Bayes’ law is simply an application of laws of probability to compute the conditional distribution of the \(t \)th draw \(w_t \) conditional on \([w_0, \ldots, w_{t-1}] \).

After our worker puts a subjective probability \(\pi_{-1} \) on nature having selected distribution \(F \), we have in effect assumes from the start that the decision maker knows the joint distribution for the process \(\{w_t\}_{t=0} \).

We assume that the worker also knows the laws of probability theory.

A respectable view is that Bayes’ law is less a theory of learning than a statement about the consequences of information inflows for a decision maker who thinks he knows the truth (i.e., a joint probability distribution) from the beginning.

57.4.1 Mechanical details again

At time 0 before drawing a wage offer, the worker attaches probability \(\pi_{-1} \in (0, 1) \) to the distribution being \(F \).

Before drawing a wage at time 0, the worker thus believes that the density of \(w_0 \) is

\[
h(w_0; \pi_{-1}) = \pi_{-1}f(w_0) + (1 - \pi_{-1})g(w_0).
\]

Let \(a \in \{f, g\} \) be an index that indicates whether nature chose permanently to draw from distribution \(f \) or from distribution \(g \).

After drawing \(w_0 \), the worker uses Bayes’ law to deduce that the posterior probability \(\pi_0 = \text{Prob} = f|w_0 \) that the density is \(f(w) \) is

\[
\pi_0 = \frac{\pi_{-1}f(w_0)}{\pi_{-1}f(w_0) + (1 - \pi_{-1})g(w_0)}.
\]

More generally, after making the \(t \)th draw and having observed \(w_t, w_{t-1}, \ldots, w_0 \), the worker believes that the probability that \(w_{t+1} \) is being drawn from distribution \(F \) is

\[
\pi_t = \pi_t(w_t|\pi_{t-1}) \equiv \frac{\pi_{t-1}f(w_t)/g(w_t)}{\pi_{t-1}f(w_t)/g(w_t) + (1 - \pi_{t-1})} \quad (57.3)
\]

or

\[
\pi_t = \frac{\pi_{t-1}l_t(w_t)}{\pi_{t-1}l_t(w_t) + 1 - \pi_{t-1}}
\]
and that the density of \(w_{t+1} \) conditional on \(w_t, w_{t-1}, \ldots, w_0 \) is

\[
h(w_{t+1}; \pi_t) = \pi_t f(w_{t+1}) + (1 - \pi_t) g(w_{t+1}).
\]

Notice that

\[
E(\pi_t | \pi_{t-1}) = \int \left[\frac{\pi_{t-1} f(w)}{\pi_{t-1} f(w) + (1 - \pi_{t-1}) g(w)} \right] \left[\pi_{t-1} f(w) + (1 - \pi_{t-1}) g(w) \right] dw
\]

\[
= \pi_{t-1} \int f(w) dw
\]

\[
= \pi_{t-1},
\]

so that the process \(\pi_t \) is a **martingale**.

Indeed, it is a **bounded martingale** because each \(\pi_t \), being a probability, is between 0 and 1.

In the first line in the above string of equalities, the term in the first set of brackets is just \(\pi_t \) as a function of \(w_t \), while the term in the second set of brackets is the density of \(w_t \) conditional on \(w_{t-1}, \ldots, w_0 \) or equivalently conditional on the sufficient statistic \(\pi_{t-1} \) for \(w_{t-1}, \ldots, w_0 \).

Notice that here we are computing \(E(\pi_t | \pi_{t-1}) \) under the **subjective** density described in the second term in brackets.

Because \(\{\pi_t\} \) is a bounded martingale sequence, it follows from the **martingale convergence theorem** that \(\pi_t \) converges almost surely to a random variable in \([0, 1]\).

Practically, this means that probability one is attached to sample paths \(\{\pi_t\}_{t=0}^{\infty} \) that converge.

According to the theorem, it different sample paths can converge to different limiting values.

Thus, let \(\{\pi_t(\omega)\}_{t=0}^{\infty} \) denote a particular sample path indexed by a particular \(\omega \in \Omega \).

We can think of nature as drawing an \(\omega \in \Omega \) from a probability distribution \(\text{Prob}\Omega \) and then generating a single realization (or **simulation**) \(\{\pi_t(\omega)\}_{t=0}^{\infty} \) of the process.

The limit points of \(\{\pi_t(\omega)\}_{t=0}^{\infty} \) as \(t \to +\infty \) are realizations of a random variable that is swept out as we sample \(\omega \) from \(\Omega \) and construct repeated draws of \(\{\pi_t(\omega)\}_{t=0}^{\infty} \).

By staring at law of motion (57.1) or (57.3), we can figure out some things about the probability distribution of the limit points

\[
\pi_\infty(\omega) = \lim_{t \to +\infty} \pi_t(\omega).
\]

Evidently, since the likelihood ratio \(\ell(w_t) \) differs from 1 when \(f \neq g \), as we have assumed, the only possible fixed points of (57.3) are

\[
\pi_\infty(\omega) = 1
\]

and

\[
\pi_\infty(\omega) = 0
\]

Thus, for some realizations, \(\lim_{t \to +\infty} \pi_t(\omega) = 1 \) while for other realizations, \(\lim_{t \to +\infty} \pi_t(\omega) = 0 \).

Now let’s remember that \(\{\pi_t\}_{t=0}^{\infty} \) is a martingale and apply the law of iterated expectations.

The law of iterated expectations implies

\[
E_t \pi_{t+j} = \pi_t
\]

and in particular

\[
E_{-1} \pi_{t+j} = \pi_{-1}.
\]
Applying the above formula to π_∞, we obtain

$$E_{-1} \pi_\infty(\omega) = \pi_{-1}$$

where the mathematical expectation E_{-1} here is taken with respect to the probability measure $\text{Prob}(\Omega)$.

Since the only two values that $\pi_\infty(\omega)$ can take are 1 and 0, we know that for some $\lambda \in [0, 1]$

$$\text{Prob}(\pi_\infty(\omega) = 1) = \lambda, \quad \text{Prob}(\pi_\infty(\omega) = 0) = 1 - \lambda$$

and consequently that

$$E_{-1} \pi_\infty(\omega) = \lambda \cdot 1 + (1 - \lambda) \cdot 0 = \lambda$$

Combining this equation with equation (20), we deduce that the probability that $\text{Prob}(\Omega)$ attaches to $\pi_\infty(\omega)$ being 1 must be π_{-1}.

Thus, under the worker’s subjective distribution, π_{-1} of the sample paths of $\{\pi_t\}$ will converge pointwise to 1 and $1 - \pi_{-1}$ of the sample paths will converge pointwise to 0.

57.4.2 Some simulations

Let’s watch the martingale convergence theorem at work in some simulations of our learning model under the worker’s subjective distribution.

Let us simulate $\{\pi_t\}_{t=0}^T$, $\{w_t\}_{t=0}^T$ paths where for each $t \geq 0$, w_t is drawn from the subjective distribution

$$\pi_{t-1} f(w_t) + (1 - \pi_{t-1}) g(w_t)$$

We’ll plot a large sample of paths.

```python
@njit
def martingale_simulate(n0, N=5000, T=200):
    n_path = np.empty((N, T+1))
    w_path = np.empty((N, T))
    n_path[:,0] = n0
    for n in range(N):
        n = n0
        for t in range(T):
            # draw w
            if np.random.rand() <= n:
                w = np.random.beta(F_a, F_b)
            else:
                w = np.random.beta(G_a, G_b)
                n = n*F(w)/g(w) / (n*F(w)/g(w) + 1 - n)
            n_path[n,t+1] = n
            w_path[n,t] = w

    return n_path, w_path

def fraction_0_1(n0, N, T, decimals):
    n_path, w_path = martingale_simulate(n0, N=N, T=T)
    values, counts = np.unique(np.round(n_path[:, -1], decimals=decimals), return_counts=True)
```

(continues on next page)
def create_table(π0s, N=10000, T=500, decimals=2):
 outcomes = []
 for n0 in π0s:
 values, counts = fraction_0_1(n0, N=N, T=T, decimals=decimals)
 freq = counts / N
 outcomes.append(dict(zip(values, freq)))
 table = pd.DataFrame(outcomes).sort_index(axis=1).fillna(0)
 table.index = π0s
 return table

simulate
T = 200
n0 = .5
n_path, w_path = martingale_simulate(n0=n0, T=T, N=10000)

fig, ax = plt.subplots()
for i in range(100):
 ax.plot(range(T+1), n_path[i, :])
ax.set_xlabel('t')
ax.set_ylabel('π_t')
plt.show()

The above graph indicates that
- each of paths converges
- some of the paths converge to 1
- some of the paths converge to 0
none of the paths converge to a limit point not equal to 0 or 1

Convergence actually occurs pretty fast, as the following graph of the cross-ensemble distribution of π_t for various small t's indicates.

```
fig, ax = plt.subplots()
for t in [1, 10, T-1):
    ax.hist(n_path[:,t], bins=20, alpha=0.4, label=f'T={t}')

ax.set_ylabel('count')
ax.set_xlabel('$\pi_T$')
ax.legend(loc='lower right')
plt.show()
```

Evidently, by $t = 199$, π_t has converged to either 0 or 1.

The fraction of paths that have converged to 1 is .5

The fractions of paths that have converged to 0 is also $.5$.

Does the fraction $.5$ ring a bell?

Yes, it does: it equals the value of $\pi_0 = .5$ that we used to generate each sequence in the ensemble.

So let's change π_0 to .3 and watch what happens to the distribution of the ensemble of π_t's for various t's.

```
# simulate
T = 200
n0 = .3

n_path3, w_path3 = martingale_simulate(n0=n0, T=T, N=10000)
```

(continues on next page)
For the preceding ensemble that assumed \(\pi_0 = .5 \), the following graph shows two paths of \(w_t \)'s and the \(\pi_t \) sequences that gave rise to them.

Notice that one of the paths involves systematically higher \(w_t \)'s, outcomes that push \(\pi_t \) upward.

The luck of the draw early in a simulation push the subjective distribution to draw from \(F \) more frequently along a sample path, and this pushes \(\pi_t \) toward 0.
57.5 Initial Prior is Verified by Paths Drawn from Subjective Conditional Densities

Now let’s use our Python code to generate a table that checks out our earlier claims about the probability distribution of the pointwise limits $\pi_\infty(\omega)$.

We’ll use our simulations to generate a histogram of this distribution.

In the following table, the left column in bold face reports an assumed value of π_{-1}.

The second column reports the fraction of $N = 10000$ simulations for which π_t had converged to 0 at the terminal date $T = 500$ for each simulation.

The third column reports the fraction of $N = 10000$ simulations for which π_t had converged to 1 as the terminal date $T = 500$ for each simulation.

```python
# create table
table = create_table(list(np.linspace(0, 1, 11)), N=10000, T=500)
```

<table>
<thead>
<tr>
<th>π_{-1}</th>
<th>π_t converged to 0</th>
<th>π_t converged to 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.8929</td>
<td>0.1071</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7994</td>
<td>0.2006</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7014</td>
<td>0.2986</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5939</td>
<td>0.4061</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5038</td>
<td>0.4962</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3982</td>
<td>0.6018</td>
</tr>
<tr>
<td>0.7</td>
<td>0.3092</td>
<td>0.6908</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1963</td>
<td>0.8037</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0963</td>
<td>0.9037</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```

The fraction of simulations for which $\pi_t$ had converged to 1 is indeed always close to $\pi_{-1}$, as anticipated.
57.6 Drilling Down a Little Bit

To understand how the local dynamics of $\pi_t$ behaves, it is enlightening to consult the variance of $\pi_t$ conditional on $\pi_{t-1}$.

Under the subjective distribution this conditional variance is defined as

$$\sigma^2(\pi_t | \pi_{t-1}) = \int \left[ \frac{\pi_{t-1} f(w)}{\pi_{t-1} f(w) + (1 - \pi_{t-1}) g(w)} - \pi_{t-1} \right]^2 \left( \pi_{t-1} f(w) + (1 - \pi_{t-1}) g(w) \right) dw$$

We can use a Monte Carlo simulation to approximate this conditional variance.

We approximate it for a grid of points $\pi_{t-1} \in [0, 1]$.

Then we’ll plot it.

```python
@njit
def compute_cond_var(pi, mc_size=int(1e6)):
 # create monte carlo draws
 mc_draws = np.zeros(mc_size)
 for i in prange(mc_size):
 if np.random.rand() <= pi:
 mc_draws[i] = np.random.beta(F_a, F_b)
 else:
 mc_draws[i] = np.random.beta(G_a, G_b)
 dev = pi*f(mc_draws)/(pi*f(mc_draws) + (1-pi)*g(mc_draws)) - pi
 return np.mean(dev**2)

pi_array = np.linspace(0, 1, 40)
cond_var_array = []
for pi in pi_array:
 cond_var_array.append(compute_cond_var(pi))

fig, ax = plt.subplots()
ax.plot(pi_array, cond_var_array)
ax.set_xlabel('π_{t-1}')
ax.set_ylabel('$\sigma^2(\pi_t | \pi_{t-1})$')
plt.show()
```
The shape of the conditional variance as a function of $\pi_{t-1}$ is informative about the behavior of sample paths of $\{\pi_t\}$.

Notice how the conditional variance approaches 0 for $\pi_{t-1}$ near either 0 or 1.

The conditional variance is nearly zero only when the agent is almost sure that $w_t$ is drawn from $F$, or is almost sure it is drawn from $G$.

### 57.7 Sequels

This lecture has been devoted to building some useful infrastructure that will help us understand inferences that are the foundations of results described in this lecture and this lecture and this lecture.
58.1 Overview

This is a sequel to the *quantecon lecture*. We discuss two ways to create compound lottery and their consequences. A compound lottery can be said to create a mixture distribution.

Our two ways of constructing a compound lottery will differ in their timing.

- in one, mixing between two possible probability distributions will occur once and all at the beginning of time
- in the other, mixing between the same two possible probability distributions will occur each period

The statistical setting is close but not identical to the problem studied in that quantecon lecture. In that lecture, there were two i.i.d. processes that could possibly govern successive draws of a non-negative random variable $W$.

Nature decided once and for all whether to make a sequence of IID draws from either $f$ or from $g$.

That lecture studied an agent who knew both $f$ and $g$ but did not know which distribution nature chose at time $t-1$.

The agent represented that ignorance by assuming that nature had chosen $f$ or $g$ by flipping an unfair coin that put probability $\pi_{t-1}$ on probability distribution $f$.

That assumption allowed the agent to construct a subjective joint probability distribution over the random sequence $\{W_t\}_{t=0}^{\infty}$.

We studied how the agent would then use the laws of conditional probability and an observed history $u^t = \{w_s\}_{s=0}^{t}$ to form

$$\pi_t = E[\text{nature chose distribution } f | u^t], \quad t = 0, 1, 2, ...$$

However, in the setting of this lecture, that rule imputes to the agent an incorrect model. The reason is that now the wage sequence is actually described by a different statistical model.

Thus, we change the *quantecon lecture* specification in the following way.

Now, each period $t \geq 0$, nature flips a possibly unfair coin that comes up $f$ with probability $\alpha$ and $g$ with probability $1 - \alpha$.

Thus, naturally perpetually draws from the mixture distribution with c.d.f.

$$H(w) = \alpha F(w) + (1 - \alpha) G(w), \quad \alpha \in (0, 1)$$

We’ll study two agents who try to learn about the wage process, but who use different statistical models.
Both types of agent know $f$ and $g$ but neither knows $\alpha$.

Our first type of agent erroneously thinks that at time $-1$ nature once and for all chose $f$ or $g$ and thereafter permanently draws from that distribution.

Our second type of agent knows, correctly, that nature mixes $f$ and $g$ with mixing probability $\alpha \in (0, 1)$ each period, though the agent doesn’t know the mixing parameter.

Our first type of agent applies the learning algorithm described in this QuantEcon lecture.

In the context of the statistical model that prevailed in that lecture, that was a good learning algorithm and it enabled the Bayesian learner eventually to learn the distribution that nature had drawn at time $-1$.

This is because the agent’s statistical model was correct in the sense of being aligned with the data generating process.

But in the present context, our type 1 decision maker’s model is incorrect because the model $h$ that actually generates the data is neither $f$ nor $g$ and so it is beyond the support of the models that the agent thinks are possible.

Nevertheless, we’ll see that our first type of agent muddles through and eventually learns something interesting and useful, even though it is not true.

Instead, it turns out that our type 1 agent who is armed with a wrong statistical model ends up learning whichever probability distribution, $f$ or $g$, is in a special sense closest to the $h$ that actually generates the data.

We’ll tell the sense in which it is closest.

Our second type of agent understands that nature mixes between $f$ and $g$ each period with a fixed mixing probability $\alpha$.

But the agent doesn’t know $\alpha$.

The agent sets out to learn $\alpha$ using Bayes' law applied to his model.

His model is correct in the sense that it includes the actual data generating process $h$ as a possible distribution.

In this lecture, we’ll learn about

- how nature can mix between two distributions $f$ and $g$ to create a new distribution $h$.
- The Kullback-Leibler statistical divergence [https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) that governs statistical learning under an incorrect statistical model
- A useful Python function `numpy.searchsorted` that, in conjunction with a uniform random number generator, can be used to sample from an arbitrary distribution

As usual, we’ll start by importing some Python tools.

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
from numba import vectorize, njit
from math import gamma
import pandas as pd
import scipy.stats as sp
from scipy.integrate import quad

import seaborn as sns
colors = sns.color_palette()

import numpyro
import numpyro.distributions as dist
from numpyro.infer import MCMC, NUTS
```

(continues on next page)
import jax.numpy as jnp
from jax import random

np.random.seed(142857)

@njit
def set_seed():
    np.random.seed(142857)
set_seed()

Let’s use Python to generate two beta distributions

# Parameters in the two beta distributions.
F_a, F_b = 1, 1
G_a, G_b = 3, 1.2

@vectorize
def p(x, a, b):
    r = gamma(a + b) / (gamma(a) * gamma(b))
    return r * x**(a-1) * (1 - x)**(b-1)

# The two density functions.
f = njit(lambda x: p(x, F_a, F_b))
g = njit(lambda x: p(x, G_a, G_b))

@njit
def simulate(a, b, T=50, N=500):
    '''
    Generate N sets of T observations of the likelihood ratio,
    return as N x T matrix.
    '''
    l_arr = np.empty((N, T))
    for i in range(N):
        for j in range(T):
            w = np.random.beta(a, b)
            l_arr[i, j] = f(w) / g(w)
    return l_arr

We’ll also use the following Python code to prepare some informative simulations

l_arr_g = simulate(G_a, G_b, N=50000)
l_seq_g = np.cumprod(l_arr_g, axis=1)

l_arr_f = simulate(F_a, F_b, N=50000)
l_seq_f = np.cumprod(l_arr_f, axis=1)
58.2 Sampling from Compound Lottery \( H \)

We implement two methods to draw samples from our mixture model \( \alpha F + (1 - \alpha)G \).

We’ll generate samples using each of them and verify that they match well.

Here is pseudo code for a direct “method 1” for drawing from our compound lottery:

- **Step one:**
  - use the `numpy.random.choice` function to flip an unfair coin that selects distribution \( F \) with prob \( \alpha \) and \( G \) with prob \( 1 - \alpha \)

- **Step two:**
  - draw from either \( F \) or \( G \), as determined by the coin flip.

- **Step three:**
  - put the first two steps in a big loop and do them for each realization of \( w \)

Our second method uses a uniform distribution and the following fact that we also described and used in the quantecon lecture https://python.quantecon.org/prob_matrix.html:

- If a random variable \( X \) has c.d.f. \( F(X) \), then a random variable \( F^{-1}(U) \) also has c.d.f. \( F(x) \), where \( U \) is a uniform random variable on \([0, 1]\).

In other words, if \( X \sim F(x) \) we can generate a random sample from \( F \) by drawing a random sample from a uniform distribution on \([0, 1]\) and computing \( F^{-1}(U) \).

We’ll use this fact in conjunction with the `numpy.searchsorted` command to sample from \( H \) directly.


See the Mr. P Solver video on Monte Carlo simulation to see other applications of this powerful trick.

In the Python code below, we’ll use both of our methods and confirm that each of them does a good job of sampling from our target mixture distribution.

```python
@njit
def draw_lottery(p, N):
 """Draw from the compound lottery directly.""
 draws = []
 for i in range(0, N):
 if np.random.rand()<=p:
 draws.append(np.random.beta(F_a, F_b))
 else:
 draws.append(np.random.beta(G_a, G_b))
 return np.array(draws)

def draw_lottery_MC(p, N):
 """Draw from the compound lottery using the Monte Carlo trick.""
 xs = np.linspace(1e-8,1-(1e-8),10000)
 CDF = p*sp.beta.cdf(xs, F_a, F_b) + (1-p)*sp.beta.cdf(xs, G_a, G_b)
 Us = np.random.rand(N)
 draws = xs[np.searchsorted(CDF[:-1], Us)]
 return draws
```
# verify
N = 100000
α = 0.0

sample1 = draw_lottery(α, N)
sample2 = draw_lottery_MC(α, N)

# plot draws and density function
plt.hist(sample1, 50, density=True, alpha=0.5, label='direct draws')
plt.hist(sample2, 50, density=True, alpha=0.5, label='MC draws')

xs = np.linspace(0,1,1000)
plt.plot(xs, α*f(xs)+(1-α)*g(xs), color='red', label='density')

plt.legend()
plt.show()

# %%timeit  # compare speed
# sample1 = draw_lottery(α, N=int(1e6))

# %%timeit
# sample2 = draw_lottery_MC(α, N=int(1e6))

Note: With numba acceleration the first method is actually only slightly slower than the second when we generated 1,000,000 samples.
58.3 Type 1 Agent

We’ll now study what our type 1 agent learns.

Remember that our type 1 agent uses the wrong statistical model, thinking that nature mixed between \( f \) and \( g \) once and for all at time \(-1\).

The type 1 agent thus uses the learning algorithm studied in this quantecon lecture.

We’ll briefly review that learning algorithm now.

Let \( \pi_t \) be a Bayesian posterior defined as

\[
\pi_t = \text{Prob}(q = f|w^t)
\]

The likelihood ratio process plays a principal role in the formula that governs the evolution of the posterior probability \( \pi_t \), an instance of Bayes’ Law.

Bayes’ law implies that \( \{\pi_t\} \) obeys the recursion

\[
\pi_t = \frac{\pi_{t-1} \ell(w_t)}{\pi_{t-1} \ell(w_t) + 1 - \pi_{t-1}}
\]

with \( \pi_0 \) being a Bayesian prior probability that \( q = f \), i.e., a personal or subjective belief about \( q \) based on our having seen no data.

Below we define a Python function that updates belief \( \pi \) using likelihood ratio \( \ell \) according to recursion (58.1)

```python
@njit
def update(π, l):
 "Update π using likelihood l"
 # Update belief
 π = π * l / (π * l + 1 - π)
 return π
```

Formula (58.1) can be generalized by iterating on it and thereby deriving an expression for the time \( t \) posterior \( \pi_{t+1} \) as a function of the time 0 prior \( \pi_0 \) and the likelihood ratio process \( L(w^{t+1}) \) at time \( t \).

To begin, notice that the updating rule

\[
\pi_{t+1} = \frac{\pi_t \ell(w_{t+1})}{\pi_t \ell(w_{t+1}) + (1 - \pi_t)}
\]

implies

\[
\frac{1}{\pi_{t+1}} = \frac{\pi_t \ell(w_{t+1}) + (1 - \pi_t)}{\pi_t \ell(w_{t+1})}
= 1 - \frac{1}{\ell(w_{t+1})} + \frac{1}{\ell(w_{t+1})} \frac{1}{\pi_t}.
\]

\[\Rightarrow \frac{1}{\pi_{t+1}} - 1 = \frac{1}{L(w^t)} \left( \frac{1}{\pi_t} - 1 \right).\]

Therefore

\[
\frac{1}{\pi_{t+1}} - 1 = \frac{1}{\prod_{i=1}^{t+1} \ell(w_i)} \left( \frac{1}{\pi_0} - 1 \right) = \frac{1}{L(w^{t+1})} \left( \frac{1}{\pi_0} - 1 \right).
\]
Since $\pi_0 \in (0, 1)$ and $L(w^{t+1}) > 0$, we can verify that $\pi_{t+1} \in (0, 1)$.

After rearranging the preceding equation, we can express $\pi_{t+1}$ as a function of $L(w^{t+1})$, the likelihood ratio process at $t+1$, and the initial prior $\pi_0$

$$
\pi_{t+1} = \frac{\pi_0 L(w^{t+1})}{\pi_0 L(w^{t+1}) + 1 - \pi_0}.
$$

(58.2)

Formula (58.2) generalizes formula (58.1).

Formula (58.2) can be regarded as a one step revision of prior probability $\pi_0$ after seeing the batch of data $\{w_i\}_{i=1}^{t+1}$.

## 58.4 What a type 1 Agent Learns when Mixture $H$ Generates Data

We now study what happens when the mixture distribution $h; \alpha$ truly generated the data each period.

A submartingale or supermartingale continues to describe $\pi_t$.

It raises its ugly head and causes $\pi_t$ to converge either to 0 or to 1.

This is true even though in truth nature always mixes between $f$ and $g$.

After verifying that claim about possible limit points of $\pi_t$ sequences, we'll drill down and study what fundamental force determines the limiting value of $\pi_t$.

Let's set a value of $\alpha$ and then watch how $\pi_t$ evolves.

```python
def simulate_mixed(alpha, T=50, N=500):
 """
 Generate N sets of T observations of the likelihood ratio,
 return as N x T matrix, when the true density is mixed h;alpha
 """

 w_s = draw_lottery(alpha, N*T).reshape(N, T)
 l_arr = f(w_s) / g(w_s)

 return l_arr

def plot_n_seq(alpha, n1=0.2, n2=0.8, T=200):
 """
 Compute and plot n_seq and the log likelihood ratio process
 when the mixed distribution governs the data.
 """

 l_arr_mixed = simulate_mixed(alpha, T=T, N=50)
 l_seq_mixed = np.cumprod(l_arr_mixed, axis=1)

 T = l_arr_mixed.shape[1]
 n_seq_mixed = np.empty((2, T+1))
 n_seq_mixed[:, 0] = n1, n2

 for t in range(T):
 for i in range(2):
 n_seq_mixed[i, t+1] = update(n_seq_mixed[i, t], l_arr_mixed[0, t])

 # plot
 fig, ax1 = plt.subplots()
 for i in range(2):
 (continues on next page)
```
The above graph shows a sample path of the log likelihood ratio process as the blue dotted line, together with sample paths of $\pi_t$ that start from two distinct initial conditions.

Let's see what happens when we change $\alpha$.

```python
plot_n_seq(\alpha = 0.2)
```
Evidently, $\alpha$ is having a big effect on the destination of $\pi_t$ as $t \to +\infty$.

### 58.5 Kullback-Leibler Divergence Governs Limit of $\pi_t$

To understand what determines whether the limit point of $\pi_t$ is 0 or 1 and how the answer depends on the true value of the mixing probability $\alpha \in (0, 1)$ that generates

$$h(w) \equiv h(w|\alpha) = \alpha f(w) + (1 - \alpha) g(w)$$

we shall compute the following two Kullback-Leibler divergences

$$KL_g(\alpha) = \int \log \left( \frac{g(w)}{h(w)} \right) h(w) dw$$

and

$$KL_f(\alpha) = \int \log \left( \frac{f(w)}{h(w)} \right) h(w) dw$$

We shall plot both of these functions against $\alpha$ as we use $\alpha$ to vary $h(w) = h(w|\alpha)$.

The limit of $\pi_t$ is determined by

$$\min_{f,g}\{KL_g, KL_f\}$$

The only possible limits are 0 and 1.

As $\rightarrow +\infty$, $\pi_t$ goes to one if and only if $KL_f < KL_g$.

```python
@vectorize
def KL_g(alpha):
 "Compute the KL divergence between g and h."
 err = 1e-8 # to avoid 0 at end points
 ws = np.linspace(err, 1-err, 10000)
 gs, fs = g(ws), f(ws)
 hs = alpha*fs + (1-alpha)*gs
 (continues on next page)
```
return np.sum(np.log(gs / hs) * hs) / 10000

@vectorize
def KL_f(α):
    "Compute the KL divergence between f and h."
    err = 1e-8  # to avoid 0 at end points
    ws = np.linspace(err, 1 - err, 10000)
    gs, fs = g(ws), f(ws)
    hs = α * fs + (1 - α) * gs
    return np.sum(np.log(fs / hs) * hs) / 10000

# compute KL using quad in Scipy
def KL_g_quad(α):
    "Compute the KL divergence between g and h using scipy.integrate."
    h = lambda x: α * f(x) + (1 - α) * g(x)
    return quad(lambda x: np.log(g(x) / h(x)) * h(x), 0, 1)[0]

def KL_f_quad(α):
    "Compute the KL divergence between f and h using scipy.integrate."
    h = lambda x: α * f(x) + (1 - α) * g(x)
    return quad(lambda x: np.log(f(x) / h(x)) * h(x), 0, 1)[0]

# vectorize
KL_g_quad_v = np.vectorize(KL_g_quad)
KL_f_quad_v = np.vectorize(KL_f_quad)

# Let us find the limit point
def n_lim(a, T=5000, n_0=0.4):
    "Find limit of n sequence."
    n_seq = np.zeros(T+1)
    n_seq[0] = n_0
    l_arr = simulate_mixed(a, T, N=1)[0]
    for t in range(T):
        n_seq[t+1] = update(n_seq[t], l_arr[t])
    return n_seq[-1]

n_lim_v = np.vectorize(n_lim)

Let us first plot the KL divergences $KL_g(\alpha)$, $KL_f(\alpha)$ for each $\alpha$.

α_arr = np.linspace(0, 1, 100)
KL_g_arr = KL_g(α_arr)
KL_f_arr = KL_f(α_arr)

fig, ax = plt.subplots(1, figsize=[10, 6])
ax.plot(α_arr, KL_g_arr, label='KL(g, h)')
ax.plot(α_arr, KL_f_arr, label='KL(f, h)')
ax.set_ylabel('KL divergence')
ax.set_xlabel(r'$\alpha$')
ax.legend(loc='upper right')
plt.show()
Let's compute an $\alpha$ for which the KL divergence between $h$ and $g$ is the same as that between $h$ and $f$.

```python
where KL_f = KL_g
alpha = np.argmax(np.abs(KL_g_arr - KL_f_arr))
```

0.31313131313131315

We can compute and plot the convergence point $\pi_\infty$ for each $\alpha$ to verify that the convergence is indeed governed by the KL divergence.

The blue circles show the limiting values of $\pi_t$ that simulations discover for different values of $\alpha$ recorded on the $x$ axis. Thus, the graph below confirms how a minimum KL divergence governs what our type 1 agent eventually learns.
Evidently, our type 1 learner who applies Bayes’ law to his misspecified set of statistical models eventually learns an approximating model that is as close as possible to the true model, as measured by its Kullback-Leibler divergence.
58.6 Type 2 Agent

We now describe how our type 2 agent formulates his learning problem and what he eventually learns. Our type 2 agent understands the correct statistical model but acknowledges does not know $\alpha$.

We apply Bayes law to deduce an algorithm for learning $\alpha$ under the assumption that the agent knows that

$$h(w) = h(w|\alpha)$$

but does not know $\alpha$.

We’ll assume that the person starts out with a prior probability $\pi_0(\alpha)$ on $\alpha \in (0, 1)$ where the prior has one of the forms that we deployed in this quantecon lecture.

We’ll fire up numpyro and apply it to the present situation.

Bayes’ law now takes the form

$$\pi_{t+1}(\alpha) = \frac{h(w_{t+1}|\alpha)\pi_t(\alpha)}{\int h(w_{t+1}|\alpha')\pi_t(\alpha')d\alpha'}$$

We’ll use numpyro to approximate this equation.

We’ll create graphs of the posterior $\pi_t(\alpha)$ as $t \to +\infty$ corresponding to ones presented in the quantecon lecture https://python.quantecon.org/bayes_nonconj.html.

We anticipate that a posterior distribution will collapse around the true $\alpha$ as $t \to +\infty$.

Let us try a uniform prior first.

We use the Mixture class in Numpyro to construct the likelihood function.

```python
α = 0.8
simulate data with true α
data = draw_lottery(α, 1000)
sizes = [5, 20, 50, 200, 1000, 25000]
def model(w):
 α = numpyro.sample('α', dist.Uniform(low=0.0, high=1.0))
 y samp = numpyro.sample('w',
 dist.Mixture(dist.Categorical(jnp.array([α, 1-α])), [dist.Beta(F_a, F_b),
 dist.Beta(G_a, G_b)], obs=w)
def MCMC_run(ws):
 """Compute posterior using MCMC with observed ws""
 kernal = NUTS(model)
mcmc = MCMC(kernal, num_samples=5000, num_warmup=1000, progress_bar=False)
mcmc.run(rng_key=random.PRNGKey(142857), w=jnp.array(ws))
sample = mcmc.get_samples()
return sample['α']
```

The following code generates the graph below that displays Bayesian posteriors for $\alpha$ at various history lengths.
fig, ax = plt.subplots(figsize=(10, 6))

for i in range(len(sizes)):
    sample = MCMC_run(data[:sizes[i]])
    sns.histplot(
        data=sample, kde=True, stat='density', alpha=0.2, ax=ax,
        color=colors[i], binwidth=0.02, linewidth=0.05, label=f't={sizes[i]}'
    )
ax.set_title(r'$\pi_t(\alpha)$ as $t$ increases')
ax.legend()
a.set_xlabel(r'$\alpha$')
plt.show()

Evidently, the Bayesian posterior narrows in on the true value $\alpha = .8$ of the mixing parameter as the length of a history of observations grows.

## 58.7 Concluding Remarks

Our type 1 person deploys an incorrect statistical model.

He believes that either $f$ or $g$ generated the $w$ process, but just doesn’t know which one. That is wrong because nature is actually mixing each period with mixing probability $\alpha$.

Our type 1 agent eventually believes that either $f$ or $g$ generated the $w$ sequence, the outcome being determined by the model, either $f$ or $g$, whose KL divergence relative to $h$ is smaller.

Our type 2 agent has a different statistical model, one that is correctly specified.

He knows the parametric form of the statistical model but not the mixing parameter $\alpha$. 
He knows that he does not know it.

But by using Bayes’ law in conjunction with his statistical model and a history of data, he eventually acquires a more and more accurate inference about \( \alpha \).

This little laboratory exhibits some important general principles that govern outcomes of Bayesian learning of misspecified models.

Thus, the following situation prevails quite generally in empirical work.

A scientist approaches the data with a manifold \( S \) of statistical models \( s(X|\theta) \), where \( s \) is a probability distribution over a random vector \( X \), \( \theta \in \Theta \) is a vector of parameters, and \( \Theta \) indexes the manifold of models.

The scientist with observations that he interprets as realizations \( x \) of the random vector \( X \) wants to solve an inverse problem of somehow inverting \( s(x|\theta) \) to infer \( \theta \) from \( x \).

But the scientist’s model is misspecified, being only an approximation to an unknown model \( h \) that nature uses to generate \( X \).

If the scientist uses Bayes’ law or a related likelihood-based method to infer \( \theta \), it occurs quite generally that for large sample sizes the inverse problem infers a \( \theta \) that minimizes the KL divergence of the scientist’s model \( s \) relative to nature’s model \( h \).
In addition to what’s in Anaconda, this lecture will need the following libraries:

```python
!pip install quantecon interpolation

import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
from numba import njit, prange, float64, int64
from numba.experimental import jitclass
from interpolation import interp
from math import gamma
from scipy.optimize import minimize
```
59.1 Overview

This lecture follows up on ideas presented in the following lectures:

- A Problem that Stumped Milton Friedman
- Exchangeability and Bayesian Updating
- Likelihood Ratio Processes

In A Problem that Stumped Milton Friedman we described a problem that a Navy Captain presented to Milton Friedman during World War II.

The Navy had instructed the Captain to use a decision rule for quality control that the Captain suspected could be dominated by a better rule.

(The Navy had ordered the Captain to use an instance of a frequentist decision rule.)

Milton Friedman recognized the Captain’s conjecture as posing a challenging statistical problem that he and other members of the US Government’s Statistical Research Group at Columbia University proceeded to try to solve.

One of the members of the group, the great mathematician Abraham Wald, soon solved the problem.

A good way to formulate the problem is to use some ideas from Bayesian statistics that we describe in this lecture Exchangeability and Bayesian Updating and in this lecture Likelihood Ratio Processes, which describes the link between Bayesian updating and likelihood ratio processes.

The present lecture uses Python to generate simulations that evaluate expected losses under frequentist and Bayesian decision rules for an instance of the Navy Captain’s decision problem.

The simulations validate the Navy Captain’s hunch that there is a better rule than the one the Navy had ordered him to use.

59.2 Setup

To formalize the problem of the Navy Captain whose questions posed the problem that Milton Friedman and Allan Wallis handed over to Abraham Wald, we consider a setting with the following parts.

- Each period a decision maker draws a non-negative random variable $Z$ from a probability distribution that he does not completely understand. He knows that two probability distributions are possible, $f_0$ and $f_1$, and that which ever distribution it is remains fixed over time. The decision maker believes that before the beginning of time, nature once and for all selected either $f_0$ or $f_1$ and that the probability that it selected $f_0$ is probability $\pi^*$.

- The decision maker observes a sample $\{z_i\}_{i=0}^t$ from the the distribution chosen by nature.

The decision maker wants to decide which distribution actually governs $Z$ and is worried by two types of errors and the losses that they impose on him.

- a loss $\bar{L}_1$ from a type I error that occurs when he decides that $f = f_1$ when actually $f = f_0$
- a loss $\bar{L}_0$ from a type II error that occurs when he decides that $f = f_0$ when actually $f = f_1$

The decision maker pays a cost $c$ for drawing another $z$.

We mainly borrow parameters from the quantecon lecture A Problem that Stumped Milton Friedman except that we increase both $\bar{L}_0$ and $\bar{L}_1$ from 25 to 100 to encourage the frequentist Navy Captain to take more draws before deciding.

We set the cost $c$ of taking one more draw at 1.25.

We set the probability distributions $f_0$ and $f_1$ to be beta distributions with $a_0 = b_0 = 1$, $a_1 = 3$, and $b_1 = 1.2$, respectively.
Below is some Python code that sets up these objects.

```python
@njit
def p(x, a, b):
 "Beta distribution."
 r = gamma(a + b) / (gamma(a) * gamma(b))
 return r * x**(a-1) * (1 - x)**(b-1)
```

We start with defining a `jitclass` that stores parameters and functions we need to solve problems for both the Bayesian and frequentist Navy Captains.

```python
wf_data = [
 ('c', float64), # unemployment compensation
 ('a0', float64), # parameters of beta distribution
 ('b0', float64),
 ('a1', float64),
 ('b1', float64),
 ('L0', float64), # cost of selecting f0 when f1 is true
 ('L1', float64), # cost of selecting f1 when f0 is true
 ('n_grid', float64[:]), # grid of beliefs \(\pi \)
 ('n_grid_size', int64),
 ('mc_size', int64), # size of Monte Carlo simulation
 ('z0', float64[:]), # sequence of random values
 ('z1', float64[:]) # sequence of random values
]

@jitclass(wf_data)
class WaldFriedman:
 def __init__(self,
 c=1.25,
 a0=1,
 b0=1,
 a1=3,
 b1=1.2,
 L0=100,
 L1=100,
 n_grid_size=200,
 mc_size=1000):

 self.c, self.n_grid_size = c, n_grid_size
 self.a0, self.b0, self.a1, self.b1 = a0, b0, a1, b1
 self.L0, self.L1 = L0, L1
 self.n_grid = np.linspace(0, 1, n_grid_size)
 self.mc_size = mc_size

 self.z0 = np.random.beta(a0, b0, mc_size)
 self.z1 = np.random.beta(a1, b1, mc_size)

 def f0(self, x):
 return p(x, self.a0, self.b0)

 def f1(self, x):
 (continues on next page)
```
return p(x, self.a1, self.b1)

def κ(self, z, n):
    """Updaten using Bayes' rule and the current observation z
    """
    a0, b0, a1, b1 = self.a0, self.b0, self.a1, self.b1
    n_f0, n_f1 = n * p(z, a0, b0), (1 - n) * p(z, a1, b1)
    n_new = n_f0 / (n_f0 + n_f1)
    return n_new

wf = WaldFriedman()
grid = np.linspace(0, 1, 50)
plt.figure()
plt.title("Two Distributions")
plt.plot(grid, wf.f0(grid), lw=2, label="$f_0$")
plt.plot(grid, wf.f1(grid), lw=2, label="$f_1$")
plt.legend()
plt.xlabel("$z$ values")
plt.ylabel("density of $z_k$")
plt.tight_layout()
plt.show()

Above, we plot the two possible probability densities $f_0$ and $f_1$.
Frequentist Decision Rule

The Navy told the Captain to use a frequentist decision rule.

In particular, it gave him a decision rule that the Navy had designed by using frequentist statistical theory to minimize an expected loss function.

That decision rule is characterized by a sample size $t$ and a cutoff $d$ associated with a likelihood ratio.

Let $L(z_t) = \prod_{i=0}^{t} \frac{f_0(z_i)}{f_1(z_i)}$ be the likelihood ratio associated with observing the sequence $\{z_i\}_{i=0}^{t}$.

The decision rule associated with a sample size $t$ is:

- decide that $f_0$ is the distribution if the likelihood ratio is greater than $d$

To understand how that rule was engineered, let null and alternative hypotheses be

- null: $H_0: f = f_0$,
- alternative $H_1: f = f_1$.

Given sample size $t$ and cutoff $d$, under the model described above, the mathematical expectation of total loss is

$$
\bar{V}_{fre}(t,d) = ct + \pi^*PFA \times \bar{L}_1 + (1 - \pi^*)(1 - PD) \times \bar{L}_0
$$

where

$$
PFA = \Pr\{L(z_t) < d \mid q = f_0\}
$$

$$
PD = \Pr\{L(z_t) < d \mid q = f_1\}
$$

Here

- $PFA$ denotes the probability of a false alarm, i.e., rejecting $H_0$ when it is true
- $PD$ denotes the probability of a detection error, i.e., not rejecting $H_0$ when $H_1$ is true

For a given sample size $t$, the pairs $(PFA, PD)$ lie on a receiver operating characteristic curve and can be uniquely pinned down by choosing $d$.

To see some receiver operating characteristic curves, please see this lecture Likelihood Ratio Processes.

To solve for $\bar{V}_{fre}(t,d)$ numerically, we first simulate sequences of $z$ when either $f_0$ or $f_1$ generates data.

```python
N = 10000
T = 100

z0_arr = np.random.beta(wf.a0, wf.b0, (N, T))
z1_arr = np.random.beta(wf.a1, wf.b1, (N, T))

plt.hist(z0_arr.flatten(), bins=50, alpha=0.4, label='f0')
plt.hist(z1_arr.flatten(), bins=50, alpha=0.4, label='f1')
plt.legend()
plt.show()
```
We can compute sequences of likelihood ratios using simulated samples.

\[
l = \lambda(z) = \frac{w_0 f_{0}(z)}{w_1 f_{1}(z)}
\]

\[
l_{0\text{ arr}} = l(z_{0\text{ arr}})
l_{1\text{ arr}} = l(z_{1\text{ arr}})
\]

\[
L_{0\text{ arr}} = \text{np.cumprod}(l_{0\text{ arr}}, 1)
L_{1\text{ arr}} = \text{np.cumprod}(l_{1\text{ arr}}, 1)
\]

With an empirical distribution of likelihood ratios in hand, we can draw **receiver operating characteristic curves** by enumerating \((PFA, PD)\) pairs given each sample size \(t\).

\[
PFA = \text{np.arange}(0, 100, 1)
\]

\[
\text{for } t \text{ in range}(1, 15, 4): 
\quad \text{percentile} = \text{np.percentile}(L_{0\text{ arr}}[:, t], PFA) 
\quad PD = \left[\frac{\text{np.sum}(L_{1\text{ arr}}[:, t] < p)}{N} \text{ for } p \text{ in percentile}\right] 
\quad \text{plt.plot}(PFA / 100, PD, label=f"t={t}")
\]

\[
\text{plt.scatter}(0, 1, label="perfect detection")
\text{plt.plot}([0, 1], [0, 1], color='k', ls='--', label="random detection")
\]

\[
\text{plt.arrow}(0.5, 0.5, -0.15, 0.15, head_width=0.03)
\text{plt.text}(0.35, 0.7, "better")
\text{plt.xlabel("Probability of false alarm")}
\text{plt.ylabel("Probability of detection")}
\text{plt.legend()}
\text{plt.title("Receiver Operating Characteristic Curve")}
\text{plt.show()}
\]
Our frequentist minimizes the expected total loss presented in equation (59.1) by choosing \((t, d)\).

Doing that delivers an expected loss

\[
\bar{V}_{\text{fre}} = \min_{t,d} \bar{V}_{\text{fre}}(t,d).
\]

We first consider the case in which \(\pi^* = \Pr\{\text{nature selects} \ f_0\} = 0.5\).

We can solve the minimization problem in two steps.

First, we fix \(t\) and find the optimal cutoff \(d\) and consequently the minimal \(\bar{V}_{\text{fre}}(t)\).

Here is Python code that does that and then plots a useful graph.

```python
@njit
def V_fre_d_t(d, t, L0_arr, L1_arr, n_star, wf):
 N = L0_arr.shape[0]
 PFA = np.sum(L0_arr[:, t-1] < d) / N
 PD = np.sum(L1_arr[:, t-1] < d) / N
 V = n_star * PFA * wf.L1 + (1 - n_star) * (1 - PD) * wf.L0
 return V

def V_fre_t(t, L0_arr, L1_arr, n_star, wf):
 res = minimize(V_fre_d_t, 1, args=(t, L0_arr, L1_arr, n_star, wf), method='Nelder-Mead')
 V = res.fun
 d = res.x
 PFA = np.sum(L0_arr[:, t-1] < d) / N
 PD = np.sum(L1_arr[:, t-1] < d) / N
 return V, PFA, PD
```

59.3. Frequentist Decision Rule
def compute_V_fre(L0_arr, L1_arr, n_star, wf):
    T = L0_arr.shape[1]
    V_fre_arr = np.empty(T)
    PFA_arr = np.empty(T)
    PD_arr = np.empty(T)
    for t in range(1, T+1):
        V, PFA, PD = V_fre_t(t, L0_arr, L1_arr, n_star, wf)
        V_fre_arr[t-1] = wf.c * t + V
        PFA_arr[t-1] = PFA
        PD_arr[t-1] = PD
    return V_fre_arr, PFA_arr, PD_arr

n_star = 0.5
V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, n_star, wf)
plt.plot(range(T), V_fre_arr, label='$\min_{d} \overline{V}_{fre}(t,d)$')
plt.xlabel('t')
plt.title('$\pi^*=0.5$')
plt.legend()
plt.show()

t_optimal = np.argmin(V_fre_arr) + 1

msg = f"The above graph indicates that minimizing over t tells the frequentist to..." +
    f"draw \(t_{optimal}\) observations and then decide."
print(msg)

The above graph indicates that minimizing over t tells the frequentist to draw 8...
Let's now change the value of $\pi^*$ and watch how the decision rule changes.

```python
n_n = 20
n_star_arr = np.linspace(0.1, 0.9, n_n)

V_fre_bar_arr = np.empty(n_n)
t_optimal_arr = np.empty(n_n)
PFA_optimal_arr = np.empty(n_n)
PD_optimal_arr = np.empty(n_n)

for i, n_star in enumerate(n_star_arr):
 V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, n_star, wf)
 t_idx = np.argmin(V_fre_arr)
 V_fre_bar_arr[i] = V_fre_arr[t_idx]
 t_optimal_arr[i] = t_idx + 1
 PFA_optimal_arr[i] = PFA_arr[t_idx]
 PD_optimal_arr[i] = PD_arr[t_idx]
```

```python
plt.plot(n_star_arr, V_fre_bar_arr)
plt.xlabel('π^*')
plt.title('\overline{V}_{fre}')
plt.show()
```

The following shows how optimal sample size $t$ and targeted $(PFA, PD)$ change as $\pi^*$ varies.

```python
fig, axs = plt.subplots(1, 2, figsize=(14, 5))
axs[0].plot(n_star_arr, t_optimal_arr)
axs[0].set_xlabel('π^*')
axs[0].set_ylabel('π^*')
```

59.3. Frequentist Decision Rule
In *A Problem that Stumped Milton Friedman*, we learned how Abraham Wald confirmed the Navy Captain’s hunch that there is a better decision rule.

We presented a Bayesian procedure that instructed the Captain to make decisions by comparing his current Bayesian posterior probability $\pi$ with two cutoff probabilities called $\alpha$ and $\beta$.

To proceed, we borrow some Python code from the quantecon lecture *A Problem that Stumped Milton Friedman* that computes $\alpha$ and $\beta$.

```python
@njit(parallel=True)
def Q(h, wf):
 c, n_grid = wf.c, wf.n_grid
 L0, L1 = wf.L0, wf.L1
 z0, z1 = wf.z0, wf.z1
 mc_size = wf.mc_size
 κ = wf.κ

 h_new = np.empty_like(n_grid)
 h_func = lambda p: interp(n_grid, h, p)

 for i in prange(len(n_grid)):
 n = n_grid[i]
```

59.4 Bayesian Decision Rule
# Find the expected value of J by integrating over z
integral_f0, integral_f1 = 0, 0
for m in range(mc_size):
    n_0 = κ(z0[m], n)  # Draw z from f0 and update n
    integral_f0 += min((1 - n_0) * L0, n_0 * L1, h_func(n_0))

    n_1 = κ(z1[m], n)  # Draw z from f1 and update n
    integral_f1 += min((1 - n_1) * L0, n_1 * L1, h_func(n_1))

    integral = (n * integral_f0 + (1 - n) * integral_f1) / mc_size

h_new[i] = c + integral

return h_new

@njit
def solve_model(wf, tol=1e-4, max_iter=1000):
    
    Compute the continuation value function

    * wf is an instance of WaldFriedman

    
    # Set up loop
    h = np.zeros(len(wf.n_grid))
    i = 0
    error = tol + 1

    while i < max_iter and error > tol:
        h_new = Q(h, wf)
        error = np.max(np.abs(h - h_new))
        i += 1
        h = h_new

    if error > tol:
        print("Failed to converge!")

    return h_new

h_star = solve_model(wf)

@njit
def find_cutoff_rule(wf, h):

    This function takes a continuation value function and returns the corresponding cutoffs of where you transition between continuing and choosing a specific model

    n_grid = wf.n_grid
    L0, L1 = wf.L0, wf.L1

(continues on next page)
# Evaluate cost at all points on grid for choosing a model
payoff_f0 = (1 - n_grid) * L0
payoff_f1 = n_grid * L1

# The cutoff points can be found by differencing these costs with
# The Bellman equation (J is always less than or equal to p_c_i)
β = n_grid[np.searchsorted(
    payoff_f1 - np.minimum(h, payoff_f0),
    1e-10) - 1]
α = n_grid[np.searchsorted(
    np.minimum(h, payoff_f1) - payoff_f0,
    1e-10) - 1]

return (β, α)

β, α = find_cutoff_rule(wf, h_star)
cost_L0 = (1 - wf.n_grid) * wf.L0
cost_L1 = wf.n_grid * wf.L1

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(wf.n_grid, h_star, label='continuation value')
ax.plot(wf.n_grid, cost_L1, label='choose f1')
ax.plot(wf.n_grid, cost_L0, label='choose f0')
ax.plot(wf.n_grid,
    np.amin(np.column_stack([h_star, cost_L0, cost_L1]), axis=1),
    lw=15, alpha=0.1, color='b', label='minimum cost')

ax.annotate(r'$\beta$', xy=(β + 0.01, 0.5), fontsize=14)
ax.annotate(r'$\alpha$', xy=(α + 0.01, 0.5), fontsize=14)

plt.vlines(β, 0, β * wf.L0, linestyle='--')
plt.vlines(α, 0, (1 - α) * wf.L1, linestyle='--')

ax.set(xlim=(0, 1), ylim=(0, 0.5 * max(wf.L0, wf.L1)), xlabel='$\pi$',
    ylabel='$cost$',
    xticks=[], yticks=[], title='Value function')

plt.legend()
plt.show()
The above figure portrays the value function plotted against the decision maker’s Bayesian posterior. It also shows the probabilities $\alpha$ and $\beta$.

The Bayesian decision rule is:

- accept $H_0$ if $\pi \geq \alpha$
- accept $H_1$ if $\pi \leq \beta$
- delay deciding and draw another $z$ if $\beta \leq \pi \leq \alpha$

We can calculate two “objective” loss functions under this situation conditioning on knowing for sure that nature has selected $f_0$, in the first case, or $f_1$, in the second case.

1. under $f_0$,

\[
V^0(\pi) = \begin{cases} 
0 & \text{if } \alpha \leq \pi, \\
c + EV^0(\pi') & \text{if } \beta \leq \pi < \alpha, \\
L_1 & \text{if } \pi < \beta.
\end{cases}
\]

2. under $f_1$

\[
V^1(\pi) = \begin{cases} 
\tilde{L}_0 & \text{if } \alpha \leq \pi, \\
c + EV^1(\pi') & \text{if } \beta \leq \pi < \alpha, \\
0 & \text{if } \pi < \beta.
\end{cases}
\]

where $\pi' = \frac{\pi f_0(z')}{\pi f_0(z') + (1 - \pi) f_1(z')}$. Given a prior probability $\pi_0$, the expected loss for the Bayesian is

\[
\tilde{V}_{Bayes}(\pi_0) = \pi^* V^0(\pi_0) + (1 - \pi^*) V^1(\pi_0).
\]
Below we write some Python code that computes $V^0(\pi)$ and $V^1(\pi)$ numerically.

```python
@njit(parallel=True)
def V_q(wf, flag):
 V = np.zeros(wf.n_grid_size)
 if flag == 0:
 z_arr = wf.z0
 V[wf.n_grid < \beta] = wf.L1
 else:
 z_arr = wf.z1
 V[wf.n_grid >= \alpha] = wf.L0
 V_old = np.empty_like(V)
 while True:
 V_old[:] = V[:]
 V[(\beta < wf.n_grid) & (wf.n_grid < \alpha)] = 0
 for i in prange(len(wf.n_grid)):
 n = wf.n_grid[i]
 if n >= \alpha or n < \beta:
 continue
 for j in prange(len(z_arr)):
 n_next = wf.x(z_arr[j], n)
 V[i] += wf.c + interp(wf.n_grid, V_old, n_next)
 V[i] /= wf.mc_size
 if np.abs(V - V_old).max() < 1e-5:
 break
 return V
```

$V_0 = V_q(wf, 0)$
$V_1 = V_q(wf, 1)$

```python
plt.plot(wf.n_grid, V0, label='V^0')
plt.plot(wf.n_grid, V1, label='V^1')
plt.vlines(\beta, 0, wf.L0, linestyle='--')
plt.text(\beta+0.01, wf.L0/2, '\beta')
plt.vlines(\alpha, 0, wf.L0, linestyle='--')
plt.text(\alpha+0.01, wf.L0/2, '\alpha')
plt.xlabel('π')
plt.title('Objective value function $V(\pi)$')
plt.legend()
plt.show()
```
Given an assumed value for \( \pi^* = \Pr \{ \text{nature selects } f_0 \} \), we can then compute \( V_{\text{Bayes}}(\pi_0) \).

We can then determine an initial Bayesian prior \( \pi_0^* \) that minimizes this objective concept of expected loss.

The figure 9 below plots four cases corresponding to \( \pi^* = 0.25, 0.3, 0.5, 0.7 \).

We observe that in each case \( \pi_0^* \) equals \( \pi^* \).

```python
def compute_V_baye_bar(n_star, V0, V1, wf):
 V_baye = n_star * V0 + (1 - n_star) * V1
 n_idx = np.argmin(V_baye)
 n_optimal = wf.n_grid[n_idx]
 V_baye_bar = V_baye[n_idx]

 return V_baye, n_optimal, V_baye_bar
```

```python
n_star_arr = [0.25, 0.3, 0.5, 0.7]

fig, axs = plt.subplots(2, 2, figsize=(15, 10))

for i, n_star in enumerate(n_star_arr):
 row_i = i // 2
 col_i = i % 2

 V_baye, n_optimal, V_baye_bar = compute_V_baye_bar(n_star, V0, V1, wf)

 axs[row_i, col_i].plot(wf.n_grid, V_baye)
 axs[row_i, col_i].hlines(V_baye_bar, 0, 1, linestyle='--')
 axs[row_i, col_i].vlines(n_optimal, V_baye_bar, V_baye.max(), linestyle='--')
 axs[row_i, col_i].text(n_optimal+0.05, (V_baye_bar + V_baye.max()) / 2,
 '$\{(\pi_0^{\ast})=\pi_arrows+f\{n_optimal:0.2f\}$')
 axs[row_i, col_i].set_xlabel('π')
 axs[row_i, col_i].set_ylabel('$\overline{V}(\pi)$')
 axs[row_i, col_i].set_title('π^{\ast}='+f'{n_star}')
```

(continues on next page)
This pattern of outcomes holds more generally.

Thus, the following Python code generates the associated graph that verifies the equality of $\pi_0^*$ to $\pi^*$ holds for all $\pi^*$.

```python
n_star_arr = np.linspace(0.1, 0.9, n_n)
V_baye_bar_arr = np.empty_like(n_star_arr)
π_optimal_arr = np.empty_like(n_star_arr)

for i, n_star in enumerate(n_star_arr):
 V_baye, π_optimal, V_baye_bar = compute_V_baye_bar(n_star, V0, V1, wf)
 V_baye_bar_arr[i] = V_baye_bar
 π_optimal_arr[i] = π_optimal

fig, axs = plt.subplots(1, 2, figsize=(14, 5))

axs[0].plot(n_star_arr, V_baye_bar_arr, label='π^*
axs[0].set_ylabel('V_{baye}')
axs[0].set_xlabel('π')
axs[0].set_title('\overline{V}_{baye}')

axs[1].plot(n_star_arr, π_optimal_arr, label='optimal prior')
axs[1].set_ylabel('$V_0(\pi) + (1 - \pi^*)V_1(\pi)$')
axs[1].set_xlabel('π')
axs[1].set_title('\overline{V}_{baye}')
```

(continues on next page)
59.5 Was the Navy Captain’s Hunch Correct?

We now compare average (i.e., frequentist) losses obtained by the frequentist and Bayesian decision rules.

As a starting point, let’s compare average loss functions when $\pi^* = 0.5$.

```python
n_star = 0.5

frequentist
V_fre_arr, PFA_arr, PD_arr = compute_V_fre(L0_arr, L1_arr, n_star, wf)

bayesian
V_baye = n_star * V0 + n_star * V1
V_baye_bar = V_baye.min()

plt.plot(range(T), V_fre_arr, label='$\min_{d} \overline{V}_{\text{fre}}(t,d)$')
plt.plot([0, T], [V_baye_bar, V_baye_bar], label='$\overline{V}_{\text{baye}}$')
plt.xlabel('t')
plt.title('$\pi^*=0.5$')
plt.legend()
plt.show()
```

59.5. Was the Navy Captain’s Hunch Correct?
Evidently, there is no sample size $t$ at which the frequentist decision rule attains a lower loss function than does the Bayesian rule.

Furthermore, the following graph indicates that the Bayesian decision rule does better on average for all values of $\pi^*$.

The right panel of the above graph plots the difference $\overline{V}_{fre} - \overline{V}_{Baye}$. 
It is always positive.

## 59.6 More Details

We can provide more insights by focusing on the case in which $\pi^* = 0.5 = \pi_0$.

\[
n_{\text{star}} = 0.5
\]

Recall that when $\pi^* = 0.5$, the frequentist decision rule sets a sample size $t_{\text{optimal}}$ \textbf{ex ante}.

For our parameter settings, we can compute its value:

\[t_{\text{optimal}} = 8\]

For convenience, let’s define $t_{\text{idx}}$ as the Python array index corresponding to $t_{\text{optimal}}$ sample size.

\[t_{\text{idx}} = t_{\text{optimal}} - 1\]

## 59.7 Distribution of Bayesian Decision Rule’s Time to Decide

By using simulations, we compute the frequency distribution of time to deciding for the Bayesian decision rule and compare that time to the frequentist rule’s fixed $t$.

The following Python code creates a graph that shows the frequency distribution of Bayesian times to decide of Bayesian decision maker, conditional on distribution $q = f_0$ or $q = f_1$ generating the data.

The blue and red dotted lines show averages for the Bayesian decision rule, while the black dotted line shows the frequentist optimal sample size $t$.

On average the Bayesian rule decides \textbf{earlier} than the frequentist rule when $q = f_0$ and \textbf{later} when $q = f_1$.

```python
@njit(parallel=True)
def check_results(L_arr, α, β, flag, π0):
 N, T = L_arr.shape
 time_arr = np.empty(N)
 correctness = np.empty(N)
 n_arr = π0 * L_arr / (π0 * L_arr + 1 - π0)
 for i in prange(N):
 for t in range(T):
 if (n_arr[i, t] < β) or (n_arr[i, t] > α):
 time_arr[i] = t + 1
 correctness[i] = (flag == 0 and n_arr[i, t] > α) or (flag == 1 and n_arr[i, t] < β)
 break
 return time_arr, correctness
```
Later we'll figure out how these distributions ultimately affect objective expected values under the two decision rules.

To begin, let's look at simulations of the Bayesian's beliefs over time.

We can easily compute the updated beliefs at any time \( t \) using the one-to-one mapping from \( L_t \) to \( \pi_t \) given \( \pi_0 \) described in this lecture *Likelihood Ratio Processes*.

\[
\beta_0 \text{ arr} = \pi_0 \ast L_0 \text{ arr} / (\pi_0 \ast L_0 \text{ arr} + 1 - \pi_0)
\]
\[
\beta_1 \text{ arr} = \pi_0 \ast L_1 \text{ arr} / (\pi_0 \ast L_1 \text{ arr} + 1 - \pi_0)
\]
The above figures compare averages and variances of updated Bayesian posteriors after \( t \) draws.

The left graph compares \( E(\pi_t) \) under \( f_0 \) to \( 1 - E(\pi_t) \) under \( f_1 \): they lie on top of each other.

However, as the right hand size graph shows, there is significant difference in variances when \( t \) is small: the variance is lower under \( f_1 \).

The difference in variances is the reason that the Bayesian decision maker waits longer to decide when \( f_1 \) generates the data.

The code below plots outcomes of constructing an unconditional distribution by simply pooling the simulated data across the two possible distributions \( f_0 \) and \( f_1 \).

The pooled distribution describes a sense in which on average the Bayesian decides earlier, an outcome that seems at least partly to confirm the Navy Captain’s hunch.
59.8 Probability of Making Correct Decision

Now we use simulations to compute the fraction of samples in which the Bayesian and the frequentist decision rules decide correctly.

For the frequentist rule, the probability of making the correct decision under $f_1$ is the optimal probability of detection given $t$ that we defined earlier, and similarly it equals 1 minus the optimal probability of a false alarm under $f_0$.

Below we plot these two probabilities for the frequentist rule, along with the conditional probabilities that the Bayesian rule decides before $t$ and that the decision is correct.

```python
optimal PFA and PD of frequentist with optimal sample size
V, PFA, PD = V_fre_t(t_optimal, L0_arr, L1_arr, π_star, wf)
plt.plot([1, 20], [PD, PD], linestyle='--', label='PD: fre. chooses f1 correctly')
plt.plot([1, 20], [1-PFA, 1-PFA], linestyle='--', label='1-PFA: fre. chooses f0 correctly')
plt.vlines(t_optimal, 0, 1, linestyle='--', label='frequentist optimal sample size')
N = time_arr0.size
T_arr = np.arange(1, 21)
plt.plot(T_arr, [np.sum(correctness0[time_arr0 <= t] == 1) / N for t in T_arr],
 label='q=f0 and baye. choose f0')
plt.plot(T_arr, [np.sum(correctness1[time_arr1 <= t] == 1) / N for t in T_arr],
 label='q=f1 and baye. choose f1')
plt.legend(loc=4)
plt.xlabel('t')
plt.ylabel('Probability')
plt.title('Cond. probability of making correct decisions before t')
plt.show()
```
By averaging using $\pi^*$, we also plot the unconditional distribution.

```python
plt.plot([1, 20], [(PD + 1 - PFA) / 2, (PD + 1 - PFA) / 2],
 linestyle='--', label='fre. makes correct decision')
plt.vlines(t_optimal, 0, 1, linestyle='--', label='frequentist optimal sample size')

N = time_arr_u.size
plt.plot(T_arr, [np.sum(correctness_u[time_arr_u <= t] == 1) / N for t in T_arr],
 label="bayesian makes correct decision")
plt.legend()
plt.xlabel('t')
plt.ylabel('Probability')
plt.title('Uncond. probability of making correct decisions before t')
plt.show()
```
Next we use simulations to construct distributions of likelihood ratios after $t$ draws.

To serve as useful reference points, we also show likelihood ratios that correspond to the Bayesian cutoffs $\alpha$ and $\beta$.

In order to exhibit the distribution more clearly, we report logarithms of likelihood ratios.

The graphs below report two distributions, one conditional on $f_0$ generating the data, the other conditional on $f_1$ generating the data.

\[
\begin{align*}
L_0 &= (1 - n_{\text{star}}) \frac{\alpha}{(n_{\text{star}} - n_{\text{star}} \times \alpha)} \\
L_\beta &= (1 - n_{\text{star}}) \frac{\beta}{(n_{\text{star}} - n_{\text{star}} \times \beta)} \\
\end{align*}
\]

\[
\begin{align*}
L_{\text{min}} &= \min(L_0[;, t_{\text{idx}}].\min(), L_1[;, t_{\text{idx}}].\min()) \\
L_{\text{max}} &= \max(L_0[;, t_{\text{idx}}].\max(), L_1[;, t_{\text{idx}}].\max()) \\
\text{bin range} &= \text{np.linspace(np.log}(L_{\text{min}}), \text{np.log}(L_{\text{max}}), 50) \\
n_0 &= \text{plt.hist}(\text{np.log}(L_0[;, t_{\text{idx}}]), \text{bins=bin range, alpha=0.4, label='f0 generates'}) \\
n_1 &= \text{plt.hist}(\text{np.log}(L_1[;, t_{\text{idx}}]), \text{bins=bin range, alpha=0.4, label='f1 generates'}) \\
\text{plt.vlines}(\text{np.log}(L_\beta), 0, \max(n_0.\max(), n_1.\max()), \text{línestyle='--', color='r', label='log($L_\beta$)'}) \\
\text{plt.vlines}(\text{np.log}(L_0), 0, \max(n_0.\max(), n_1.\max()), \text{línestyle='--', color='b', label='log($L_{\alpha}$)'}) \\
\text{plt.legend}() \\
\text{plt.xlabel('log(L)'}) \\
\text{plt.ylabel('n')} \\
\text{plt.title('Cond. distribution of log likelihood ratio at frequentist t')} \\
\text{plt.show}()
\]
The next graph plots the unconditional distribution of Bayesian times to decide, constructed as earlier by pooling the two conditional distributions.

```python
plt.hist(np.log(np.concatenate([L0_arr[:, t_idx], L1_arr[:, t_idx]]))),
 bins=50, alpha=0.4, label='unconditional dist. of log(L)')
plt.vlines(np.log(Lβ), 0, max(n0.max(), n1.max()), linestyle='--', color='r', label='$\log(L_\beta)$')
plt.vlines(np.log(Lα), 0, max(n0.max(), n1.max()), linestyle='--', color='b', label='$\log(L_\alpha)$')
plt.legend()
plt.xlabel('log(L)')
plt.ylabel('n')
plt.title('Uncond. distribution of log likelihood ratio at frequentist t')
plt.show()
```

59.9. Distribution of Likelihood Ratios at Frequentist's $t$
Part IX

LQ Control
In addition to what’s in Anaconda, this lecture will need the following libraries:

```
pip install quantecon
```

## 60.1 Overview

Linear quadratic (LQ) control refers to a class of dynamic optimization problems that have found applications in almost every scientific field.

This lecture provides an introduction to LQ control and its economic applications. As we will see, LQ systems have a simple structure that makes them an excellent workhorse for a wide variety of economic problems.

Moreover, while the linear-quadratic structure is restrictive, it is in fact far more flexible than it may appear initially. These themes appear repeatedly below.

Mathematically, LQ control problems are closely related to the Kalman filter:

- Recursive formulations of linear-quadratic control problems and Kalman filtering problems both involve matrix Riccati equations.
- Classical formulations of linear control and linear filtering problems make use of similar matrix decompositions (see for example this lecture and this lecture).

In reading what follows, it will be useful to have some familiarity with
Quantitative Economics with Python

- matrix manipulations
- vectors of random variables
- dynamic programming and the Bellman equation (see for example this lecture and this lecture)

For additional reading on LQ control, see, for example,

- [LS18], chapter 5
- [HS08], chapter 4
- [HLL96], section 3.5

In order to focus on computation, we leave longer proofs to these sources (while trying to provide as much intuition as possible).

Let’s start with some imports:

```python
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (11, 5) # set default figure size
import numpy as np
from quantecon import LQ
```

60.2 Introduction

The “linear” part of LQ is a linear law of motion for the state, while the “quadratic” part refers to preferences. Let’s begin with the former, move on to the latter, and then put them together into an optimization problem.

60.2.1 The Law of Motion

Let \( x_t \) be a vector describing the state of some economic system. Suppose that \( x_t \) follows a linear law of motion given by

\[
x_{t+1} = Ax_t + Bu_t + Cw_{t+1}, \quad t = 0, 1, 2, \ldots
\]  

(60.1)

Here

- \( u_t \) is a “control” vector, incorporating choices available to a decision-maker confronting the current state \( x_t \)
- \( \{w_t\} \) is an uncorrelated zero mean shock process satisfying \( \mathbb{E}w_tw'_t = I \), where the right-hand side is the identity matrix

Regarding the dimensions

- \( x_t \) is \( n \times 1 \), \( A \) is \( n \times n \)
- \( u_t \) is \( k \times 1 \), \( B \) is \( n \times k \)
- \( w_t \) is \( j \times 1 \), \( C \) is \( n \times j \)
Example 1

Consider a household budget constraint given by

\[ a_{t+1} + c_t = (1 + r)a_t + y_t \]

Here \( a_t \) is assets, \( r \) is a fixed interest rate, \( c_t \) is current consumption, and \( y_t \) is current non-financial income.

If we suppose that \( \{y_t\} \) is serially uncorrelated and \( N(0, \sigma^2) \), then, taking \( \{w_t\} \) to be standard normal, we can write the system as

\[ a_{t+1} = (1 + r)a_t - c_t + \sigma w_{t+1} \]

This is clearly a special case of (60.1), with assets being the state and consumption being the control.

Example 2

One unrealistic feature of the previous model is that non-financial income has a zero mean and is often negative.

This can easily be overcome by adding a sufficiently large mean.

Hence in this example, we take \( y_t = \sigma w_{t+1} + \mu \) for some positive real number \( \mu \).

Another alteration that's useful to introduce (we'll see why soon) is to change the control variable from consumption to the deviation of consumption from some “ideal” quantity \( \bar{c} \).

(Most parameterizations will be such that \( \bar{c} \) is large relative to the amount of consumption that is attainable in each period, and hence the household wants to increase consumption.)

For this reason, we now take our control to be \( u_t := c_t - \bar{c} \).

In terms of these variables, the budget constraint \( a_{t+1} = (1 + r)a_t - c_t + y_t \) becomes

\[ a_{t+1} = (1 + r)a_t - u_t - \bar{c} + \sigma w_{t+1} + \mu \]

How can we write this new system in the form of equation (60.1)?

If, as in the previous example, we take \( a_t \) as the state, then we run into a problem: the law of motion contains some constant terms on the right-hand side.

This means that we are dealing with an affine function, not a linear one (recall this discussion).

Fortunately, we can easily circumvent this problem by adding an extra state variable.

In particular, if we write

\[
\begin{pmatrix}
a_{t+1} \\
1
\end{pmatrix} = \begin{pmatrix}
1 + r & -\bar{c} + \mu \\
0 & 1
\end{pmatrix} \begin{pmatrix}
a_t \\
1
\end{pmatrix} + \begin{pmatrix}
-1 \\
0
\end{pmatrix} u_t + \begin{pmatrix}
\sigma \\
0
\end{pmatrix} w_{t+1}
\]

then the first row is equivalent to (60.2).

Moreover, the model is now linear and can be written in the form of (60.1) by setting

\[
x_t := \begin{pmatrix}
a_t \\
1
\end{pmatrix}, \quad A := \begin{pmatrix}
1 + r & -\bar{c} + \mu \\
0 & 1
\end{pmatrix}, \quad B := \begin{pmatrix}
-1 \\
0
\end{pmatrix}, \quad C := \begin{pmatrix}
\sigma \\
0
\end{pmatrix}
\]

In effect, we've bought ourselves linearity by adding another state.
60.2.2 Preferences

In the LQ model, the aim is to minimize flow of losses, where time-\(t\) loss is given by the quadratic expression

\[ x_t'Rx_t + u_t'Qu_t \] (60.5)

Here

- \(R\) is assumed to be \(n \times n\), symmetric and nonnegative definite.
- \(Q\) is assumed to be \(k \times k\), symmetric and positive definite.

**Note:** In fact, for many economic problems, the definiteness conditions on \(R\) and \(Q\) can be relaxed. It is sufficient that certain submatrices of \(R\) and \(Q\) be nonnegative definite. See [HS08] for details.

### Example 1

A very simple example that satisfies these assumptions is to take \(R\) and \(Q\) to be identity matrices so that current loss is

\[ x_t'Ix_t + u_t'Iu_t = \|x_t\|^2 + \|u_t\|^2 \]

Thus, for both the state and the control, loss is measured as squared distance from the origin.

(In fact, the general case (60.5) can also be understood in this way, but with \(R\) and \(Q\) identifying other – non-Euclidean – notions of “distance” from the zero vector.)

Intuitively, we can often think of the state \(x_t\) as representing deviation from a target, such as

- deviation of inflation from some target level
- deviation of a firm’s capital stock from some desired quantity

The aim is to put the state close to the target, while using controls parsimoniously.

### Example 2

In the household problem studied above, setting \(R = 0\) and \(Q = 1\) yields preferences

\[ x_t'Rx_t + u_t'Qu_t = u_t^2 = (c_t - \bar{c})^2 \]

Under this specification, the household’s current loss is the squared deviation of consumption from the ideal level \(\bar{c}\).

### 60.3 Optimality – Finite Horizon

Let’s now be precise about the optimization problem we wish to consider, and look at how to solve it.
60.3.1 The Objective

We will begin with the finite horizon case, with terminal time $T \in \mathbb{N}$.

In this case, the aim is to choose a sequence of controls $\{u_0, \ldots, u_{T-1}\}$ to minimize the objective

$$
\mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^t (x'_t R x_t + u'_t Q u_t) + \beta^T x'_T R_f x_T \right\}
$$

subject to the law of motion (60.1) and initial state $x_0$.

The new objects introduced here are $\beta$ and the matrix $R_f$.

The scalar $\beta$ is the discount factor, while $x'R_fx$ gives terminal loss associated with state $x$.

Comments:

- We assume $R_f$ to be $n \times n$, symmetric and nonnegative definite.
- We allow $\beta = 1$, and hence include the undiscounted case.
- $x_0$ may itself be random, in which case we require it to be independent of the shock sequence $w_1, \ldots, w_T$.

60.3.2 Information

There’s one constraint we’ve neglected to mention so far, which is that the decision-maker who solves this LQ problem knows only the present and the past, not the future.

To clarify this point, consider the sequence of controls $\{u_0, \ldots, u_{T-1}\}$.

When choosing these controls, the decision-maker is permitted to take into account the effects of the shocks $\{w_1, \ldots, w_T\}$ on the system.

However, it is typically assumed — and will be assumed here — that the time-$t$ control $u_t$ can be made with knowledge of past and present shocks only.

The fancy measure-theoretic way of saying this is that $u_t$ must be measurable with respect to the $\sigma$-algebra generated by $x_0, w_1, w_2, \ldots, w_t$.

This is in fact equivalent to stating that $u_t$ can be written in the form $u_t = g_t(x_0, w_1, w_2, \ldots, w_t)$ for some Borel measurable function $g_t$.

(Just about every function that’s useful for applications is Borel measurable, so, for the purposes of intuition, you can read that last phrase as “for some function $g_t$”)

Now note that $x_t$ will ultimately depend on the realizations of $x_0, w_1, w_2, \ldots, w_t$.

In fact, it turns out that $x_t$ summarizes all the information about these historical shocks that the decision-maker needs to set controls optimally.

More precisely, it can be shown that any optimal control $u_t$ can always be written as a function of the current state alone. Hence in what follows we restrict attention to control policies (i.e., functions) of the form $u_t = g_t(x_t)$.

Actually, the preceding discussion applies to all standard dynamic programming problems.

What’s special about the LQ case is that – as we shall soon see — the optimal $u_t$ turns out to be a linear function of $x_t$. 

60.3. Optimality – Finite Horizon
60.3.3 Solution

To solve the finite horizon LQ problem we can use a dynamic programming strategy based on backward induction that is conceptually similar to the approach adopted in this lecture.

For reasons that will soon become clear, we first introduce the notation $J_T(x) = x' R_f x$.

Now consider the problem of the decision-maker in the second to last period.

In particular, let the time be $T - 1$, and suppose that the state is $x_{T-1}$.

The decision-maker must trade-off current and (discounted) final losses, and hence solves

$$
\min_u \{ x_{T-1}' Rx_{T-1} + u' Qu + \beta \mathbb{E} J_T(Ax_{T-1} + Bu + Cw_T) \}
$$

At this stage, it is convenient to define the function

$$
J_{T-1}(x) = \min_u \{ x' Rx + u' Qu + \beta \mathbb{E} J_T(Ax + Bu + Cw_T) \}
$$

The function $J_{T-1}$ will be called the $T-1$ value function, and $J_{T-1}(x)$ can be thought of as representing total “loss-to-go” from state $x$ at time $T - 1$ when the decision-maker behaves optimally.

Now let’s step back to $T - 2$.

For a decision-maker at $T - 2$, the value $J_{T-1}(x)$ plays a role analogous to that played by the terminal loss $J_T(x) = x' R_f x$ for the decision-maker at $T - 1$.

That is, $J_{T-1}(x)$ summarizes the future loss associated with moving to state $x$.

The decision-maker chooses her control $u$ to trade off current loss against future loss, where

- the next period state is $x_{T-1} = Ax_{T-2} + Bu + Cw_{T-1}$, and hence depends on the choice of current control.
- the “cost” of landing in state $x_{T-1}$ is $J_{T-1}(x_{T-1})$.

Her problem is therefore

$$
\min_u \{ x_{T-2}' Rx_{T-2} + u' Qu + \beta \mathbb{E} J_{T-1}(Ax_{T-2} + Bu + Cw_{T-1}) \}
$$

Letting

$$
J_{T-2}(x) = \min_u \{ x' Rx + u' Qu + \beta \mathbb{E} J_{T-1}(Ax + Bu + Cw_{T-1}) \}
$$

the pattern for backward induction is now clear.

In particular, we define a sequence of value functions $\{J_0, \ldots, J_T\}$ via

$$
J_{t-1}(x) = \min_u \{ x' Rx + u' Qu + \beta \mathbb{E} J_t(Ax + Bu + Cw_t) \} \quad \text{and} \quad J_T(x) = x' R_f x
$$

The first equality is the Bellman equation from dynamic programming theory specialized to the finite horizon LQ problem.

Now that we have $\{J_0, \ldots, J_T\}$, we can obtain the optimal controls.

As a first step, let’s find out what the value functions look like.

It turns out that every $J_t$ has the form $J_t(x) = x' P_t x + d_t$ where $P_t$ is a $n \times n$ matrix and $d_t$ is a constant.

We can show this by induction, starting from $P_T := R_f$ and $d_T = 0$.

Using this notation, (60.7) becomes

$$
J_{T-1}(x) = \min_u \{ x' Rx + u' Qu + \beta \mathbb{E}(Ax + Bu + Cw_T)' P_T(Ax + Bu + Cw_T) \}
$$

To obtain the minimizer, we can take the derivative of the r.h.s. with respect to $u$ and set it equal to zero.
Applying the relevant rules of matrix calculus, this gives
\[ u = -(Q + \beta B' P_T B)^{-1} \beta B' P_T A x \]  
(60.9)

Plugging this back into (60.8) and rearranging yields
\[ J_{T-1}(x) = x' P_{T-1} x + d_{T-1} \]
where
\[ P_{T-1} = R - \beta^2 A' P_T B (Q + \beta B' P_T B)^{-1} B' P_T A + \beta A' P_T A \]  
(60.10)
and
\[ d_{T-1} := \beta \text{trace}(C' P_T C) \]  
(60.11)
(The algebra is a good exercise — we’ll leave it up to you.)

If we continue working backwards in this manner, it soon becomes clear that \( J_t(x) = x' P_t x + d_t \) as claimed, where \( \{P_t\} \) and \( \{d_t\} \) satisfy the recursions
\[ P_{t-1} = R - \beta^2 A' P_t B (Q + \beta B' P_t B)^{-1} B' P_t A + \beta A' P_t A \quad \text{with} \quad P_T = R_f \]  
(60.12)
and
\[ d_{t-1} = \beta (d_t + \text{trace}(C' P_t C)) \quad \text{with} \quad d_T = 0 \]  
(60.13)
Recalling (60.9), the minimizers from these backward steps are
\[ u_t = -F_t x_t \quad \text{where} \quad F_t := (Q + \beta B' P_{t+1} B)^{-1} \beta B' P_{t+1} A \]  
(60.14)
These are the linear optimal control policies we discussed above.
In particular, the sequence of controls given by (60.14) and (60.1) solves our finite horizon LQ problem.
Rephrasing this more precisely, the sequence \( u_0, \ldots, u_{T-1} \) given by
\[ u_t = -F_t x_t \quad \text{with} \quad x_{t+1} = (A - BF_t)x_t + C w_{t+1} \]  
(60.15)
for \( t = 0, \ldots, T - 1 \) attains the minimum of (60.6) subject to our constraints.

### 60.4 Implementation

We will use code from lqcontrol.py in QuantEcon.py to solve finite and infinite horizon linear quadratic control problems.
In the module, the various updating, simulation and fixed point methods are wrapped in a class called LQ, which includes
- **Instance data:**
  - The required parameters \( Q, R, A, B \) and optional parameters \( C, \beta, T, R_f, N \) specifying a given LQ model
    * set \( T \) and \( R_f \) to None in the infinite horizon case
    * set \( C = \text{None} \) (or zero) in the deterministic case
  - the value function and policy data
    * \( d_t, P_t, F_t \) in the finite horizon case
• Methods:
  - `update_values` — shifts \(d_t, P_t, F_t\) to their \(t-1\) values via (60.12), (60.13) and (60.14)
  - `stationary_values` — computes \(P, d, F\) in the infinite horizon case
  - `compute_sequence` — simulates the dynamics of \(x_t, u_t, w_t\) given \(x_0\) and assuming standard normal shocks

### 60.4.1 An Application

Early Keynesian models assumed that households have a constant marginal propensity to consume from current income. Data contradicted the constancy of the marginal propensity to consume.

In response, Milton Friedman, Franco Modigliani and others built models based on a consumer’s preference for an intertemporally smooth consumption stream.

(See, for example, [Fri56] or [MB54].)

One property of those models is that households purchase and sell financial assets to make consumption streams smoother than income streams.

The household savings problem outlined above captures these ideas.

The optimization problem for the household is to choose a consumption sequence in order to minimize

\[
\mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^t (c_t - \bar{c})^2 + \beta^T q a_T^2 \right\}
\]

subject to the sequence of budget constraints

\[
a_{t+1} = (1 + r) a_t - c_t + y_t, \quad t \geq 0.
\]

Here \(q\) is a large positive constant, the role of which is to induce the consumer to target zero debt at the end of her life.

(Without such a constraint, the optimal choice is to choose \(c_t = \bar{c}\) in each period, letting assets adjust accordingly.)

As before we set \(y_t = \sigma w_{t+1} + \mu\) and \(u_t := c_t - \bar{c}\), after which the constraint can be written as in (60.2).

We saw how this constraint could be manipulated into the LQ formulation

\[
x_{t+1} = Ax + Bu + C w_{t+1}
\]

by setting \(x_t = (a_t 1)^t\) and using the definitions in (60.4).

To match with this state and control, the objective function (60.16) can be written in the form of (60.6) by choosing

\[
Q := 1, \quad R := \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad R_f := \begin{pmatrix} q & 0 \\ 0 & 0 \end{pmatrix}
\]

Now that the problem is expressed in LQ form, we can proceed to the solution by applying (60.12) and (60.14).

After generating shocks \(w_1, \ldots, w_T\), the dynamics for assets and consumption can be simulated via (60.15).

The following figure was computed using \(r = 0.05, \beta = 1/(1 + r), \bar{c} = 2, \mu = 1, \sigma = 0.25, T = 45\) and \(q = 10^6\).

The shocks \(\{w_t\}\) were taken to be IID and standard normal.

```python
Model parameters
r = 0.05
beta = 1/(1 + r)
T = 45
c_bar = 2
sigma = 0.25
```
\[ \mu = 1 \]
\[ q = 1e6 \]

```python
Formulate as an LQ problem
Q = 1
R = np.zeros((2, 2))
Rf = np.zeros((2, 2))
Rf[0, 0] = q
A = [[1 + r, -c_bar + \mu],
 [0, 1]]
B = [[-1],
 [0]]
C = [[\sigma],
 [0]]

Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=\beta, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

Convert back to assets, consumption and income
assets = xp[0, :]
a_t
c = up.flatten() + c_bar
c_t
income = \sigma * wp[0, 1:] + \mu
y_t

Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))
plt.subplots_adjust(hspace=0.5)
bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income",
 **p_args)
axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)

axes[1].plot(list(range(1, T+1)), np.cumsum(income - \mu), 'r-',
 label="cumulative unanticipated income", **p_args)
axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
 ax.grid()
 ax.set_xlabel('Time')
 ax.legend(ncol=2, **legend_args)
plt.show()
```
The top panel shows the time path of consumption $c_t$ and income $y_t$ in the simulation.

As anticipated by the discussion on consumption smoothing, the time path of consumption is much smoother than that for income.

(But note that consumption becomes more irregular towards the end of life, when the zero final asset requirement impinges more on consumption choices.)

The second panel in the figure shows that the time path of assets $a_t$ is closely correlated with cumulative unanticipated income, where the latter is defined as

$$ z_t := \sum_{j=0}^{t} \sigma w_t $$

A key message is that unanticipated windfall gains are saved rather than consumed, while unanticipated negative shocks are met by reducing assets.

(Again, this relationship breaks down towards the end of life due to the zero final asset requirement.)

These results are relatively robust to changes in parameters.

For example, let’s increase $\beta$ from $1/(1 + r) \approx 0.952$ to 0.96 while keeping other parameters fixed.

This consumer is slightly more patient than the last one, and hence puts relatively more weight on later consumption values.
# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=0.96, T=T, Rf=Rf)
x0 = (0, 1)
xp, up, wp = lq.compute_sequence(x0)

# Convert back to assets, consumption and income
assets = xp[0, :]
# a_t
C = up.flatten() + c_bar  # c_t
income = c * wp[0, 1:] + μ  # y_t

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))
plt.subplots_adjust(hspace=0.5)

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(list(range(1, T+1)), income, 'g-', label="non-financial income", **p_args)
axes[0].plot(list(range(T)), c, 'k-', label="consumption", **p_args)
axes[1].plot(list(range(1, T+1)), np.cumsum(income - μ), 'r-',
            label="cumulative unanticipated income", **p_args)
axes[1].plot(list(range(T+1)), assets, 'b-', label="assets", **p_args)
axes[1].plot(list(range(T)), np.zeros(T), 'k-')

for ax in axes:
    ax.grid()
    ax.set_xlabel('Time')
    ax.legend(ncol=2, **legend_args)

plt.show()
We now have a slowly rising consumption stream and a hump-shaped build-up of assets in the middle periods to fund rising consumption.

However, the essential features are the same: consumption is smooth relative to income, and assets are strongly positively correlated with cumulative unanticipated income.

### 60.5 Extensions and Comments

Let’s now consider a number of standard extensions to the LQ problem treated above.
60.5.1 Time-Varying Parameters

In some settings, it can be desirable to allow $A, B, C, R$ and $Q$ to depend on $t$.

For the sake of simplicity, we’ve chosen not to treat this extension in our implementation given below. However, the loss of generality is not as large as you might first imagine.

In fact, we can tackle many models with time-varying parameters by suitable choice of state variables.

One illustration is given below.

For further examples and a more systematic treatment, see [HS13], section 2.4.

60.5.2 Adding a Cross-Product Term

In some LQ problems, preferences include a cross-product term $u_t'N x_t$, so that the objective function becomes

$$E \left\{ \sum_{t=0}^{T-1} \beta^t (x'_tRx_t + u'_tQu_t + 2u'_tNx_t) + \beta^T x'_TR_f x_T \right\}$$

Our results extend to this case in a straightforward way.

The sequence $\{P_t\}$ from (60.12) becomes

$$P_{t-1} = R - (\beta B'P_tA + N)'(Q + \beta B'P_tB)^{-1}(\beta B'P_tA + N) + \beta A'P_tA \quad \text{with} \quad P_T = R_f$$

The policies in (60.14) are modified to

$$u_t = -F_t x_t \quad \text{where} \quad F_t := (Q + \beta B'P_{t+1}B)^{-1}(\beta B'P_{t+1}A + N)$$

The sequence $\{d_t\}$ is unchanged from (60.13).

We leave interested readers to confirm these results (the calculations are long but not overly difficult).

60.5.3 Infinite Horizon

Finally, we consider the infinite horizon case, with cross-product term, unchanged dynamics and objective function given by

$$E \left\{ \sum_{t=0}^{\infty} \beta^t (x'_tRx_t + u'_tQu_t + 2u'_tNx_t) \right\}$$

In the infinite horizon case, optimal policies can depend on time only if time itself is a component of the state vector $x_t$.

In other words, there exists a fixed matrix $F$ such that $u_t = -Fx_t$ for all $t$.

That decision rules are constant over time is intuitive — after all, the decision-maker faces the same infinite horizon at every stage, with only the current state changing.

Not surprisingly, $P$ and $d$ are also constant.

The stationary matrix $P$ is the solution to the discrete-time algebraic Riccati equation.

$$P = R - (\beta B'PA + N)'(Q + \beta B'PB)^{-1}(\beta B'PA + N) + \beta A'PA$$
Equation (60.21) is also called the *LQ Bellman equation*, and the map that sends a given $P$ into the right-hand side of (60.21) is called the *LQ Bellman operator*.

The stationary optimal policy for this model is

$$u = -Fx \quad \text{where} \quad F = (Q + \beta B'PB)^{-1}(\beta B'PA + N) \quad (60.22)$$

The sequence $\{d_t\}$ from (60.13) is replaced by the constant value

$$d := \text{trace}(C'PC)^{\frac{\beta}{1-\beta}} \quad (60.23)$$

The state evolves according to the time-homogeneous process $x_{t+1} = (A - BF)x_t + Cw_{t+1}$.

An example infinite horizon problem is treated below.

### 60.5.4 Certainty Equivalence

Linear quadratic control problems of the class discussed above have the property of *certainty equivalence*.

By this, we mean that the optimal policy $F$ is not affected by the parameters in $C$, which specify the shock process.

This can be confirmed by inspecting (60.22) or (60.19).

It follows that we can ignore uncertainty when solving for optimal behavior, and plug it back in when examining optimal state dynamics.

### 60.6 Further Applications

#### 60.6.1 Application 1: Age-Dependent Income Process

*Previously* we studied a permanent income model that generated consumption smoothing.

One unrealistic feature of that model is the assumption that the mean of the random income process does not depend on the consumer’s age.

A more realistic income profile is one that rises in early working life, peaks towards the middle and maybe declines toward the end of working life and falls more during retirement.

In this section, we will model this rise and fall as a symmetric inverted “U” using a polynomial in age.

As before, the consumer seeks to minimize

$$\mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^t(c_t - \bar{c})^2 + \beta^T q a_T^2 \right\} \quad (60.24)$$

subject to $a_{t+1} = (1 + r)a_t - c_t + y_t, \ t \geq 0$.

For income we now take $y_t = p(t) + \sigma w_{t+1}$ where $p(t) := m_0 + m_1 t + m_2 t^2$.

(In the next section we employ some tricks to implement a more sophisticated model.)

The coefficients $m_0, m_1, m_2$ are chosen such that $p(0) = 0, p(T/2) = \mu$, and $p(T) = 0$.

You can confirm that the specification $m_0 = 0, m_1 = T\mu/(T/2)^2, m_2 = -\mu/(T/2)^2$ satisfies these constraints.

To put this into an LQ setting, consider the budget constraint, which becomes

$$a_{t+1} = (1 + r)a_t - u_t - \bar{c} + m_1 t + m_2 t^2 + \sigma w_{t+1} \quad (60.25)$$
The fact that $a_{t+1}$ is a linear function of $(a_t, 1, t, t^2)$ suggests taking these four variables as the state vector $x_t$.

Once a good choice of state and control (recall $u_t = c_t - \bar{c}$) has been made, the remaining specifications fall into place relatively easily.

Thus, for the dynamics we set

$$x_t := \begin{pmatrix} a_t \\ 1 \\ t \\ t^2 \end{pmatrix}, \quad A := \begin{pmatrix} 1 + r - \bar{c} & m_1 & m_2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad B := \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad C := \begin{pmatrix} \sigma \\ 0 \\ 0 \end{pmatrix}$$  \hspace{1cm} (60.26)

If you expand the expression $x_{t+1} = Ax_t + Bu_t + Cw_{t+1}$ using this specification, you will find that assets follow (60.25) as desired and that the other state variables also update appropriately.

To implement preference specification (60.24) we take

$$Q := 1, \quad R := \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad R_f := \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$  \hspace{1cm} (60.27)

The next figure shows a simulation of consumption and assets computed using the `compute_sequence` method of `lqcontrol.py` with initial assets set to zero.

Once again, smooth consumption is a dominant feature of the sample paths.

The asset path exhibits dynamics consistent with standard life cycle theory.

Exercise 60.7.1 gives the full set of parameters used here and asks you to replicate the figure.

### 60.6.2 Application 2: A Permanent Income Model with Retirement

In the previous application, we generated income dynamics with an inverted U shape using polynomials and placed them in an LQ framework.

It is arguably the case that this income process still contains unrealistic features.

A more common earning profile is where

1. income grows over working life, fluctuating around an increasing trend, with growth flattening off in later years
2. retirement follows, with lower but relatively stable (non-financial) income

Letting $K$ be the retirement date, we can express these income dynamics by

$$y_t = \begin{cases} p(t) + \sigma w_{t+1} & \text{if } t \leq K \\ s & \text{otherwise} \end{cases}$$  \hspace{1cm} (60.28)

Here

- $p(t) := m_1 t + m_2 t^2$ with the coefficients $m_1, m_2$ chosen such that $p(K) = \mu$ and $p(0) = p(2K) = 0$
- $s$ is retirement income

We suppose that preferences are unchanged and given by (60.16).

The budget constraint is also unchanged and given by $a_{t+1} = (1 + r)a_t - c_t + y_t$.

Our aim is to solve this problem and simulate paths using the LQ techniques described in this lecture.

In fact, this is a nontrivial problem, as the kink in the dynamics (60.28) at $K$ makes it very difficult to express the law of motion as a fixed-coefficient linear system.

### 60.6. Further Applications
However, we can still use our LQ methods here by suitably linking two-component LQ problems.

These two LQ problems describe the consumer’s behavior during her working life (\texttt{lq\_working}) and retirement (\texttt{lq\_retired}).

(This is possible because, in the two separate periods of life, the respective income processes [polynomial trend and constant] each fit the LQ framework.)

The basic idea is that although the whole problem is not a single time-invariant LQ problem, it is still a dynamic programming problem, and hence we can use appropriate Bellman equations at every stage.

Based on this logic, we can

1. solve \texttt{lq\_retired} by the usual backward induction procedure, iterating back to the start of retirement.

2. take the start-of-retirement value function generated by this process, and use it as the terminal condition $R_f$ to feed into the \texttt{lq\_working} specification.

3. solve \texttt{lq\_working} by backward induction from this choice of $R_f$, iterating back to the start of working life.

This process gives the entire life-time sequence of value functions and optimal policies.

The next figure shows one simulation based on this procedure.
The full set of parameters used in the simulation is discussed in Exercise 60.7.2, where you are asked to replicate the figure.

Once again, the dominant feature observable in the simulation is consumption smoothing. The asset path fits well with standard life cycle theory, with dissaving early in life followed by later saving. Assets peak at retirement and subsequently decline.

60.6.3 Application 3: Monopoly with Adjustment Costs

Consider a monopolist facing stochastic inverse demand function

$$p_t = a_0 - a_1 q_t + d_t$$

Here $q_t$ is output, and the demand shock $d_t$ follows

$$d_{t+1} = \rho d_t + \sigma w_{t+1}$$

where $\{w_t\}$ is IID and standard normal.

The monopolist maximizes the expected discounted sum of present and future profits

$$E \left\{ \sum_{t=0}^{\infty} \beta^t \pi_t \right\} \quad \text{where} \quad \pi_t := p_t q_t - c q_t - \gamma (q_{t+1} - q_t)^2 \quad (60.29)$$

Here

- $\gamma (q_{t+1} - q_t)^2$ represents adjustment costs
- $c$ is average cost of production

This can be formulated as an LQ problem and then solved and simulated, but first let's study the problem and try to get some intuition.

One way to start thinking about the problem is to consider what would happen if $\gamma = 0$.

Without adjustment costs there is no intertemporal trade-off, so the monopolist will choose output to maximize current profit in each period.

It's not difficult to show that profit-maximizing output is

$$\bar{q}_t := \frac{a_0 - c + d_t}{2a_1}$$

In light of this discussion, what we might expect for general $\gamma$ is that

- if $\gamma$ is close to zero, then $q_t$ will track the time path of $\bar{q}_t$ relatively closely.
- if $\gamma$ is larger, then $q_t$ will be smoother than $\bar{q}_t$, as the monopolist seeks to avoid adjustment costs.

This intuition turns out to be correct.

The following figures show simulations produced by solving the corresponding LQ problem.

The only difference in parameters across the figures is the size of $\gamma$.

To produce these figures we converted the monopolist problem into an LQ problem.

The key to this conversion is to choose the right state — which can be a bit of an art.

Here we take $x_t = (\bar{q}_t, q_t, 1)'$, while the control is chosen as $u_t = q_{t+1} - q_t$.

We also manipulated the profit function slightly.
dynamics with $\gamma = 1$
dynamics with $\gamma = 10$
dynamics with $\gamma = 50$
In (60.29), current profits are \( \pi_t := p_t q_t - c q_t - \gamma (q_{t+1} - q_t)^2 \).

Let’s now replace \( \pi_t \) in (60.29) with \( \tilde{\pi}_t := \pi_t - a_t q_t^2 \).

This makes no difference to the solution, since \( a_t q_t^2 \) does not depend on the controls.

(In fact, we are just adding a constant term to (60.29), and optimizers are not affected by constant terms.)

The reason for making this substitution is that, as you will be able to verify, \( \tilde{\pi}_t \) reduces to the simple quadratic

\[
\tilde{\pi}_t = -a_1 (q_t - \bar{q}_t)^2 - \gamma u_t^2
\]

After negation to convert to a minimization problem, the objective becomes

\[
\min \mathbb{E} \sum_{t=0}^{\infty} \beta^t \left\{ a_1 (q_t - \bar{q}_t)^2 + \gamma u_t^2 \right\}
\]

(60.30)

It’s now relatively straightforward to find \( R \) and \( Q \) such that (60.30) can be written as (60.20).

Furthermore, the matrices \( A, B \) and \( C \) from (60.1) can be found by writing down the dynamics of each element of the state.

Exercise 60.7.3 asks you to complete this process, and reproduce the preceding figures.

### 60.7 Exercises

**Exercise 60.7.1**

Replicate the figure with polynomial income shown above.

The parameters are \( r = 0.05, \beta = 1/(1 + r), \bar{c} = 1.5, \mu = 2, \sigma = 0.15, T = 50 \) and \( q = 10^4 \).

---

**Solution to Exercise 60.7.1**

Here’s one solution.

We use some fancy plot commands to get a certain style — feel free to use simpler ones.

The model is an LQ permanent income / life-cycle model with hump-shaped income

\[
y_t = m_1 t + m_2 t^2 + \sigma w_{t+1}
\]

where \( \{w_t\} \) is IID \( N(0, 1) \) and the coefficients \( m_1 \) and \( m_2 \) are chosen so that \( p(t) = m_1 t + m_2 t^2 \) has an inverted U shape with

- \( p(0) = 0, p(T/2) = \mu \), and
- \( p(T) = 0 \)

---

# Model parameters

\[
\begin{align*}
  r &= 0.05 \\
  \beta &= 1/(1 + r) \\
  T &= 50 \\
  c_{\text{bar}} &= 1.5 \\
  \sigma &= 0.15 \\
  \mu &= 2
\end{align*}
\]

(continues on next page)
q = 1e4
m1 = T * (μ/(T/2)**2)
m2 = -(μ/(T/2)**2)

# Formulate as an LQ problem
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, -c_bar, m1, m2],
     [0, 1, 0, 0],
     [0, 1, 1, 0],
     [0, 1, 2, 1]]
B = [[-1],
     [0],
     [0],
     [0]]
C = [[σ],
     [0],
     [0],
     [0]]

# Compute solutions and simulate
lq = LQ(Q, R, A, B, C, beta=β, T=T, Rf=Rf)
x0 = (0, 1, 0, 0)
xp, up, wp = lq.compute_sequence(x0)

# Convert results back to assets, consumption and income
ap = xp[:, :]
# Assets
C = up.flatten() + c_bar
# Consumption
time = np.arange(1, T+1)
income = σ * wp[0, 1:] + m1 * time + m2 * time**2
# Income

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)
bbox = (0., 1.02, 1., .02)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income", **p_args)
axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)

axes[1].plot(range(T+1), ap.flatten(), 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')

for ax in axes:
    ax.grid()
    ax.set_xlabel('Time')
    ax.legend(ncol=2, **legend_args)
plt.show()
Exercise 60.7.2

Replicate the figure on work and retirement shown above.

The parameters are \( r = 0.05, \beta = 1/(1 + r), \bar{c} = 4, \mu = 4, \sigma = 0.35, K = 40, T = 60, s = 1 \) and \( q = 10^4 \).

To understand the overall procedure, carefully read the section containing that figure.

**Hint:** First, in order to make our approach work, we must ensure that both LQ problems have the same state variables and control.

As with previous applications, the control can be set to \( u_t = c_t - \bar{c} \).

For `lq_working`, \( x_t, A, B, C \) can be chosen as in (60.26).

- Recall that \( m_1, m_2 \) are chosen so that \( p(K) = \mu \) and \( p(2K) = 0 \).

For `lq_retired`, use the same definition of \( x_t \) and \( u_t \), but modify \( A, B, C \) to correspond to constant income \( y_t = s \).

For `lq_retired`, set preferences as in (60.27).
For lq_working, preferences are the same, except that $R_f$ should be replaced by the final value function that emerges from iterating lq_retired back to the start of retirement.

With some careful footwork, the simulation can be generated by patching together the simulations from these two separate models.

---

**Solution to Exercise 60.7.2**

This is a permanent income / life-cycle model with polynomial growth in income over working life followed by a fixed retirement income.

The model is solved by combining two LQ programming problems as described in the lecture.

```python
Model parameters
r = 0.05
β = 1/(1 + r)
T = 60
K = 40
c_bar = 4
σ = 0.35
μ = 4
q = 1e4
s = 1
m1 = 2 * μ/K
m2 = -μ/K**2

Formulate LQ problem 1 (retirement)
Q = 1
R = np.zeros((4, 4))
Rf = np.zeros((4, 4))
Rf[0, 0] = q
A = [[1 + r, s - c_bar, 0, 0],
 [0, 1, 0, 0],
 [0, 1, 1, 0],
 [0, 1, 2, 1]]
B = [[-1],
 [0],
 [0],
 [0]]
C = [[0],
 [0],
 [0],
 [0]]

Initialize LQ instance for retired agent
lq_retired = LQ(Q, R, A, B, C, beta=β, T=T-K, Rf=Rf)

Iterate back to start of retirement, record final value function
for i in range(T-K):
 lq_retired.update_values()
Rf2 = lq_retired.P

Formulate LQ problem 2 (working life)
R = np.zeros((4, 4))
A = [[1 + r, -c_bar, m1, m2],
 [0, 1, 0, 0],
 [0, 1, 1, 0],
 [0, 1, 2, 1]]
```

(continues on next page)
\[
[0, \\
1, \\
2, \\
1]
\]
\[
B = \begin{bmatrix}
[\text{-1}], \\
[0], \\
[0], \\
[0]
\end{bmatrix}
\]
\[
C = \begin{bmatrix}
[\sigma], \\
[0], \\
[0], \\
[0]
\end{bmatrix}
\]

# Set up working life LQ instance with terminal $R_f$ from lq_retired
lq_working = LQ($Q$, $R$, $A$, $B$, $C$, beta=$\beta$, T=$K$, $R_f$=$R_f2$)

# Simulate working state / control paths
x0 = (0, 1, 0, 0)
xp_w, up_w, wp_w = lq_working.compute_sequence(x0)

# Simulate retirement paths (note the initial condition)
xp_r, up_r, wp_r = lq_retired.compute_sequence(xp_w[:, K])

# Convert results back to assets, consumption and income
xp = np.column_stack((xp_w, xp_r[:, 1:]))
assets = xp[0, :]
up = np.column_stack((up_w, up_r))
c = up.flatten() + c_bar

time = np.arange(1, K+1)
income_w = $\sigma$ * wp_w[0, 1:K+1] + m1 * time + m2 * time**2  # Income
income_r = np.full(T-$K$, s)
income = np.concatenate((income_w, income_r))

# Plot results
n_rows = 2
fig, axes = plt.subplots(n_rows, 1, figsize=(12, 10))

plt.subplots_adjust(hspace=0.5)
bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor':bbox, 'loc':3, 'mode':'expand'}
p_args = {'lw':2, 'alpha':0.7}

axes[0].plot(range(1, T+1), income, 'g-', label="non-financial income", **p_args)
axes[0].plot(range(T), c, 'k-', label="consumption", **p_args)
axes[1].plot(range(T+1), assets, 'b-', label="assets", **p_args)
axes[1].plot(range(T+1), np.zeros(T+1), 'k-')

for ax in axes:
    ax.grid()
    ax.set_xlabel('Time')
    ax.legend(ncol=2, **legend_args)

plt.show()
Exercise 60.7.3

Reproduce the figures from the monopolist application \textit{given above}.

For parameters, use $a_0 = 5, a_1 = 0.5, \sigma = 0.15, \rho = 0.9, \beta = 0.95$ and $c = 2$, while $\gamma$ varies between 1 and 50 (see figures).

Solution to Exercise 60.7.3

The first task is to find the matrices $A, B, C, Q, R$ that define the LQ problem.

Recall that $x_t = (\bar{q}_t, q_t, 1)'$, while $u_t = q_{t+1} - q_t$.

Letting $m_0 := (a_0 - c)/2a_1$ and $m_1 := 1/2a_1$, we can write $\bar{q}_t = m_0 + m_1 d_t$, and then, with some manipulation

$$q_{t+1} = m_0 (1 - \rho) + \rho \bar{q}_t + m_1 \sigma w_{t+1}$$

By our definition of $u_t$, the dynamics of $q_t$ are $q_{t+1} = q_t + u_t$.

Using these facts you should be able to build the correct $A, B, C$ matrices (and then check them against those found in the solution code below).
Suitable $R, Q$ matrices can be found by inspecting the objective function, which we repeat here for convenience:

$$\min \mathbb{E} \left\{ \sum_{t=0}^{\infty} \beta^t (q_t - \bar{q}_t)^2 + \gamma u_t^2 \right\}$$

Our solution code is

```python
Model parameters
a0 = 5
a1 = 0.5
σ = 0.15
ρ = 0.9
γ = 1
β = 0.95
c = 2
T = 120

Useful constants
m0 = (a0-c)/(2 * a1)
m1 = 1/(2 * a1)

Formulate LQ problem
Q = γ
R = [[a1, -a1, 0],
 [-a1, a1, 0],
 [0, 0, 0]]
A = [[ρ, 0, m0 * (1 - ρ)],
 [0, 1, 0],
 [0, 0, 1]]
B = [[0],
 [1],
 [0]]
C = [[m1 * σ],
 [0],
 [0]]

lq = LQ(Q, R, A, B, C=C, beta=β)

Simulate state / control paths
x0 = (m0, 2, 1)
xp, up, wp = lq.compute_sequence(x0, ts_length=150)
q_bar = xp[0, :]
q = xp[1, :]

Plot simulation results
fig, ax = plt.subplots(figsize=(10, 6.5))

Some fancy plotting stuff -- simplify if you prefer
bbox = (0., 1.01, 1., .101)
legend_args = {'bbox_to_anchor':bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.6}

time = range(len(q))
ax.set(xlabel='Time', xlim=(0, max(time)))
ax.plot(time, q_bar, 'k-', lw=2, alpha=0.6, label=r'\bar{q}_t')
ax.plot(time, q, 'b-', lw=2, alpha=0.6, label='q_t')
ax.legend(ncol=2, **legend_args)
```

(continues on next page)
\[ s = f'\text{dynamics with } \gamma = 1' \]

```python
ax.text(max(time) * 0.6, 1 * q_bar.max(), s, fontsize=14)
plt.show()
```

![Graph showing dynamics with \( \gamma = 1 \)](image)
61.1 Overview

This is a sequel to this lecture linear quadratic dynamic programming

It can also be regarded as presenting invariant subspace techniques that extend ones that we encountered earlier in this lecture stability in linear rational expectations models

We present a Lagrangian formulation of an infinite horizon linear quadratic undiscounted dynamic programming problem. Such a problem is also sometimes called an optimal linear regulator problem.

A Lagrangian formulation

• carries insights about connections between stability and optimality
• is the basis for fast algorithms for solving Riccati equations
• opens the way to constructing solutions of dynamic systems that don’t come directly from an intertemporal optimization problem

A key tool in this lecture is the concept of an $n \times n$ symplectic matrix.

A symplectic matrix has eigenvalues that occur in reciprocal pairs, meaning that if $\lambda_i \in (-1, 1)$ is an eigenvalue, then so is $\lambda_i^{-1}$.

This reciprocal pairs property of the eigenvalues of a matrix is a tell-tale sign that the matrix describes the joint dynamics of a system of equations describing the states and costates that constitute first-order necessary conditions for solving an undiscounted linear-quadratic infinite-horizon optimization problem.

The symplectic matrix that will interest us describes the first-order dynamics of state and co-state vectors of an optimally controlled system.

In focusing on eigenvalues and eigenvectors of this matrix, we capitalize on an analysis of invariant subspaces.

These invariant subspace formulations of LQ dynamic programming problems provide a bridge between recursive (i.e., dynamic programming) formulations and classical formulations of linear control and linear filtering problems that make use of related matrix decompositions (see for example this lecture and this lecture).
While most of this lecture focuses on undiscounted problems, later sections describe handy ways of transforming discounted problems to undiscounted ones.

The techniques in this lecture will prove useful when we study Stackelberg and Ramsey problem in this lecture.

### 61.2 Undiscounted LQ DP Problem

The problem is to choose a sequence of controls \( \{u_t\}_{t=0}^{\infty} \) to maximize the criterion

\[
- \sum_{t=0}^{\infty} \{x_t'Rx_t + u_t'Qu_t\}
\]

subject to \( x_{t+1} = Ax_t + Bu_t \), where \( x_0 \) is a given initial state vector.

Here \( x_t \) is an \((n \times 1)\) vector of state variables, \( u_t \) is a \((k \times 1)\) vector of controls, \( R \) is a positive semidefinite symmetric matrix, \( Q \) is a positive definite symmetric matrix, \( A \) is an \((n \times n)\) matrix, and \( B \) is an \((n \times k)\) matrix.

The optimal value function turns out to be quadratic, \( V(x) = -x'Px \), where \( P \) is a positive semidefinite symmetric matrix.

Using the transition law to eliminate next period's state, the Bellman equation becomes

\[
-x'Px = \max_u \{-x'R x - u'Q u - (Ax + Bu)'P(Ax + Bu)\}
\]

The first-order necessary conditions for the maximum problem on the right side of equation (61.1) are

\[
\text{Note: We use the following rules for differentiating quadratic and bilinear matrix forms: } \frac{\partial x'A x}{\partial x} = (A + A')x; \frac{\partial y'B z}{\partial z} = B'y.
\]

\[
(Q + B'PB)u = -B'PAx,
\]

which implies that an optimal decision rule for \( u \) is

\[
u = -(Q + B'PB)^{-1}B'PAx
\]

or

\[
u = -Fx,
\]

where

\[
F = (Q + B'PB)^{-1}B'PA.
\]

Substituting \( u = -(Q + B'PB)^{-1}B'PAx \) into the right side of equation (61.1) and rearranging gives

\[
P = R + A'PA - A'PB(Q + B'PB)^{-1}B'PA.
\]

Equation (61.2) is called an algebraic matrix Riccati equation.

There are multiple solutions of equation (61.2).

But only one of them is positive definite.

The positive define solution is associated with the maximum of our problem.
It expresses the matrix $P$ as an implicit function of the matrices $R, Q, A, B$.

Notice that the gradient of the value function is

$$
\frac{\partial V(x)}{\partial x} = -2Px \tag{61.3}
$$

We shall use fact (61.3) later.

### 61.3 Lagrangian

For the undiscounted optimal linear regulator problem, form the Lagrangian

$$
L = -\sum_{t=0}^{\infty} \left\{ x_t^' R x_t + u_t^' Q u_t + 2\mu_{t+1}^' [A x_t + B u_t - x_{t+1}] \right\} \tag{61.4}
$$

where $2\mu_{t+1}$ is a vector of Lagrange multipliers on the time $t$ transition law $x_{t+1} = Ax_t + Bu_t$.

(We put the 2 in front of $\mu_{t+1}$ to make things match up nicely with equation (61.3).)

First-order conditions for maximization with respect to $\{u_t, x_{t+1}\}_{t=0}^{\infty}$ are

$$
2Q u_t + 2B^' \mu_{t+1} = 0, \quad t \geq 0
$$
$$
\mu_t = Rx_t + A^' \mu_{t+1}, \quad t \geq 1. \tag{61.5}
$$

Define $\mu_0$ to be a vector of shadow prices of $x_0$ and apply an envelope condition to (61.4) to deduce that

$$
\mu_0 = Rx_0 + A^' \mu_1,
$$

which is a time $t = 0$ counterpart to the second equation of system (61.5).

An important fact is that

$$
\mu_{t+1} = Px_{t+1} \tag{61.6}
$$

where $P$ is a positive define matrix that solves the algebraic Riccati equation (61.2).

Thus, from equations (61.3) and (61.6), $-2\mu_t$ is the gradient of the value function with respect to $x_t$.

The Lagrange multiplier vector $\mu_t$ is often called the costate vector that corresponds to the state vector $x_t$.

It is useful to proceed with the following steps:

- solve the first equation of (61.5) for $u_t$ in terms of $\mu_{t+1}$.
- substitute the result into the law of motion $x_{t+1} = Ax_t + Bu_t$.
- arrange the resulting equation and the second equation of (61.5) into the form

$$
L \begin{pmatrix} x_{t+1} \\ \mu_{t+1} \end{pmatrix} = N \begin{pmatrix} x_t \\ \mu_t \end{pmatrix}, \quad t \geq 0, \tag{61.7}
$$

where

$$
L = \begin{pmatrix} I & BQ^{-1}B' \\ 0 & A' \end{pmatrix}, \quad N = \begin{pmatrix} A & 0 \\ -R & I \end{pmatrix}.
$$

When $L$ is of full rank (i.e., when $A$ is of full rank), we can write system (61.7) as

$$
\begin{pmatrix} x_{t+1} \\ \mu_{t+1} \end{pmatrix} = M \begin{pmatrix} x_t \\ \mu_t \end{pmatrix} \tag{61.8}
$$

where

$$
M \equiv L^{-1} N = \begin{pmatrix} A + BQ^{-1}B'A'^{-1}R & -BQ^{-1}B'A'^{-1} \\ -A'^{-1}R & A'^{-1} \end{pmatrix}. \tag{61.9}
$$
61.4 State-Costate Dynamics

We seek to solve the difference equation system (61.8) for a sequence \( \{x_t\}_{t=0}^{\infty} \) that satisfies

- an initial condition for \( x_0 \)
- a terminal condition \( \lim_{t \to +\infty} x_t = 0 \)

This terminal condition reflects our desire for a stable solution, one that does not diverge as \( t \to \infty \).

We inherit our wish for stability of the \( \{x_t\} \) sequence from a desire to maximize

\[
-\sum_{t=0}^{\infty} [x_t^R x_t + u_t^Q u_t],
\]

which requires that \( x_t^R x_t \) converge to zero as \( t \to +\infty \).

61.5 Reciprocal Pairs Property

To proceed, we study properties of the \((2n \times 2n)\) matrix \( M \) defined in (61.9).

It helps to introduce a \((2n \times 2n)\) matrix

\[
J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}.
\]

The rank of \( J \) is \( 2n \).

**Definition:** A matrix \( M \) is called symplectic if

\[
MJM' = J.
\]

(61.10)

Salient properties of symplectic matrices that are readily verified include:

- If \( M \) is symplectic, then \( M^2 \) is symplectic
- The determinant of a symplectic, then \( \det(M) = 1 \)

It can be verified directly that \( M \) in equation (61.9) is symplectic.

It follows from equation (61.10) and from the fact \( J^{-1} = J' = -J \) that for any symplectic matrix \( M \),

\[
M' = J^{-1}M^{-1}J.
\]

(61.11)

Equation (61.11) states that \( M' \) is related to the inverse of \( M \) by a similarity transformation.

For square matrices, recall that

- similar matrices share eigenvalues
- eigenvalues of the inverse of a matrix are inverses of eigenvalues of the matrix
- a matrix and its transpose share eigenvalues

It then follows from equation (61.11) that the eigenvalues of \( M \) occur in reciprocal pairs: if \( \lambda \) is an eigenvalue of \( M \), so is \( \lambda^{-1} \).

Write equation (61.8) as

\[
y_{t+1} = My_t
\]

(61.12)
where \( y_t = \begin{pmatrix} x_t \\ \mu_t \end{pmatrix} \).

Consider a **triangularization** of \( M \)

\[
V^{-1}MV = \begin{pmatrix} W_{11} & W_{12} \\ 0 & W_{22} \end{pmatrix}
\]

(61.13)

where

- each block on the right side is \((n \times n)\)
- \( V \) is nonsingular
- all eigenvalues of \( W_{22} \) exceed 1 in modulus
- all eigenvalues of \( W_{11} \) are less than 1 in modulus

### 61.6 Schur decomposition

The **Schur decomposition** and the **eigenvalue decomposition** are two decompositions of the form (61.13).

Write equation (61.12) as

\[
y_{t+1} = VWV^{-1}y_t.
\]

(61.14)

A solution of equation (61.14) for arbitrary initial condition \( y_0 \) is evidently

\[
y_t = V \begin{pmatrix} W_{11}^t & W_{12} \cdot t \\ 0 & W_{22}^t \end{pmatrix} V^{-1}y_0
\]

(61.15)

where \( W_{12} \cdot t = W_{12} \) for \( t = 1 \) and for \( t \geq 2 \) obeys the recursion

\[
W_{12} \cdot t = W_{11}^{t-1}W_{12} \cdot (t-1) + W_{12} \cdot (t-1)W_{22}^{t-1}
\]

and where \( W_{ii}^t \) is \( W_{ii} \) raised to the \( t \)th power.

Write equation (61.15) as

\[
\begin{pmatrix} y_{1t}^* \\ y_{2t}^* \end{pmatrix} = \begin{pmatrix} W_{11}^t & W_{12} \cdot t \\ 0 & W_{22}^t \end{pmatrix} \begin{pmatrix} y_{10}^* \\ y_{20}^* \end{pmatrix}
\]

where \( y_{it}^* = V^{-1}y_t \), and in particular where

\[
y_{2t}^* = V^{21}x_t + V^{22}\mu_t,
\]

(61.16)

and where \( V^{ij} \) denotes the \((i, j)\) piece of the partitioned \( V^{-1} \) matrix.

Because \( W_{22} \) is an unstable matrix, \( y_{it}^* \) will diverge unless \( y_{20}^* = 0 \).

Let \( V^{ij} \) denote the \((i, j)\) piece of the partitioned \( V^{-1} \) matrix.

To attain stability, we must impose \( y_{20}^* = 0 \), which from equation (61.16) implies

\[
V^{21}x_0 + V^{22}\mu_0 = 0
\]

or

\[
\mu_0 = -(V^{22})^{-1}V^{21}x_0.
\]
This equation replicates itself over time in the sense that it implies

\[ \mu_t = -(V^{22})^{-1}V^{21} x_t. \]

But notice that because \((V^{21} V^{22})\) is the second row block of the inverse of \(V\), it follows that

\[(V^{21} V^{22}) \begin{pmatrix} V_{11} \\ V_{21} \end{pmatrix} = 0\]

which implies

\[ V^{21} V_{11} + V^{22} V_{21} = 0. \]

Therefore,

\[ -(V^{22})^{-1}V^{21} = V_{21} V^{-1}_{11}. \]

So we can write

\[ \mu_0 = V_{21} V^{-1}_{11} x_0 \]

and

\[ \mu_t = V_{21} V^{-1}_{11} x_t. \]

However, we know that \(\mu_t = P x_t\), where \(P\) occurs in the matrix that solves the Riccati equation. Thus, the preceding argument establishes that

\[ P = V_{21} V^{-1}_{11}. \] (61.17)

Remarkably, formula (61.17) provides us with a computationally efficient way of computing the positive definite matrix \(P\) that solves the algebraic Riccati equation (61.2) that emerges from dynamic programming.

This same method can be applied to compute the solution of any system of the form (61.8) if a solution exists, even if eigenvalues of \(M\) fail to occur in reciprocal pairs.

The method will typically work so long as the eigenvalues of \(M\) split half inside and half outside the unit circle.

Systems in which eigenvalues (properly adjusted for discounting) fail to occur in reciprocal pairs arise when the system being solved is an equilibrium of a model in which there are distortions that prevent there being any optimum problem that the equilibrium solves. See [LS18], ch 12.

### 61.7 Application

Here we demonstrate the computation with an example which is the deterministic version of an example borrowed from this quantecon lecture.

```python
Model parameters
r = 0.05
c_bar = 2
\mu = 1

Formulate as an LQ problem
Q = np.array([[1]])
```
R = np.zeros((2, 2))
A = [[1 + r, -c_bar + μ],
     [0, 1]]
B = [[-1],
     [0]]

# Construct an LQ instance
lq = LQ(Q, R, A, B)

Given matrices $A$, $B$, $Q$, $R$, we can then compute $L$, $N$, and $M = L^{-1}N$.

```python
def construct_LNM(A, B, Q, R):
 n, k = lq.n, lq.k
 # construct L and N
 L = np.zeros((2*n, 2*n))
 L[:n, :n] = np.eye(n)
 L[:n, n:] = B @ np.linalg.inv(Q) @ B.T
 L[n:, n:] = A.T

 N = np.zeros((2*n, 2*n))
 N[:n, :n] = A
 N[n:, :n] = -R
 N[n:, n:] = np.eye(n)

 # compute M
 M = np.linalg.inv(L) @ N

 return L, N, M

```

Let's verify that $M$ is symplectic.

```python
n = lq.n
J = np.zeros((2*n, 2*n))
J[:n, :n] = np.eye(n)
J[:n, n:] = -np.eye(n)
M @ J @ M.T - J
```

```python
array([[1.05 , -1. , -0.95238095, 0.],
 [0. , 1. , 0. , 0.],
 [0. , 0. , 0.95238095, 0.],
 [0. , 0. , 0.95238095, 1.]])
```

Let's verify that $M$ is symplectic.
We can compute the eigenvalues of $M$ using `np.linalg.eigvals`, arranged in ascending order.

```python
eigvals = sorted(np.linalg.eigvals(M))
eigvals
```

```
[0.9523809523809523, 1.0, 1.0, 1.05]
```

When we apply Schur decomposition such that $M = WV^{-1}$, we want

- the upper left block of $W$, $W_{11}$, to have all of its eigenvalues less than 1 in modulus, and
- the lower right block $W_{22}$ to have eigenvalues that exceed 1 in modulus.

To get what we want, let’s define a sorting function that tells `scipy.schur` to sort the corresponding eigenvalues with modulus smaller than 1 to the upper left.

```python
stable_eigvals = eigvals[:n]

def sort_fun(x):
 "Sort the eigenvalues with modules smaller than 1 to the top-left."
 if x in stable_eigvals:
 stable_eigvals.pop(stable_eigvals.index(x))
 return True
 else:
 return False

W, V, _ = schur(M, sort=sort_fun)
```

We can check the modulus of eigenvalues of $W_{11}$ and $W_{22}$.

Since they are both triangular matrices, eigenvalues are the diagonal elements.
The following functions wrap $M$ matrix construction, Schur decomposition, and stability-imposing computation of $P$.

```python
def stable_solution(M, verbose=True):
 ""
 Given a system of linear difference equations

 \[y' = \begin{bmatrix} a & b \end{bmatrix} y \]
 \[x' = \begin{bmatrix} c & d \end{bmatrix} x \]

 which is potentially unstable, find the solution
 by imposing stability.

 Parameter
 ""
 M : np.ndarray(float)
 The matrix represents the linear difference equations system.
 ""
 n = M.shape[0] // 2
 stable_eigvals = list(sorted(np.linalg.eigvals(M))[:n])

 def sort_fun(x):
 """Sort the eigenvalues with modules smaller than 1 to the top-left."""
 if x in stable_eigvals:
 stable_eigvals.pop(stable_eigvals.index(x))
 return True
 else:
 return False

 W, V, _ = schur(M, sort=sort_fun)
 if verbose:
 print('eigenvalues:
')
 print(' W11: {}'.format(np.diag(W[:n, :n])))
 print(' W22: {}'.format(np.diag(W[n:, n:])))

 # compute \(V21 \) \(V11^{-1} \)
 P = V[n:, :n] @ np.linalg.inv(V[:n, :n])
 return W, V, P
```

```python
def stationary_P(lq, verbose=True):
 ""
 Computes the matrix :math:`P` that represent the value function
```
```
```
Quantitative Economics with Python

\[ V(x) = x' P x \]

in the infinite horizon case. Computation is via imposing stability on the solution path and using Schur decomposition.

Parameters
--------
lq : qe.LQ
    QuantEcon class for analyzing linear quadratic optimal control problems of infinite horizon form.

Returns
------
P : array_like(float)
    P matrix in the value function representation.
    
```python
Q = lq.Q
R = lq.R
A = lq.A * lq.beta ** (1/2)
B = lq.B * lq.beta ** (1/2)
n, k = lq.n, lq.k

L, N, M = construct_LNM(A, B, Q, R)
W, V, P = stable_solution(M, verbose=verbose)

return P
```

# compute P
stationary_P(lq)

eigenvalues:

\[
W11: [1.0, 0.95238095] \\
W22: [1.05, 1.0]
\]

array([[ 0.1025, -2.05] ,
       [-2.05, 41.0]])

Note that the matrix \( P \) computed in this way is close to what we get from the routine in quanteco that solves an algebraic Riccati equation by iterating to convergence on a Riccati difference equation. The small difference comes from computational errors and will decrease as we increase the maximum number of iterations or decrease the tolerance for convergence.

lq.stationary_values()

(array([[ 0.1025, -2.05] ,
       [-2.05 , 41.0]]),
array([[ 0.1025, -2.05] ,
       [-2.05 , 41.01]]),
array([[ -0.09761905, 1.95238095] ),
       0))

Using a Schur decomposition is much more efficient.
%%timeit
stationary_P(lq, verbose=False)

170 µs ± 232 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

%%timeit
lq.stationary_values()

2.92 ms ± 6.37 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

61.8 Other Applications

The preceding approach to imposing stability on a system of potentially unstable linear difference equations is not limited to linear quadratic dynamic optimization problems.

For example, the same method is used in our Stability in Linear Rational Expectations Models lecture.

Let’s try to solve the model described in that lecture by applying the stable_solution function defined in this lecture above.

def construct_H(ρ, λ, δ):
    "contract matrix H given parameters."

    H = np.empty((2, 2))
    H[0, :] = ρ, δ
    H[1, :] = - (1 - λ) / λ, 1 / λ

    return H

H = construct_H(ρ=.9, λ=.5, δ=0)

W, V, P = stable_solution(H)

P
eigenvalues:

    W11: [0.9]
    W22: [2.]

carray([[0.90909091]])
61.9 Discounted Problems

61.9.1 Transforming States and Controls to Eliminate Discounting

A pair of useful transformations allows us to convert a discounted problem into an undiscounted one. Thus, suppose that we have a discounted problem with objective

\[ -\sum_{t=0}^{\infty} \beta^t \left\{ x_t'Rx_t + u_t'Qu_t \right\} \]

and that the state transition equation is again \( x_{t+1} = Ax_t + Bu_t \).

Define the transformed state and control variables

- \( \hat{x}_t = \beta^{1/2}x_t \)
- \( \hat{u}_t = \beta^{1/2}u_t \)

and the transformed transition equation matrices

- \( \hat{A} = \beta^{1/2}A \)
- \( \hat{B} = \beta^{1/2}B \)

so that the adjusted state and control variables obey the transition law

\[ \hat{x}_{t+1} = \hat{A}\hat{x}_t + \hat{B}\hat{u}_t. \]

Then a discounted optimal control problem defined by \( A, B, R, Q, \beta \) having optimal policy characterized by \( P, F \) is associated with an equivalent undiscounted problem defined by \( \hat{A}, \hat{B}, Q, R \) having optimal policy characterized by \( \hat{F}, \hat{P} \) that satisfy the following equations:

\[ \hat{F} = (Q + \hat{B}'\hat{P}\hat{B})^{-1}\hat{B}'\hat{P}\hat{A} \]

and

\[ \hat{P} = R + \hat{A}'\hat{P}\hat{A} - \hat{A}'\hat{P}\hat{B}(Q + \hat{B}'\hat{P}\hat{B})^{-1}\hat{B}'\hat{P}\hat{A} \]

It follows immediately from the definitions of \( \hat{A}, \hat{B} \) that \( \hat{F} = F \) and \( \hat{P} = P \).

By exploiting these transformations, we can solve a discounted problem by solving an associated undiscounted problem.

In particular, we can first transform a discounted LQ problem to an undiscounted one and then solve that discounted optimal regulator problem using the Lagrangian and invariant subspace methods described above.

For example, when \( \beta = \frac{1}{1+r} \), we can solve for \( P \) with \( \hat{A} = \beta^{1/2}A \) and \( \hat{B} = \beta^{1/2}B \).

These settings are adopted by default in the function `stationary_P` defined above.

\[
\begin{align*}
\beta &= 1 / (1 + r) \\
lq.beta &= \beta \\
\end{align*}
\]

```
stationary_P(lq)
```

```
eigenvalues:
W11: [0.97590007 0.97590007]
W22: [1.02469508 1.02469508]
```
Quantitative Economics with Python

We can verify that the solution agrees with one that comes from applying the routine `LQ.stationary_values` in the quantecon package.

```python
lq.stationary_values()
```

(\[
\begin{align*}
\begin{bmatrix}
0.0525 & -1.05 \\
-1.05 & 21.
\end{bmatrix}, \\
\begin{bmatrix}
-0.05 & 1.
\end{bmatrix}, \\
0.0
\end{align*}
\]
)

### 61.9.2 Lagrangian for Discounted Problem

For several purposes, it is useful explicitly briefly to describe a Lagrangian for a discounted problem.

Thus, for the discounted optimal linear regulator problem, form the Lagrangian

\[
L = -\sum_{t=0}^{\infty} \beta^t \left\{ x_t^t R x_t + u_t^t Q u_t + 2\beta \mu_{t+1}^t [A x_t + B u_t - x_{t+1}] \right\}
\]

where \(2\mu_{t+1}\) is a vector of Lagrange multipliers on the state vector \(x_{t+1}\).

First-order conditions for maximization with respect to \(\{u_t, x_{t+1}\}\) \(t = 0\) are

\[
2 Q u_t + 2 \beta B \mu_{t+1} = 0, \quad t \geq 0
\]

\[
\mu_t = R x_t + \beta A \mu_{t+1}, \quad t \geq 1.
\]

(61.19)

Define \(2\mu_0\) to be the vector of shadow prices of \(x_0\) and apply an envelope condition to (61.18) to deduce that

\[
\mu_0 = R x_0 + \beta A \mu_1,
\]

which is a time \(t = 0\) counterpart to the second equation of system (61.19).

Proceeding as we did above with the undiscounted system (61.5), we can rearrange the first-order conditions into the system

\[
\begin{bmatrix}
I & \beta B Q^{-1} B' \\
0 & \beta A'
\end{bmatrix}
\begin{bmatrix}
x_{t+1} \\
\mu_{t+1}
\end{bmatrix}
= \begin{bmatrix} A & 0 \\ -R & I \end{bmatrix}
\begin{bmatrix} x_t \\
\mu_t
\end{bmatrix}
\]

(61.20)

which in the special case that \(\beta = 1\) agrees with equation (61.5), as expected.

By staring at system (61.20), we can infer identities that shed light on the structure of optimal linear regulator problems, some of which will be useful in this lecture when we apply and extend the methods of this lecture to study Stackelberg and Ramsey problems.

First, note that the first block of equation system (61.20) asserts that when \(\mu_{t+1} = Px_{t+1}\), then

\[
(I + \beta Q^{-1} B' PB) x_{t+1} = A x_t,
\]

which can be rearranged to be

\[
x_{t+1} = (I + \beta B Q^{-1} B' P)^{-1} A x_t.
\]
This expression for the optimal closed loop dynamics of the state must agree with an alternative expression that we had derived with dynamic programming, namely,

\[ x_{t+1} = (A - BF)x_t. \]

But using

\[ F = \beta(Q + \beta B'PB)^{-1}B'PA \] (61.21)

it follows that

\[ A - BF = (I - \beta B(Q + \beta B'PB)^{-1}B'P)A. \]

Thus, our two expressions for the closed loop dynamics agree if and only if

\[ (I + \beta BQ^{-1}B'P)^{-1} = (I - \beta B(Q + \beta B'PB)^{-1}B'P). \] (61.22)

Matrix equation (61.22) can be verified by applying a partitioned inverse formula.

**Note:** Just use the formula \((a - bd^{-1}c)^{-1} = a^{-1} + a^{-1}b(d - ca^{-1}b)^{-1}ca^{-1}\) for appropriate choices of the matrices \(a, b, c, d\).

Next, note that for any fixed \(F\) for which eigenvalues of \(A - BF\) are less than \(\frac{1}{\beta}\) in modulus, the value function associated with using this rule forever is \(-x_0\tilde{P}x_0\) where \(\tilde{P}\) obeys the following matrix equation:

\[ \tilde{P} = (R + F'QF) + \beta(A - BF)'P(A - BF). \] (61.23)

Evidently, \(\tilde{P} = P\) only when \(F\) obeys formula (61.21).

Next, note that the second equation of system (61.20) implies the “forward looking” equation for the Lagrange multiplier

\[ \mu_t = Rx_t + \beta A'\mu_{t+1} \]

whose solution is

\[ \mu_t = Px_t, \]

where

\[ P = R + \beta A'P(A - BF) \] (61.24)

where we must require that \(F\) obeys equation (61.21).

Equations (61.23) and (61.24) provide different perspectives on the optimal value function.
ELIMINATING CROSS PRODUCTS

62.1 Overview

This lecture describes formulas for eliminating

- cross products between states and control in linear-quadratic dynamic programming problems
- covariances between state and measurement noises in Kalman filtering problems

For a linear-quadratic dynamic programming problem, the idea involves these steps

- transform states and controls in a way that leads to an equivalent problem with no cross-products between transformed states and controls
- solve the transformed problem using standard formulas for problems with no cross-products between states and controls presented in this lecture Linear Control: Foundations
- transform the optimal decision rule for the altered problem into the optimal decision rule for the original problem with cross-products between states and controls

62.2 Undiscounted Dynamic Programming Problem

Here is a nonstochastic undiscounted LQ dynamic programming with cross products between states and controls in the objective function.

The problem is defined by the 5-tuple of matrices \((A, B, R, Q, H)\) where \(R\) and \(Q\) are positive definite symmetric matrices and \(A \sim m \times m, B \sim m \times k, Q \sim k \times k, R \sim m \times m\) and \(H \sim k \times m\).

The problem is to choose \(\{x_{t+1}, u_t\}_{t=0}^\infty\) to maximize

\[-\sum_{t=0}^{\infty} (x_t' R x_t + u_t' Q u_t + 2 u_t' H x_t)\]

subject to the linear constraints

\[x_{t+1} = Ax_t + Bu_t, \quad t \geq 0\]

where \(x_0\) is a given initial condition.

The solution to this undiscounted infinite-horizon problem is a time-invariant feedback rule

\[u_t = -Fx_t\]
where

\[ F = -(Q + B'PB)^{-1}B'PA \]

and \( P \sim m \times m \) is a positive definite solution of the algebraic matrix Riccati equation

\[ P = R + A'PA - (A'PB + H')(Q + B'PB)^{-1}(B'PA + H). \]

It can be verified that an equivalent problem without cross-products between states and controls is defined by a 4-tuple of matrices: \( (A^*, B, R^*, Q) \).

That the omitted matrix \( H = 0 \) indicates that there are no cross products between states and controls in the equivalent problem.

The matrices \( (A^*, B, R^*, Q) \) defining the equivalent problem and the value function, policy function matrices \( P, F^* \) that solve it are related to the matrices \( (A, B, R, Q, H) \) defining the original problem and the value function, policy function matrices \( P, F \) that solve the original problem by

\[
\begin{align*}
A^* &= A - BQ^{-1}H, \\
R^* &= R - H'Q^{-1}H, \\
P &= R^* + A'^*PA - (A'^*PB)(Q + B'PB)^{-1}B'^*PA^*, \\
F^* &= (Q + B'PB)^{-1}B'^*PA^*, \\
F &= F^* + Q^{-1}H.
\end{align*}
\]

### 62.3 Kalman Filter

The duality that prevails between a linear-quadratic optimal control and a Kalman filtering problem means that there is an analogous transformation that allows us to transform a Kalman filtering problem with non-zero covariance matrix between between shocks to states and shocks to measurements to an equivalent Kalman filtering problem with zero covariance between shocks to states and measurements.

Let’s look at the appropriate transformations.

First, let’s recall the Kalman filter with covariance between noises to states and measurements.

The hidden Markov model is

\[
\begin{align*}
x_{t+1} &= Ax_t + Bu_{t+1}, \\
z_{t+1} &= Dx_t + Fw_{t+1},
\end{align*}
\]

where \( A \sim m \times m, B \sim m \times p \) and \( D \sim k \times m, F \sim k \times p \), and \( u_{t+1} \) is the time \( t + 1 \) component of a sequence of i.i.d. \( p \times 1 \) normally distributed random vectors with mean vector zero and covariance matrix equal to a \( p \times p \) identity matrix.

Thus, \( x_t \) is \( m \times 1 \) and \( z_t \) is \( k \times 1 \).

The Kalman filtering formulas are

\[
\begin{align*}
K(\Sigma_t) &= (A\Sigma_tD' + BF')(D\Sigma_tD' + FF')^{-1}, \\
\Sigma_{t+1} &= A\Sigma_tA' + BB' - (A\Sigma_tD' + BF')(D\Sigma_tD' + FF')^{-1}(D\Sigma_tA' + FB').
\end{align*}
\]

Define transformed matrices

\[
\begin{align*}
A^* &= A - BF'(FF')^{-1}D, \\
B'^* &= BB' - BF'(FF')^{-1}FB'.
\end{align*}
\]
62.3.1 Algorithm

A consequence of formulas \(\text{eq:Kalman102}\) is that we can use the following algorithm to solve Kalman filtering problems that involve non-zero covariances between state and signal noises.

First, compute \(\Sigma, K^*\) using the ordinary Kalman filtering formula with \(BF' = 0\), i.e., with zero covariance matrix between random shocks to states and random shocks to measurements.

That is, compute \(K^*\) and \(\Sigma\) that satisfy

\[
K^* = (A^* \Sigma D')(D \Sigma D' + FF')^{-1}
\]

\[
\Sigma = A^* \Sigma A'^* + B^* B'^* - (A^* \Sigma D')(D \Sigma D' + FF')^{-1}(D \Sigma A'^*).
\]

The Kalman gain for the original problem with non-zero covariance between shocks to states and measurements is then

\[
K = K^* + BF'(FF')^{-1},
\]

The state reconstruction covariance matrix \(\Sigma\) for the original problem equals the state reconstruction covariance matrix for the transformed problem.

62.4 Duality table

Here is a handy table to remember how the Kalman filter and dynamic program are related.

<table>
<thead>
<tr>
<th>Dynamic Program</th>
<th>Kalman Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(A')</td>
</tr>
<tr>
<td>(B)</td>
<td>(D')</td>
</tr>
<tr>
<td>(H)</td>
<td>(FB')</td>
</tr>
<tr>
<td>(Q)</td>
<td>(FF')</td>
</tr>
<tr>
<td>(R)</td>
<td>(BB')</td>
</tr>
<tr>
<td>(F)</td>
<td>(K')</td>
</tr>
<tr>
<td>(P)</td>
<td>(\Sigma)</td>
</tr>
</tbody>
</table>
CHAPTER
SIXTYTHREE

THE PERMANENT INCOME MODEL

Contents

- The Permanent Income Model
  - Overview
  - The Savings Problem
  - Alternative Representations
  - Two Classic Examples
  - Further Reading
  - Appendix: The Euler Equation

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

63.1 Overview

This lecture describes a rational expectations version of the famous permanent income model of Milton Friedman [Fri56]. Robert Hall cast Friedman’s model within a linear-quadratic setting [Hal78]. Like Hall, we formulate an infinite-horizon linear-quadratic savings problem.

We use the model as a vehicle for illustrating

- alternative formulations of the state of a dynamic system
- the idea of cointegration
- impulse response functions
- the idea that changes in consumption are useful as predictors of movements in income

Background readings on the linear-quadratic-Gaussian permanent income model are Hall’s [Hal78] and chapter 2 of [LS18].

Let’s start with some imports
63.2 The Savings Problem

In this section, we state and solve the savings and consumption problem faced by the consumer.

63.2.1 Preliminaries

We use a class of stochastic processes called martingales.

A discrete-time martingale is a stochastic process (i.e., a sequence of random variables) \( \{X_t\} \) with finite mean at each \( t \) and satisfying

\[
E_t[X_{t+1}] = X_t, \quad t = 0, 1, 2, \ldots
\]

Here \( E_t := E[\cdot | \mathcal{F}_t] \) is a conditional mathematical expectation conditional on the time \( t \) information set \( \mathcal{F}_t \).

The latter is just a collection of random variables that the modeler declares to be visible at \( t \).

- When not explicitly defined, it is usually understood that \( \mathcal{F}_t = \{X_t, X_{t-1}, \ldots, X_0\} \).

Martingales have the feature that the history of past outcomes provides no predictive power for changes between current and future outcomes.

For example, the current wealth of a gambler engaged in a “fair game” has this property.

One common class of martingales is the family of random walks.

A random walk is a stochastic process \( \{X_t\} \) that satisfies

\[
X_{t+1} = X_t + w_{t+1}
\]

for some IID zero mean innovation sequence \( \{w_t\} \).

Evidently, \( X_t \) can also be expressed as

\[
X_t = \sum_{j=1}^{t} w_j + X_0
\]

Not every martingale arises as a random walk (see, for example, Wald’s martingale).

63.2.2 The Decision Problem

A consumer has preferences over consumption streams that are ordered by the utility functional

\[
E_0 \left[ \sum_{t=0}^{\infty} \beta^t u(c_t) \right]
\]

where
• $E_t$ is the mathematical expectation conditioned on the consumer’s time $t$ information
• $c_t$ is time $t$ consumption
• $u$ is a strictly concave one-period utility function
• $\beta \in (0, 1)$ is a discount factor

The consumer maximizes (63.1) by choosing a consumption, borrowing plan $\{c_t, b_{t+1}\}_{t=0}^\infty$ subject to the sequence of budget constraints

$$c_t + b_t = \frac{1}{1 + r} b_{t+1} + y_t \quad t \geq 0$$  \hspace{1cm} (63.2)

Here

• $y_t$ is an exogenous endowment process.
• $r > 0$ is a time-invariant risk-free net interest rate.
• $b_t$ is one-period risk-free debt maturing at $t$.

The consumer also faces initial conditions $b_0$ and $y_0$, which can be fixed or random.

### 63.2.3 Assumptions

For the remainder of this lecture, we follow Friedman and Hall in assuming that $(1 + r)^{-1} = \beta$.

Regarding the endowment process, we assume it has the state-space representation

$$z_{t+1} = Az_t + Cw_{t+1}$$
$$y_t = Uz_t$$  \hspace{1cm} (63.3)

where

• $\{w_t\}$ is an IID vector process with $Ew_t = 0$ and $Ew_tw_t' = I$.
• The spectral radius of $A$ satisfies $\rho(A) < \sqrt{1/\beta}$.
• $U$ is a selection vector that pins down $y_t$ as a particular linear combination of components of $z_t$.

The restriction on $\rho(A)$ prevents income from growing so fast that discounted geometric sums of some quadratic forms to be described below become infinite.

Regarding preferences, we assume the quadratic utility function

$$u(c_t) = -(c_t - \gamma)^2$$

where $\gamma$ is a bliss level of consumption.

**Note:** Along with this quadratic utility specification, we allow consumption to be negative. However, by choosing parameters appropriately, we can make the probability that the model generates negative consumption paths over finite time horizons as low as desired.

Finally, we impose the no Ponzi scheme condition

$$E_0 \left[ \sum_{t=0}^\infty \beta^t b_t^2 \right] < \infty$$  \hspace{1cm} (63.4)

This condition rules out an always-borrow scheme that would allow the consumer to enjoy bliss consumption forever.
63.2.4 First-Order Conditions

First-order conditions for maximizing (63.1) subject to (63.2) are

\[ E_t[u'(c_{t+1})] = u'(c_t), \quad t = 0, 1, \ldots \]  

(63.5)

These optimality conditions are also known as Euler equations.

If you’re not sure where they come from, you can find a proof sketch in the appendix.

With our quadratic preference specification, (63.5) has the striking implication that consumption follows a martingale:

\[ E_t[c_{t+1}] = c_t \]  

(63.6)

(In fact, quadratic preferences are necessary for this conclusion.)

One way to interpret (63.6) is that consumption will change only when “new information” about permanent income is revealed.

These ideas will be clarified below.

63.2.5 The Optimal Decision Rule

Now let’s deduce the optimal decision rule.

Note: One way to solve the consumer’s problem is to apply dynamic programming as in this lecture. We do this later. But first we use an alternative approach that is revealing and shows the work that dynamic programming does for us behind the scenes.

In doing so, we need to combine

1. the optimality condition (63.6)
2. the period-by-period budget constraint (63.2), and
3. the boundary condition (63.4)

To accomplish this, observe first that (63.4) implies \( \lim_{t \to \infty} \beta^t b_{t+1} = 0 \).

Using this restriction on the debt path and solving (63.2) forward yields

\[ b_t = \sum_{j=0}^{\infty} \beta^j (y_{t+j} - c_{t+j}) \]  

(63.7)

Take conditional expectations on both sides of (63.7) and use the martingale property of consumption and the law of iterated expectations to deduce

\[ b_t = \sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}] - \frac{c_t}{1-\beta} \]  

(63.8)

Expressed in terms of \( c_t \) we get

\[ c_t = (1-\beta) \left[ \sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}] - b_t \right] = \frac{r}{1+r} \left[ \sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}] - b_t \right] \]  

(63.9)

1 A linear marginal utility is essential for deriving (63.6) from (63.5). Suppose instead that we had imposed the following more standard assumptions on the utility function: \( u'(c) > 0, u''(c) < 0, u'''(c) > 0 \) and required that \( c \geq 0 \). The Euler equation remains (63.5). But the fact that \( u''' < 0 \) implies via Jensen’s inequality that \( E_t[u'(c_{t+1})] > u'(E_t[c_{t+1}]) \). This inequality together with (63.5) implies that \( E_t[c_{t+1}] > c_t \) (consumption is said to be a ‘submartingale’), so that consumption stochastically diverges to \( +\infty \). The consumer’s savings also diverge to \( +\infty \).

2 An optimal decision rule is a map from the current state into current actions—in this case, consumption.
where the last equality uses $\left(1 + r\right)\beta = 1$.

These last two equations assert that consumption equals economic income

- **financial wealth** equals $-b_t$
- **non-financial wealth** equals $\sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}]$
- **total wealth** equals the sum of financial and non-financial wealth
- **a marginal propensity to consume out of total wealth** equals the interest factor $\frac{r}{1 + r}$
- **economic income** equals
  - a constant marginal propensity to consume times the sum of non-financial wealth and financial wealth
  - the amount the consumer can consume while leaving its wealth intact

**Responding to the State**

The state vector confronting the consumer at $t$ is $[b_t \ z_t]$. Here

- $z_t$ is an **exogenous** component, unaffected by consumer behavior.
- $b_t$ is an **endogenous** component (since it depends on the decision rule).

Note that $z_t$ contains all variables useful for forecasting the consumer’s future endowment.

It is plausible that current decisions $c_t$ and $b_{t+1}$ should be expressible as functions of $z_t$ and $b_t$.

This is indeed the case.

In fact, from this discussion, we see that

$$
\sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}] = E_t \left[ \sum_{j=0}^{\infty} \beta^j y_{t+j} \right] = U(I - \beta A)^{-1} z_t
$$

Combining this with (63.9) gives

$$
c_t = \frac{r}{1 + r} \left[ U(I - \beta A)^{-1} z_t - b_t \right]
$$

(63.10)

Using this equality to eliminate $c_t$ in the budget constraint (63.2) gives

$$
b_{t+1} = (1 + r)(b_t + c_t - y_t)
= (1 + r)b_t + r[U(I - \beta A)^{-1} z_t - b_t] - (1 + r)Uz_t
= b_t + U[r(I - \beta A)^{-1} - (1 + r)I]z_t
= b_t + U(I - \beta A)^{-1}(A - I)z_t
$$

To get from the second last to the last expression in this chain of equalities is not trivial.

A key is to use the fact that $(1 + r)\beta = 1$ and $(I - \beta A)^{-1} = \sum_{j=0}^{\infty} \beta^j A^j$.

We’ve now successfully written $c_t$ and $b_{t+1}$ as functions of $b_t$ and $z_t$. 
A State-Space Representation

We can summarize our dynamics in the form of a linear state-space system governing consumption, debt and income:

\[
\begin{align*}
    z_{t+1} &= A z_t + C w_{t+1} \\
    b_{t+1} &= b_t + U [(I - \beta A)^{-1} (A - I)] z_t \\
    y_t &= U z_t \\
    c_t &= (1 - \beta) [U (I - \beta A)^{-1} z_t - b_t]
\end{align*}
\]  
\( (63.11) \)

To write this more succinctly, let

\[
\begin{align*}
    x_t &= \begin{bmatrix} z_t \\ b_t \end{bmatrix}, & \tilde{A} &= \begin{bmatrix} A & 0 \\ U (I - \beta A)^{-1} (A - I) & 1 \end{bmatrix}, & \tilde{C} &= \begin{bmatrix} C \\ 0 \end{bmatrix}
\end{align*}
\]  

and

\[
\begin{align*}
    \tilde{U} &= \begin{bmatrix} U \\ (1 - \beta) U (I - \beta A)^{-1} & -(1 - \beta) \end{bmatrix}, & \tilde{y}_t &= \begin{bmatrix} y_t \\ c_t \end{bmatrix}
\end{align*}
\]

Then we can express equation \((63.11)\) as

\[
\begin{align*}
    x_{t+1} &= \tilde{A} x_t + \tilde{C} w_{t+1} \\
    \tilde{y}_t &= \tilde{U} x_t
\end{align*}
\]  
\( (63.12) \)

We can use the following formulas from linear state space models to compute population mean \( \mu_t = \mathbb{E} x_t \) and covariance \( \Sigma_t := \mathbb{E} [(x_t - \mu_t) (x_t - \mu_t)^\prime] \):

\[
\begin{align*}
    \mu_{t+1} &= \tilde{A} \mu_t \quad \text{with} \quad \mu_0 \text{ given} \quad (63.13) \\
    \Sigma_{t+1} &= \tilde{A} \Sigma_t \tilde{A}^\prime + \tilde{C} \tilde{C}^\prime \quad \text{with} \quad \Sigma_0 \text{ given} \quad (63.14)
\end{align*}
\]

We can then compute the mean and covariance of \( \tilde{y}_t \) from

\[
\begin{align*}
    \mu_{y,t} &= \tilde{U} \mu_t \\
    \Sigma_{y,t} &= \tilde{U} \Sigma_t \tilde{U}^\prime
\end{align*}
\]  
\( (63.15) \)

A Simple Example with IID Income

To gain some preliminary intuition on the implications of \((63.11)\), let’s look at a highly stylized example where income is just IID.

(Later examples will investigate more realistic income streams.)

In particular, let \( \{w_t\}_{t=1}^\infty \) be IID and scalar standard normal, and let

\[
\begin{align*}
    z_t &= \begin{bmatrix} z^1_t \\ 1 \end{bmatrix}, & A &= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, & U &= \begin{bmatrix} 1 & \mu \end{bmatrix}, & C &= \begin{bmatrix} \sigma \\ 0 \end{bmatrix}
\end{align*}
\]

Finally, let \( b_0 = z^1_0 = 0 \).

Under these assumptions, we have \( y_t = \mu + \sigma w_t \sim N(\mu, \sigma^2) \).

Further, if you work through the state space representation, you will see that

\[
\begin{align*}
    b_t &= -\sigma \sum_{j=1}^{t-1} w_j \\
    c_t &= \mu + (1 - \beta) \sigma \sum_{j=1}^t w_j
\end{align*}
\]
Thus income is IID and debt and consumption are both Gaussian random walks.
Defining assets as $-b_t$, we see that assets are just the cumulative sum of unanticipated incomes prior to the present date.
The next figure shows a typical realization with $r = 0.05$, $\mu = 1$, and $\sigma = 0.15$

```python
r = 0.05
beta = 1 / (1 + r)
mu = 1
T = 60

@njit
def time_path(T):
 w = np.random.randn(T+1) # w_0, w_1, ..., w_T
 w[0] = 0
 b = np.zeros(T+1)
 for t in range(1, T+1):
 b[t] = w[1:t].sum()
 b = -sigma * b
 c = mu + (1 - beta) * (sigma * w - b)
 return w, b, c

w, b, c = time_path(T)

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(mu + sigma * w, 'g-', label='Non-financial income')
ax.plot(c, 'k-', label='Consumption')
ax.plot(b, 'b-', label='Debt')
ax.legend(ncol=3, mode='expand', bbox_to_anchor=(0., 1.02, 1., .102))
ax.grid()
ax.set_xlabel('Time')
plt.show()
```
Observe that consumption is considerably smoother than income.

The figure below shows the consumption paths of 250 consumers with independent income streams.

```python
fig, ax = plt.subplots(figsize=(10, 6))
b_sum = np.zeros(T+1)
for i in range(250):
 w, b, c = time_path(T) # Generate new time path
 rcolor = random.choice(('c', 'g', 'b', 'k'))
 ax.plot(c, color=rcolor, lw=0.8, alpha=0.7)
ax.grid()
ax.set(xlabel='Time', ylabel='Consumption')
plt.show()
```
63.3 Alternative Representations

In this section, we shed more light on the evolution of savings, debt and consumption by representing their dynamics in several different ways.

63.3.1 Hall’s Representation

Hall [Hal78] suggested an insightful way to summarize the implications of LQ permanent income theory.

First, to represent the solution for $b_t$, shift (63.9) forward one period and eliminate $b_{t+1}$ by using (63.2) to obtain

$$c_{t+1} = (1 - \beta) \sum_{j=0}^{\infty} \beta^j E_{t+1}[y_{t+j+1}] - (1 - \beta) [\beta^{-1} (c_t + b_t - y_t)]$$

If we add and subtract $\beta^{-1} (1 - \beta) \sum_{j=0}^{\infty} \beta^j E_t y_{t+j}$ from the right side of the preceding equation and rearrange, we obtain

$$c_{t+1} - c_t = (1 - \beta) \sum_{j=0}^{\infty} \beta^j \{ E_{t+1}[y_{t+j+1}] - E_t[y_{t+j+1}] \} \quad (63.16)$$

The right side is the time $t + 1$ innovation to the expected present value of the endowment process $\{y_t\}$.

We can represent the optimal decision rule for $(c_t, b_{t+1})$ in the form of (63.16) and (63.8), which we repeat:

$$b_t = \sum_{j=0}^{\infty} \beta^j E_t[y_{t+j}] - \frac{1}{1 - \beta} c_t \quad (63.17)$$

Equation (63.17) asserts that the consumer’s debt due at $t$ equals the expected present value of its endowment minus the expected present value of its consumption stream.
A high debt thus indicates a large expected present value of surpluses $y_t - c_t$. Recalling again our discussion on forecasting geometric sums, we have

$$
E_t \sum_{j=0}^{\infty} \beta^j y_{t+j} = U(I - \beta A)^{-1} z_t
$$

$$
E_{t+1} \sum_{j=0}^{\infty} \beta^j y_{t+j+1} = U(I - \beta A)^{-1} z_{t+1}
$$

$$
E_t \sum_{j=0}^{\infty} \beta^j y_{t+j+1} = U(I - \beta A)^{-1} Az_t
$$

Using these formulas together with (63.3) and substituting into (63.16) and (63.17) gives the following representation for the consumer’s optimum decision rule:

$$
c_{t+1} = c_t + (1 - \beta)U(I - \beta A)^{-1} C w_{t+1}
$$

$$
b_t = U(I - \beta A)^{-1} z_t - \frac{1}{1 - \beta} c_t
$$

$$
y_t = U z_t
$$

$$
z_{t+1} = Az_t + C w_{t+1}
$$

(63.18)

Representation (63.18) makes clear that

- The state can be taken as $(c_t, z_t)$.
  - The endogenous part is $c_t$ and the exogenous part is $z_t$.
  - Debt $b_t$ has disappeared as a component of the state because it is encoded in $c_t$.

- Consumption is a random walk with innovation $(1 - \beta)U(I - \beta A)^{-1} C w_{t+1}$.
  - This is a more explicit representation of the martingale result in (63.6).

### 63.3.2 Cointegration

Representation (63.18) reveals that the joint process $\{c_t, b_t\}$ possesses the property that Engle and Granger [EG87] called cointegration.

Cointegration is a tool that allows us to apply powerful results from the theory of stationary stochastic processes to (certain transformations of) nonstationary models.

To apply cointegration in the present context, suppose that $z_t$ is asymptotically stationary.

Despite this, both $c_t$ and $b_t$ will be non-stationary because they have unit roots (see (63.11) for $b_t$). Nevertheless, there is a linear combination of $c_t, b_t$ that is asymptotically stationary.

In particular, from the second equality in (63.18) we have

$$
(1 - \beta)b_t + c_t = (1 - \beta)U(I - \beta A)^{-1} z_t
$$

(63.19)

Hence the linear combination $(1 - \beta)b_t + c_t$ is asymptotically stationary.

Accordingly, Granger and Engle would call $[(1 - \beta) \quad 1]$ a cointegrating vector for the state.

When applied to the nonstationary vector process $[b_t \quad c_t]'$, it yields a process that is asymptotically stationary.

---

3 This would be the case if, for example, the spectral radius of $A$ is strictly less than one.
Equation (63.19) can be rearranged to take the form

\[(1 - \beta)b_t + c_t = (1 - \beta)\mathbb{E}_t \sum_{j=0}^{\infty} \beta^j y_{t+j}\]  

(63.20)

Equation (63.20) asserts that the \textit{cointegrating residual} on the left side equals the conditional expectation of the geometric sum of future incomes on the right\(^4\).

### 63.3.3 Cross-Sectional Implications

Consider again (63.18), this time in light of our discussion of distribution dynamics in the \textit{lecture on linear systems}. The dynamics of \(c_t\) are given by

\[c_{t+1} = c_t + (1 - \beta)U(I - \beta A)^{-1}C w_{t+1}\]  

(63.21)

or

\[c_t = c_0 + \sum_{j=1}^{t} \hat{w}_j \text{ for } \hat{w}_{t+1} := (1 - \beta)U(I - \beta A)^{-1}C w_{t+1}\]

The unit root affecting \(c_t\) causes the time \(t\) variance of \(c_t\) to grow linearly with \(t\).

In particular, since \(\{\hat{w}_t\}\) is IID, we have

\[\text{Var}[c_t] = \text{Var}[c_0] + t \hat{\sigma}^2\]

(63.22)

where

\[\hat{\sigma}^2 := (1 - \beta)^2U(I - \beta A)^{-1}CC'(I - \beta A')^{-1}U'\]

When \(\hat{\sigma} > 0\), \(\{c_t\}\) has no asymptotic distribution.

Let’s consider what this means for a cross-section of ex-ante identical consumers born at time 0.

Let the distribution of \(c_0\) represent the cross-section of initial consumption values.

Equation (63.22) tells us that the variance of \(c_t\) increases over time at a rate proportional to \(t\).

A number of different studies have investigated this prediction and found some support for it (see, e.g., [DP94], [STY04]).

### 63.3.4 Impulse Response Functions

Impulse response functions measure responses to various impulses (i.e., temporary shocks). The impulse response function of \(\{c_t\}\) to the innovation \(\{w_t\}\) is a box.

In particular, the response of \(c_{t+j}\) to a unit increase in the innovation \(w_{t+1}\) is \((1 - \beta)U(I - \beta A)^{-1}C\) for all \(j \geq 1\).

\(^4\) See [JYC88], [LL01], [LL04] for interesting applications of related ideas.
63.3.5 Moving Average Representation

It’s useful to express the innovation to the expected present value of the endowment process in terms of a moving average representation for income \( y_t \).

The endowment process defined by (63.3) has the moving average representation

\[
y_{t+1} = d(L)w_{t+1}
\]  

where

- \( d(L) = \sum_{j=0}^{\infty} d_j L^j \) for some sequence \( d_j \), where \( L \) is the lag operator\(^5\)
- at time \( t \), the consumer has an information set\(^6\) \( w^t = [w_t, w_{t-1}, \ldots] \)

Notice that

\[
y_{t+j} - \mathbb{E}_t[y_{t+j}] = d_0 w_{t+j} + d_1 w_{t+j-1} + \cdots + d_{j-1} w_{t+1}
\]

It follows that

\[
\mathbb{E}_{t+1}[y_{t+j}] - \mathbb{E}_t[y_{t+j}] = d_{j-1} w_{t+1}
\]  

(63.24)

Using (63.24) in (63.16) gives

\[
c_{t+1} - c_t = (1 - \beta)d(\beta)w_{t+1}
\]  

(63.25)

The object \( d(\beta) \) is the present value of the moving average coefficients in the representation for the endowment process \( y_t \).

63.4 Two Classic Examples

We illustrate some of the preceding ideas with two examples.

In both examples, the endowment follows the process \( y_t = z_{1t} + z_{2t} \) where

\[
\begin{bmatrix}
z_{1t+1} \\
z_{2t+1}
\end{bmatrix} = 
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
z_{1t} \\
z_{2t}
\end{bmatrix} 
+ 
\begin{bmatrix}
\sigma_1 \\
\sigma_2
\end{bmatrix}
\begin{bmatrix}
w_{1t+1} \\
w_{2t+1}
\end{bmatrix}
\]

Here

- \( w_{t+1} \) is an IID \( 2 \times 1 \) process distributed as \( N(0, I) \).
- \( z_{1t} \) is a permanent component of \( y_t \).
- \( z_{2t} \) is a purely transitory component of \( y_t \).

63.4.1 Example 1

Assume as before that the consumer observes the state \( z_t \) at time \( t \).

In view of (63.18) we have

\[
c_{t+1} - c_t = \sigma_1 w_{1t+1} + (1 - \beta)\sigma_2 w_{2t+1}
\]  

(63.26)

Formula (63.26) shows how an increment \( \sigma_1 w_{1t+1} \) to the permanent component of income \( z_{1t+1} \) leads to

---

\(^5\) Representation (63.3) implies that \( d(L) = U(I - AL)^{-1}C \).

\(^6\) A moving average representation for a process \( y_t \) is said to be fundamental if the linear space spanned by \( y^t \) is equal to the linear space spanned by \( w^t \). A time-invariant innovations representation, attained via the Kalman filter, is by construction fundamental.
• a permanent one-for-one increase in consumption and
• no increase in savings $-b_{t+1}$

But the purely transitory component of income $\sigma_2 w_{2t+1}$ leads to a permanent increment in consumption by a fraction $1 - \beta$ of transitory income.

The remaining fraction $\beta$ is saved, leading to a permanent increment in $-b_{t+1}$.

Application of the formula for debt in (63.11) to this example shows that

$$b_{t+1} - b_t = -z_{2t} = -\sigma_2 w_{2t}$$

(63.27)

This confirms that none of $\sigma_1 w_{1t}$ is saved, while all of $\sigma_2 w_{2t}$ is saved.

The next figure illustrates these very different reactions to transitory and permanent income shocks using impulse-response functions

```python
r = 0.05
\beta = 1 / (1 + r)
S = 5 # Impulse date
\sigma1 = \sigma2 = 0.15

@njit
def time_path(T, permanent=False):
 """Time path of consumption and debt given shock sequence"
 w1 = np.zeros(T+1)
 w2 = np.zeros(T+1)
 b = np.zeros(T+1)
 c = np.zeros(T+1)
 if permanent:
 w1[S+1] = 1.0
 else:
 w2[S+1] = 1.0
 for t in range(1, T):
 b[t+1] = b[t] - \sigma2 * w2[t]
 c[t+1] = c[t] + \sigma1 * w1[t+1] + (1 - \beta) * \sigma2 * w2[t+1]
 return b, c

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
titles = ['transitory', 'permanent']

L = 0.175

for ax, truefalse, title in zip(axes, (True, False), titles):
 b, c = time_path(T=20, permanent=truefalse)
 ax.set_title(f'Impulse response: {title} income shock')
 ax.plot(c, 'g-', label="consumption")
 ax.plot(b, 'b--', label="debt")
 ax.plot((S, S), (-L, L), 'k-', lw=0.5)
 ax.grid(alpha=0.5)
 ax.set(xlabel=r'Time', ylim=(-L, L))

axes[0].legend(loc='lower right')

plt.tight_layout()
plt.show()

63.4. Two Classic Examples
63.4.2 Example 2

Assume now that at time t the consumer observes y_t, and its history up to t, but not z_t.

Under this assumption, it is appropriate to use an innovation representation to form A, C, U in (63.18).

The discussion in sections 2.9.1 and 2.11.3 of [LS18] shows that the pertinent state space representation for y_t is

$$
\begin{bmatrix}
y_{t+1} \\
a_{t+1}
\end{bmatrix} =
\begin{bmatrix}
1 & -(1 - K) \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
y_t \\
a_t
\end{bmatrix} +
\begin{bmatrix}
1 \\
1
\end{bmatrix} a_{t+1}
$$

where

- K := the stationary Kalman gain
- $a_t := y_t - E[y_t | y_{t-1}, \ldots, y_0]$

In the same discussion in [LS18] it is shown that $K \in [0, 1]$ and that K increases as σ_1/σ_2 does.

In other words, K increases as the ratio of the standard deviation of the permanent shock to that of the transitory shock increases.

Please see first look at the Kalman filter.
Applying formulas (63.18) implies

\[c_{t+1} - c_t = [1 - \beta(1 - K)]a_{t+1} \quad (63.28) \]

where the endowment process can now be represented in terms of the univariate innovation to \(y_t \) as

\[y_{t+1} - y_t = a_{t+1} - (1 - K)a_t \quad (63.29) \]

Equation (63.29) indicates that the consumer regards

- fraction \(K \) of an innovation \(a_{t+1} \) to \(y_{t+1} \) as permanent
- fraction \(1 - K \) as purely transitory

The consumer permanently increases his consumption by the full amount of his estimate of the permanent part of \(a_{t+1} \), but by only \((1 - \beta)\) times his estimate of the purely transitory part of \(a_{t+1} \).

Therefore, in total, he permanently increments his consumption by a fraction \(K + (1 - \beta)(1 - K) = 1 - \beta(1 - K) \) of \(a_{t+1} \).

He saves the remaining fraction \(\beta(1 - K) \).

According to equation (63.29), the first difference of income is a first-order moving average.

Equation (63.28) asserts that the first difference of consumption is IID.

Application of formula to this example shows that

\[b_{t+1} - b_t = (K - 1)a_t \quad (63.30) \]

This indicates how the fraction \(K \) of the innovation to \(y_t \) that is regarded as permanent influences the fraction of the innovation that is saved.

63.5 Further Reading

The model described above significantly changed how economists think about consumption.

While Hall’s model does a remarkably good job as a first approximation to consumption data, it’s widely believed that it doesn’t capture important aspects of some consumption/savings data.

For example, liquidity constraints and precautionary savings appear to be present sometimes.

Further discussion can be found in, e.g., [HM82], [Par99], [Dea91], [Car01].

63.6 Appendix: The Euler Equation

Where does the first-order condition (63.5) come from?

Here we’ll give a proof for the two-period case, which is representative of the general argument.

The finite horizon equivalent of the no-Ponzi condition is that the agent cannot end her life in debt, so \(b_2 = 0 \).

From the budget constraint (63.2) we then have

\[c_0 = \frac{b_1}{1 + r} - b_0 + y_0 \quad \text{and} \quad c_1 = y_1 - b_1 \]

Here \(b_0 \) and \(y_0 \) are given constants.
Substituting these constraints into our two-period objective \(u(c_0) + \beta \mathbb{E}_0[u(c_1)] \) gives

\[
\max_{b_1} \left\{ u \left(\frac{b_1}{R} - b_0 + y_0 \right) + \beta \mathbb{E}_0[u(y_1 - b_1)] \right\}
\]

You will be able to verify that the first-order condition is

\[
u'(c_0) = \beta R \mathbb{E}_0[u'(c_1)]
\]

Using \(\beta R = 1 \) gives (63.5) in the two-period case.

The proof for the general case is similar.
64.1 Overview

This lecture continues our analysis of the linear-quadratic (LQ) permanent income model of savings and consumption. As we saw in our previous lecture on this topic, Robert Hall [Hal78] used the LQ permanent income model to restrict and interpret intertemporal comovements of nondurable consumption, nonfinancial income, and financial wealth.

For example, we saw how the model asserts that for any covariance stationary process for nonfinancial income
 - consumption is a random walk
 - financial wealth has a unit root and is cointegrated with consumption

Other applications use the same LQ framework.

For example, a model isomorphic to the LQ permanent income model has been used by Robert Barro [Bar79] to interpret intertemporal comovements of a government’s tax collections, its expenditures net of debt service, and its public debt. This isomorphism means that in analyzing the LQ permanent income model, we are in effect also analyzing the Barro tax smoothing model.

It is just a matter of appropriately relabeling the variables in Hall’s model.

In this lecture, we’ll
 - show how the solution to the LQ permanent income model can be obtained using LQ control methods.

In addition to what’s in Anaconda, this lecture will need the following libraries:

```
pip install quantecon
```
• represent the model as a linear state space system as in this lecture.
• apply QuantEcon’s LinearStateSpace class to characterize statistical features of the consumer’s optimal consumption and borrowing plans.

We’ll then use these characterizations to construct a simple model of cross-section wealth and consumption dynamics in the spirit of Truman Bewley [Bew86].

(Later we’ll study other Bewley models—see this lecture.)

The model will prove useful for illustrating concepts such as
• stationarity
• ergodicity
• ensemble moments and cross-section observations

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import quantecon as qe
import numpy as np
import scipy.linalg as la
```

64.2 Setup

Let’s recall the basic features of the model discussed in the permanent income model.

Consumer preferences are ordered by

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$ \hspace{1cm} (64.1)

where \(u(c) = -(c - \gamma)^2 \).

The consumer maximizes (64.1) by choosing a consumption, borrowing plan \(\{c_t, b_{t+1}\}_{t=0}^{\infty} \) subject to the sequence of budget constraints

$$c_t + b_t = \frac{1}{1+r} b_{t+1} + y_t, \quad t \geq 0$$ \hspace{1cm} (64.2)

and the no-Ponzi condition

$$E_0 \sum_{t=0}^{\infty} \beta^t b_t^2 < \infty$$ \hspace{1cm} (64.3)

The interpretation of all variables and parameters are the same as in the previous lecture.

We continue to assume that \((1 + r)\beta = 1\).

The dynamics of \(\{y_t\} \) again follow the linear state space model

$$z_{t+1} = Az_t + Cw_{t+1}$$
$$y_t = Uz_t$$ \hspace{1cm} (64.4)

The restrictions on the shock process and parameters are the same as in our previous lecture.
64.2.1 Digression on a Useful Isomorphism

The LQ permanent income model of consumption is mathematically isomorphic with a version of Barro’s [Bar79] model of tax smoothing.

In the LQ permanent income model

- the household faces an exogenous process of nonfinancial income
- the household wants to smooth consumption across states and time

In the Barro tax smoothing model

- a government faces an exogenous sequence of government purchases (net of interest payments on its debt)
- a government wants to smooth tax collections across states and time

If we set

- T_t, total tax collections in Barro’s model to consumption c_t in the LQ permanent income model.
- G_t, exogenous government expenditures in Barro’s model to nonfinancial income y_t in the permanent income model.
- B_t, government risk-free one-period assets falling due in Barro’s model to risk-free one-period consumer debt b_t falling due in the LQ permanent income model.
- R, the gross rate of return on risk-free one-period government debt in Barro’s model to the gross rate of return $1 + r$ on financial assets in the permanent income model of consumption.

then the two models are mathematically equivalent.

All characterizations of a $\{c_t, y_t, b_t\}$ in the LQ permanent income model automatically apply to a $\{T_t, G_t, B_t\}$ process in the Barro model of tax smoothing.

See consumption and tax smoothing models for further exploitation of an isomorphism between consumption and tax smoothing models.

64.2.2 A Specification of the Nonfinancial Income Process

For the purposes of this lecture, let’s assume $\{y_t\}$ is a second-order univariate autoregressive process:

$$y_{t+1} = \alpha + \rho_1 y_t + \rho_2 y_{t-1} + \sigma w_{t+1}$$

We can map this into the linear state space framework in (64.4), as discussed in our lecture on linear models.

To do so we take

$$z_t = \begin{bmatrix} 1 \\ y_t \\ y_{t-1} \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 & 0 \\ \alpha & \rho_1 & \rho_2 \\ 0 & 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ \sigma \\ 0 \end{bmatrix}, \quad \text{and} \quad U = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$
64.3 The LQ Approach

Previously we solved the permanent income model by solving a system of linear expectational difference equations subject to two boundary conditions.

Here we solve the same model using LQ methods based on dynamic programming.

After confirming that answers produced by the two methods agree, we apply QuantEcon’s LinearStateSpace class to illustrate features of the model.

Why solve a model in two distinct ways?

Because by doing so we gather insights about the structure of the model.

Our earlier approach based on solving a system of expectational difference equations brought to the fore the role of the consumer’s expectations about future nonfinancial income.

On the other hand, formulating the model in terms of an LQ dynamic programming problem reminds us that

1. finding the state (of a dynamic programming problem) is an art, and
2. iterations on a Bellman equation implicitly jointly solve both a forecasting problem and a control problem

64.3.1 The LQ Problem

Recall from our lecture on LQ theory that the optimal linear regulator problem is to choose a decision rule for u_t to minimize

$$
\mathbb{E} \sum_{t=0}^{\infty} \beta^t \{ x_t' R x_t + u_t' Q u_t \},
$$

subject to x_0 given and the law of motion

$$
x_{t+1} = Ax_t + Bu_t + C w_{t+1}, \quad t \geq 0,
$$

where w_{t+1} is IID with mean vector zero and $\mathbb{E} w_t w_t' = I$.

The tildes in $\tilde{A}, \tilde{B}, \tilde{C}$ are to avoid clashing with notation in (64.4).

The value function for this problem is $v(x) = -x' P x - d$, where

- P is the unique positive semidefinite solution of the corresponding matrix Riccati equation.
- The scalar d is given by $d = \beta(1 - \beta)^{-1} \text{trace}(P \tilde{C} \tilde{C}')$.

The optimal policy is $u_t = -F x_t$, where $F := \beta(Q + \beta \tilde{B}' \tilde{P} \tilde{B})^{-1} \tilde{B}' P \tilde{A}$.

Under an optimal decision rule F, the state vector x_t evolves according to $x_{t+1} = (\tilde{A} - \tilde{B} F)x_t + \tilde{C} w_{t+1}$.

64.3.2 Mapping into the LQ Framework

To map into the LQ framework, we’ll use

$$
x_t := \begin{bmatrix} z_t \\ b_t \end{bmatrix} = \begin{bmatrix} 1 \\ y_t \\ y_{t-1} \\ b_t \end{bmatrix}
$$

as the state vector and $u_t := c_t - \gamma$ as the control.
With this notation and \(\mathbf{U} \gamma := [\gamma 0 0] \), we can write the state dynamics as in (64.5) when

\[
\begin{bmatrix}
\tilde{A} := \begin{bmatrix}
\frac{A}{(1 + r)(\mathbf{U} \gamma - U)} & 0 \\
0 & 1 + r
\end{bmatrix}
\end{bmatrix}
\quad \begin{bmatrix}
\tilde{B} := \begin{bmatrix}
0 \\
1 + r
\end{bmatrix}
\end{bmatrix} \quad \begin{bmatrix}
\tilde{C} := \begin{bmatrix}
C \\
0
\end{bmatrix}
\end{bmatrix}w_{t+1}
\]

Please confirm for yourself that, with these definitions, the LQ dynamics (64.5) match the dynamics of \(z_t \) and \(b_t \) described above.

To map utility into the quadratic form \(x_t^t R x_t + u_t^t Q u_t \) we can set

- \(Q := 1 \) (remember that we are minimizing) and
- \(R := a 4 \times 4 \) matrix of zeros

However, there is one problem remaining.

We have no direct way to capture the non-recursive restriction (64.3) on the debt sequence \(\{b_t\} \) from within the LQ framework.

To try to enforce it, we’re going to use a trick: put a small penalty on \(b_t^2 \) in the criterion function.

In the present setting, this means adding a small entry \(\epsilon > 0 \) in the \((4, 4)\) position of \(R \).

That will induce a (hopefully) small approximation error in the decision rule.

We’ll check whether it really is small numerically soon.

64.4 Implementation

Let’s write some code to solve the model.

One comment before we start is that the bliss level of consumption \(\gamma \) in the utility function has no effect on the optimal decision rule.

We saw this in the previous lecture *permanent income*.

The reason is that it drops out of the Euler equation for consumption.

In what follows we set it equal to unity.

64.4.1 The Exogenous Nonfinancial Income Process

First, we create the objects for the optimal linear regulator

```python
# Set parameters
a, b, p1, p2, sigma = 10.0, 0.95, 0.9, 0.0, 1.0

R = 1 / b
A = np.array([[1., 0., 0.],
              [p1, p2, 0.],
              [0., 1., 0.]])
C = np.array([[0., sigma, 0.]])
G = np.array([[[0., 1., 0.]]])

# Form LinearStateSpace system and pull off steady state moments
mu_z0 = np.array([[1.0], [0.0], [0.0]])
E_z0 = np.zeros((3, 3))
Lz = qe.LinearStateSpace(A, C, G, mu_0=mu_z0, Sigma_0=E_z0)
```

(continues on next page)
μ_z, μ_y, Σ_z, Σ_y, Σ_yx = Lz.stationary_distributions()

Mean vector of state for the savings problem
mxo = np.vstack([μ_z, 0.0])

Create stationary covariance matrix of x -- start everyone off at b=0
a1 = np.zeros((3, 1))
aa = np.hstack([Σ_z, a1])
bb = np.zeros((1, 4))
sxo = np.vstack([aa, bb])

These choices will initialize the state vector of an individual at zero debt and the ergodic distribution of the endowment process. Use these to create the Bewley economy.
mxbewley = mxo
sxbewley = sxo

The next step is to create the matrices for the LQ system

A12 = np.zeros((3,1))
ALQ_l = np.hstack([A, A12])
ALQ_r = np.array([[0, -R, 0, R]])
ALQ = np.vstack([ALQ_l, ALQ_r])

RLQ = np.array([[0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 0., 0.],
 [0., 0., 1e-9]])

QLQ = np.array([1.0])
BLQ = np.array([0., 0., 0., R]).reshape(4,1)
CLQ = np.array([0., σ, 0., 0.]).reshape(4,1)
β_LQ = β

Let’s print these out and have a look at them

print(f"A =
{ALQ}")
print(f"B =
{BLQ}")
print(f"R =
{RLQ}")
print(f"Q =
{QLQ}")

A =
[[1. 0. 0. 0.]
 [10. 0.9 0. 0.]
 [0. 1. 0. 0.]
 [0. -1.05263158 0. 1.05263158]]

B =
[[0.]
 [0.]
 [0.]
 [1.05263158]]

R =
[[0.e+00 0.e+00 0.e+00 0.e+00]
 [0.e+00 0.e+00 0.e+00 0.e+00]
 [0.e+00 0.e+00 0.e+00 0.e+00]
 [0.e+00 0.e+00 0.e+00 0.e+00]
Now create the appropriate instance of an LQ model

\[
\begin{align*}
Q &= [0.0, 0.0, 0.0, 1.0e-09] \\
Q &= [1.0]
\end{align*}
\]

We'll save the implied optimal policy function soon and compare them with what we get by employing an alternative solution method.

64.4.2 Comparison with the Difference Equation Approach

In our first lecture on the infinite horizon permanent income problem we used a different solution method. The method was based around

- deducing the Euler equations that are the first-order conditions with respect to consumption and savings.
- using the budget constraints and boundary condition to complete a system of expectational linear difference equations.
- solving those equations to obtain the solution.

Expressed in state space notation, the solution took the form

\[
\begin{align*}
z_{t+1} &= Az_t + CW_{t+1} \\
b_{t+1} &= b_t + U[(I - \beta A)^{-1}(A - I)]z_t \\
y_t &= Uz_t \\
c_t &= (1 - \beta)[U(I - \beta A)^{-1}z_t - b_t]
\end{align*}
\]

Now we’ll apply the formulas in this system

Use the above formulas to create the optimal policies for b_{t+1} and c_t
b_pol = G @ la.inv(np.eye(3, 3) - \beta * A) @ (A - np.eye(3, 3))
c_pol = (1 - \beta) * G @ la.inv(np.eye(3, 3) - \beta * A)

Create the A matrix for a LinearStateSpace instance
A_LSS1 = np.vstack((A, b_pol))
A_LSS2 = np.eye(4, 1, -3)
A_LSS = np.hstack([A_LSS1, A_LSS2])

Create the C matrix for LSS methods
C_LSS = np.vstack([C, np.zeros(1)])

Create the G matrix for LSS methods
G_LSS1 = np.vstack((G, c_pol))
G_LSS2 = np.vstack([np.zeros(1), -1 + \beta])
G_LSS = np.hstack([G_LSS1, G_LSS2])

Use the following values to start everyone off at b=0, initial incomes zero
Quantitative Economics with Python

μ_0 = np.array([1., 0., 0., 0.])
Σ_0 = np.zeros((4, 4))

A_LSS calculated as we have here should equal ABF calculated above using the LQ model

ABF - A_LSS

```
array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00],
       [-9.51248175e-06, 9.51247915e-08, 0.00000000e+00, -1.99999923e-08]])
```

Now compare pertinent elements of c_pol and F

```
print(c_pol, "\n", -F)
```

```
[[65.51724138 0.34482759 0.00000000e+00 0.00000000e+00],
 [6.55172323e+01 3.44827677e-01 -5.00000190e-02
```

We have verified that the two methods give the same solution.

Now let’s create instances of the LinearStateSpace class and use it to do some interesting experiments.

To do this, we’ll use the outcomes from our second method.

64.5 Two Example Economies

In the spirit of Bewley models [Bew86], we’ll generate panels of consumers.

The examples differ only in the initial states with which we endow the consumers.

All other parameter values are kept the same in the two examples

- In the first example, all consumers begin with zero nonfinancial income and zero debt.
 - The consumers are thus *ex-ante* identical.

- In the second example, while all begin with zero debt, we draw their initial income levels from the invariant distribution of financial income.
 - Consumers are *ex-ante* heterogeneous.

In the first example, consumers’ nonfinancial income paths display pronounced transients early in the sample

- these will affect outcomes in striking ways

Those transient effects will not be present in the second example.

We use methods affiliated with the LinearStateSpace class to simulate the model.
64.5.1 First Set of Initial Conditions

We generate 25 paths of the exogenous non-financial income process and the associated optimal consumption and debt paths.

In the first set of graphs, darker lines depict a particular sample path, while the lighter lines describe 24 other paths.

A second graph plots a collection of simulations against the population distribution that we extract from the LinearStateSpace instance LSS.

Comparing sample paths with population distributions at each date \(t \) is a useful exercise—see our discussion of the laws of large numbers.

```python
lss = qe.LinearStateSpace(A_LSS, C_LSS, G_LSS, mu_0=μ_0, Sigma_0=Σ_0)
```

64.5.2 Population and Sample Panels

In the code below, we use the LinearStateSpace class to

- compute and plot population quantiles of the distributions of consumption and debt for a population of consumers.
- simulate a group of 25 consumers and plot sample paths on the same graph as the population distribution.

```python
def income_consumption_debt_series(A, C, G, μ_0, Σ_0, T=150, npaths=25):
    """
    This function takes initial conditions (μ_0, Σ_0) and uses the LinearStateSpace class from QuantEcon to simulate an economy npaths times for T periods. It then uses that information to generate some graphs related to the discussion below.
    """
    lss = qe.LinearStateSpace(A, C, G, mu_0=μ_0, Sigma_0=Σ_0)

    # Simulation/Moment Parameters
    moment_generator = lss.moment_sequence()

    # Simulate various paths
    bsim = np.empty((npaths, T))
    csim = np.empty((npaths, T))
    ysim = np.empty((npaths, T))

    for i in range(npaths):
        sims = lss.simulate(T)
        bsim[i, :] = sims[0][-1, :]
        csim[i, :] = sims[1][1, :]
        ysim[i, :] = sims[1][0, :]

    # Get the moments
    cons_mean = np.empty(T)
    cons_var = np.empty(T)
    debt_mean = np.empty(T)
    debt_var = np.empty(T)

    for t in range(T):
        μ_x, μ_y, Σ_x, Σ_y = next(moment_generator)
        cons_mean[t], cons_var[t] = μ_y[1], Σ_y[1, 1]
        debt_mean[t], debt_var[t] = μ_x[3], Σ_x[3, 3]

    return bsim, csim, ysim, cons_mean, cons_var, debt_mean, debt_var
```

(continues on next page)
def consumption_income_debt_figure(bsim, csim, ysim):
 # Get T
 T = bsim.shape[1]

 # Create the first figure
 fig, ax = plt.subplots(2, 1, figsize=(10, 8))
 xvals = np.arange(T)

 # Plot consumption and income
 ax[0].plot(csim[0, :], label="c", color="b")
 ax[0].plot(ysim[0, :], label="y", color="g")
 ax[0].plot(csim.T, alpha=.1, color="b")
 ax[0].plot(ysim.T, alpha=.1, color="g")
 ax[0].legend(loc=4)
 ax[0].set(title="Nonfinancial Income, Consumption, and Debt",
 xlabel="t", ylabel="y and c")

 # Plot debt
 ax[1].plot(bsim[0, :], label="b", color="r")
 ax[1].plot(bsim.T, alpha=.1, color="r")
 ax[1].legend(loc=4)
 ax[1].set(xlabel="t", ylabel="debt")

 fig.tight_layout()
 return fig

def consumption_debt_fanchart(csim, cons_mean, cons_var, bsim, debt_mean, debt_var):
 # Get T
 T = bsim.shape[1]

 # Create percentiles of cross-section distributions
 cmean = np.mean(cons_mean)
 c90 = 1.65 * np.sqrt(cons_var)
 c95 = 1.96 * np.sqrt(cons_var)
 c_perc_95p, c_perc_95m = cons_mean + c95, cons_mean - c95
 c_perc_90p, c_perc_90m = cons_mean + c90, cons_mean - c90

 dmean = np.mean(debt_mean)
 d90 = 1.65 * np.sqrt(debt_var)
 d95 = 1.96 * np.sqrt(debt_var)
 d_perc_95p, d_perc_95m = debt_mean + d95, debt_mean - d95
 d_perc_90p, d_perc_90m = debt_mean + d90, debt_mean - d90

 # Create second figure
 fig, ax = plt.subplots(2, 1, figsize=(10, 8))
 xvals = np.arange(T)

 # Consumption fan
 ax[0].plot(xvals, cons_mean, color="k")
 ax[0].plot(csim.T, color="k", alpha=.25)
 ax[0].fill_between(xvals, c_perc_95m, c_perc_95p, alpha=.25, color="b")

 (continues on next page)
Now let's create figures with initial conditions of zero for y_0 and b_0:

```python
out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, μ_0, Σ_0)
bsim0, csim0, ysim0 = out[:3]
cons_mean0, cons_var0, debt_mean0, debt_var0 = out[3:]

consumption_income_debt_figure(bsim0, csim0, ysim0)
plt.show()
```

64.5. Two Example Economies
Here is what is going on in the above graphs.

For our simulation, we have set initial conditions $b_0 = y_{-1} = y_{-2} = 0$.

Because $y_{-1} = y_{-2} = 0$, nonfinancial income y_t starts far below its stationary mean $\mu_{y,\infty}$ and rises early in each simulation.

Recall from the previous lecture that we can represent the optimal decision rule for consumption in terms of the co-integrating relationship

$$(1 - \beta)b_t + c_t = (1 - \beta)E_t \sum_{j=0}^{\infty} \beta^j y_{t+j} \quad (64.6)$$

So at time 0 we have

$$c_0 = (1 - \beta)E_0 \sum_{t=0}^{\infty} \beta^j y_t$$

This tells us that consumption starts at the income that would be paid by an annuity whose value equals the expected discounted value of nonfinancial income at time $t = 0$.

Chapter 64. Permanent Income II: LQ Techniques
To support that level of consumption, the consumer borrows a lot early and consequently builds up substantial debt. In fact, he or she incurs so much debt that eventually, in the stochastic steady state, he consumes less each period than his nonfinancial income.

He uses the gap between consumption and nonfinancial income mostly to service the interest payments due on his debt. Thus, when we look at the panel of debt in the accompanying graph, we see that this is a group of *ex-ante* identical people each of whom starts with zero debt.

All of them accumulate debt in anticipation of rising nonfinancial income. They expect their nonfinancial income to rise toward the invariant distribution of income, a consequence of our having started them at $y_{-1} = y_{-2} = 0$.

Cointegration Residual

The following figure plots realizations of the left side of (64.6), which, *as discussed in our last lecture*, is called the cointegrating residual.

As mentioned above, the right side can be thought of as an annuity payment on the expected present value of future income $E_t \sum_{j=0}^{\infty} \beta^j y_{t+j}$.

Early along a realization, c_t is approximately constant while $(1 - \beta)b_t$ and $(1 - \beta)E_t \sum_{j=0}^{\infty} \beta^j y_{t+j}$ both rise markedly as the household’s present value of income and borrowing rise pretty much together.

This example illustrates the following point: the definition of cointegration implies that the cointegrating residual is *asymptotically* covariance stationary, not *covariance stationary*.

The cointegrating residual for the specification with zero income and zero debt initially has a notable transient component that dominates its behavior early in the sample.

By altering initial conditions, we shall remove this transient in our second example to be presented below.

```python
def cointegration_figure(bsim, csim):
    """
    Plots the cointegration
    """
    # Create figure
    fig, ax = plt.subplots(figsize=(10, 8))
    ax.plot((1 - \beta) * bsim[0, :] + csim[0, :], color="k")
    ax.plot((1 - \beta) * bsim.T + csim.T, color="k", alpha=.1)
    ax.set(title="Cointegration of Assets and Consumption", xlabel="t")
    return fig

Cointegration of Assets and Consumption
```

64.5. Two Example Economies

1103
64.5.3 A “Borrowers and Lenders” Closed Economy

When we set \(y_{-1} = y_{-2} = 0 \) and \(b_0 = 0 \) in the preceding exercise, we make debt “head north” early in the sample. Average debt in the cross-section rises and approaches the asymptote.

We can regard these as outcomes of a “small open economy” that borrows from abroad at the fixed gross interest rate \(R = r + 1 \) in anticipation of rising incomes.

So with the economic primitives set as above, the economy converges to a steady state in which there is an excess aggregate supply of risk-free loans at a gross interest rate of \(R \).

This excess supply is filled by “foreigner lenders” willing to make those loans.

We can use virtually the same code to rig a “poor man’s Bewley [Bew86] model” in the following way

• as before, we start everyone at \(b_0 = 0 \).

• But instead of starting everyone at \(y_{-1} = y_{-2} = 0 \), we draw \(\begin{bmatrix} y_{-1} \\ y_{-2} \end{bmatrix} \) from the invariant distribution of the \(\{ y_t \} \) process.

This rigs a closed economy in which people are borrowing and lending with each other at a gross risk-free interest rate of \(R = \beta^{-1} \).
Across the group of people being analyzed, risk-free loans are in zero excess supply.

We have arranged primitives so that $R = \beta^{-1}$ clears the market for risk-free loans at zero aggregate excess supply.

So the risk-free loans are being made from one person to another within our closed set of agents.

There is no need for foreigners to lend to our group.

Let's have a look at the corresponding figures.

```python
out = income_consumption_debt_series(A_LSS, C_LSS, G_LSS, mxbewley, sxbewley)
bsimb, csimb, ysimb = out[:3]
cons_meanb, cons_varb, debt_meanb, debt_varb = out[3:]

consumption_income_debt_figure(bsimb, csimb, ysimb)
plt.show()

consumption_debt_fanchart(csimb, cons_meanb, cons_varb, bsimb, debt_meanb, debt_varb)
plt.show()
```
The graphs confirm the following outcomes:

- As before, the consumption distribution spreads out over time.
- But now there is some initial dispersion because there is *ex-ante* heterogeneity in the initial draws of $[y_{-1}, y_{-2}]$.
- As before, the cross-section distribution of debt spreads out over time.
- Unlike before, the average level of debt stays at zero, confirming that this is a closed borrower-and-lender economy.
- Now the cointegrating residual seems stationary, and not just asymptotically stationary.

Let's have a look at the cointegration figure

```python
import matplotlib.pyplot as plt
cointegration_figure(bsimb, csimb)
plt.show()
```
64.5. Two Example Economies
PRODUCTION SMOOTHING VIA INVENTORIES

65.1 Overview

This lecture can be viewed as an application of this quanteco lecture about linear quadratic control theory. It formulates a discounted dynamic program for a firm that chooses a production schedule to balance

- minimizing costs of production across time, against
- keeping costs of holding inventories low

In the tradition of a classic book by Holt, Modigliani, Muth, and Simon [HMMS60], we simplify the firm’s problem by formulating it as a linear quadratic discounted dynamic programming problem of the type studied in this quanteco lecture.

Because its costs of production are increasing and quadratic in production, the firm holds inventories as a buffer stock in order to smooth production across time, provided that holding inventories is not too costly.
But the firm also wants to make its sales out of existing inventories, a preference that we represent by a cost that is quadratic in the difference between sales in a period and the firm’s beginning of period inventories.

We compute examples designed to indicate how the firm optimally smooths production while keeping inventories close to sales.

To introduce components of the model, let

- S_t be sales at time t
- Q_t be production at time t
- I_t be inventories at the beginning of time t
- $\beta \in (0, 1)$ be a discount factor

$c(Q_t) = c_1 Q_t + c_2 Q_t^2$, be a cost of production function, where $c_1 > 0, c_2 > 0$, be an inventory cost function

$d(I_t, S_t) = d_1 I_t + d_2 (S_t - I_t)^2$, where $d_1 > 0, d_2 > 0$, be a cost-of-holding-inventories function, consisting of two components:

- a cost $d_1 I_t$ of carrying inventories, and
- a cost $d_2 (S_t - I_t)^2$ of having inventories deviate from sales

$p_t = a_0 - a_1 S_t + v_t$ be an inverse demand function for a firm’s product, where $a_0 > 0, a_1 > 0$ and v_t is a demand shock at time t

$p_t S_t - c(Q_t) - d(I_t, S_t)$ be the firm’s profits at time t

$\sum_{t=0}^{\infty} \beta^t \pi_t$ be the present value of the firm’s profits at time 0

$I_{t+1} = I_t + Q_t - S_t$ be the law of motion of inventories

$z_{t+1} = A_{22} z_t + C \epsilon_{t+1}$ be a law of motion for an exogenous state vector z_t that contains time t information useful for predicting the demand shock v_t

$v_t = G z_t$ link the demand shock to the information set z_t

the constant 1 be the first component of z_t

To map our problem into a linear-quadratic discounted dynamic programming problem (also known as an optimal linear regulator), we define the state vector at time t as

$x_t = \begin{bmatrix} I_t \\ z_t \end{bmatrix}$

and the control vector as

$u_t = \begin{bmatrix} Q_t \\ S_t \end{bmatrix}$

The law of motion for the state vector x_t is evidently

$\begin{bmatrix} I_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ A_{22} & 1 \end{bmatrix} \begin{bmatrix} I_t \\ z_t \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_t \\ S_t \end{bmatrix} + \begin{bmatrix} 0 \\ C_{21} \end{bmatrix} \epsilon_{t+1}$

or

$x_{t+1} = Ax_t + Bu_t + C \epsilon_{t+1}$

(At this point, we ask that you please forgive us for using Q_t to be the firm’s production at time t, while below we use Q as the matrix in the quadratic form $u_t' Q u_t$ that appears in the firm’s one-period profit function)

We can express the firm’s profit as a function of states and controls as

$\pi_t = -(x_t' R x_t + u_t' Q u_t + 2 u_t' N x_t)$
To form the matrices R, Q, N in an LQ dynamic programming problem, we note that the firm's profits at time t function can be expressed

\[
\pi_t = p_t S_t - c(Q_t) - d(I_t, S_t)
\]

\[
= \left(a_0 - a_1 S_t + v_t \right) S_t - c_1 Q_t - c_2 Q_t^2 - d_1 I_t - d_2 (S_t - I_t)^2
\]

\[
= a_0 S_t - a_1 S_t^2 + G z_t S_t - c_1 Q_t - c_2 Q_t^2 - d_1 I_t - d_2 S_t^2 - d_2 I_t^2 + 2d_2 S_t I_t
\]

\[
= - \left(\begin{array}{c}
 d_1 I_t + d_2 I_t^2 + a_1 S_t^2 + d_2 S_t^2 + c_2 Q_t^2 - a_0 S_t - G z_t S_t + c_1 Q_t - 2d_2 S_t I_t
 \end{array} \right)
\]

\[
= - \left(\begin{array}{c}
 I_t \quad z_t'
 \end{array} \right) \left[\begin{array}{c}
 d_2 \\
 \frac{d_2}{2} S_t \\
 0
 \end{array} \right] \left[\begin{array}{c}
 I_t \\
 S_t
 \end{array} \right] \left[\begin{array}{c}
 d_2 \\
 0 \\
 a_1 + d_2
 \end{array} \right] \left[\begin{array}{c}
 Q_t \\
 S_t
 \end{array} \right] + 2 \left[\begin{array}{c}
 Q_t \\
 S_t
 \end{array} \right] \left[\begin{array}{c}
 0 \\
 -d_2 - a_0 S_t - G z_t S_t + c_1 Q_t - 2d_2 S_t I_t
 \end{array} \right]
\]

where $S_c = [1, 0]$.

Remark on notation: The notation for cross product term in the QuantEcon library is N.

The firms' optimum decision rule takes the form

\[
u_t = -Fx_t
\]

and the evolution of the state under the optimal decision rule is

\[
x_{t+1} = (A - BF)x_t + Ce_{t+1}
\]

The firm chooses a decision rule for u_t that maximizes

\[
E_0 \sum_{t=0}^{\infty} \beta^t \pi_t
\]

subject to a given x_0.

This is a stochastic discounted LQ dynamic program.

Here is code for computing an optimal decision rule and for analyzing its consequences.

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import quantecon as qe

class SmoothingExample:
    
    """Class for constructing, solving, and plotting results for
    inventories and sales smoothing problem."
    """

    def __init__(self,
        \[
        \beta=0.96, \quad \# \text{Discount factor}
        \]
        c1=1, \quad \# \text{Cost-of-production}
        c2=1,
        d1=1, \quad \# \text{Cost-of-holding inventories}
        d2=1,
    )
```

(continues on next page)
a0=10, # Inverse demand function
a1=1,
A22=[[1, 0], # z process
 [1, 0.9]],
C2=[[0], [1]],
G=[0, 1]):

 self.β = β
 self.c1, self.c2 = c1, c2
 self.d1, self.d2 = d1, d2
 self.a0, self.a1 = a0, a1
 self.A22 = np.atleast_2d(A22)
 self.C2 = np.atleast_2d(C2)
 self.G = np.atleast_2d(G)

 # Dimensions
 k, j = self.C2.shape # Dimensions for randomness part
 n = k + 1 # Number of states
 m = 2 # Number of controls

 Sc = np.zeros(k)
 Sc[0] = 1

 # Construct matrices of transition law
 A = np.zeros((n, n))
 A[0, 0] = 1
 A[1:, 1:] = self.A22

 B = np.zeros((n, m))
 B[0, :] = 1, -1

 C = np.zeros((n, j))
 C[1:, :] = self.C2

 # Construct matrices of one period profit function
 R = np.zeros((n, n))
 R[0, 0] = d2
 R[1:, 0] = d1 / 2 * Sc
 R[0, 1:] = d1 / 2 * Sc

 Q = np.zeros((m, m))
 Q[0, 0] = c2
 Q[1, 1] = a1 + d2

 N = np.zeros((m, n))
 N[1, 0] = - d2
 N[0, 1:] = c1 / 2 * Sc
 N[1, 1:] = - a0 / 2 * Sc - self.G / 2

 # Construct LQ instance
 self.LQ = qe.LQ(Q, R, A, B, C, N, beta=β)
 self.LQ.stationary_values()
def simulate(self, x0, T=100):

c1, c2 = self.c1, self.c2
d1, d2 = self.d1, self.d2
a0, a1 = self.a0, self.a1
G = self.G

x_path, u_path, w_path = self.LQ.compute_sequence(x0, ts_length=T)

I_path = x_path[0, :-1]
z_path = x_path[1:, :-1]
\(\bar{z} \) = (G @ z_path)[0, :]

Q_path = u_path[0, :]
S_path = u_path[1, :]

revenue = (a0 - a1 * S_path + \(\bar{z} \) * S_path)
cost_production = c1 * Q_path + c2 * Q_path ** 2
cost_inventories = d1 * I_path + d2 * (S_path - I_path) ** 2

Q_no_inventory = (a0 + \(\bar{z} \) - c1) / (2 * (a1 + c2))
Q_hardwired = (a0 + \(\bar{z} \) - c1) / (2 * (a1 + c2 + d2))

fig, ax = plt.subplots(2, 2, figsize=(15, 10))

ax[0, 0].plot(range(T), I_path, label="inventories")
ax[0, 0].plot(range(T), S_path, label="sales")
ax[0, 0].plot(range(T), Q_path, label="production")
ax[0, 0].legend(loc=1)

ax[0, 0].set_title("inventories, sales, and production")

ax[0, 1].plot(range(T), (Q_path - S_path), color='b')
ax[0, 1].set_ylabel("change in inventories", color='b')
span = max(abs(Q_path - S_path))
ax[0, 1].set_ylim(0-span*1.1, 0+span*1.1)
ax[0, 1].set_title("demand shock and change in inventories")

axl_ = ax[0, 1].twinx()
axl_.plot(range(T), \(\bar{z} \), color='r')
axl_.set_ylabel("demand shock", color='r')
span = max(abs(\(\bar{z} \)))
axl_.set_ylim(0-span*1.1, 0+span*1.1)

axl_.plot([0, T], [0, 0], '--', color='k')

ax[1, 0].plot(range(T), revenue, label="revenue")
ax[1, 0].plot(range(T), cost_production, label="cost_production")
ax[1, 0].plot(range(T), cost_inventories, label="cost_inventories")
ax[1, 0].legend(loc=1)
ax[1, 0].set_title("profits decomposition")

ax[1, 1].plot(range(T), Q_path, label="production")
ax[1, 1].plot(range(T), Q_hardwired, label='production when I_t forced to be zero')
ax[1, 1].plot(range(T), Q_no_inventory, label='production when

(continues on next page)
inventories not useful')
ax[1, 1].legend(loc=1)
ax[1, 1].set_title('three production concepts')
plt.show()

Notice that the above code sets parameters at the following default values

- discount factor \(\beta = 0.96 \),
- inverse demand function: \(a_0 = 10, a_1 = 1 \)
- cost of production \(c_1 = 1, c_2 = 1 \)
- costs of holding inventories \(d_1 = 1, d_2 = 1 \)

In the examples below, we alter some or all of these parameter values.

65.2 Example 1

In this example, the demand shock follows AR(1) process:

\[
\nu_t = \alpha + \rho \nu_{t-1} + \epsilon_t,
\]

which implies

\[
\begin{bmatrix}
1 \\ \nu_{t+1}
\end{bmatrix} = \begin{bmatrix}
1 & 0 \\ \alpha & \rho
\end{bmatrix} \begin{bmatrix}
1 \\ \nu_t
\end{bmatrix} + \begin{bmatrix}
0 \\ 1
\end{bmatrix} \epsilon_{t+1}.
\]

We set \(\alpha = 1 \) and \(\rho = 0.9 \), their default values.

We'll calculate and display outcomes, then discuss them below the pertinent figures.

```python
ex1 = SmoothingExample()
x0 = [0, 1, 0]
ex1.simulate(x0)
```
The figures above illustrate various features of an optimal production plan.

Starting from zero inventories, the firm builds up a stock of inventories and uses them to smooth costly production in the face of demand shocks.

Optimal decisions evidently respond to demand shocks.

Inventories are always less than sales, so some sales come from current production, a consequence of the cost, $d_1 I_t$, of holding inventories.

The lower right panel shows differences between optimal production and two alternative production concepts that come from altering the firm's cost structure – i.e., its technology.

These two concepts correspond to these distinct altered firm problems.

- a setting in which inventories are not needed
- a setting in which they are needed but we arbitrarily prevent the firm from holding inventories by forcing it to set $I_t = 0$ always

We use these two alternative production concepts in order to shed light on the baseline model.
65.3 Inventories Not Useful

Let’s turn first to the setting in which inventories aren’t needed.

In this problem, the firm forms an output plan that maximizes the expected value of

$$\sum_{t=0}^{\infty} \beta^t \{ p_t Q_t - C(Q_t) \}$$

It turns out that the optimal plan for Q_t for this problem also solves a sequence of static problems $\max_{Q_t} \{ p_t Q_t - c(Q_t) \}$. When inventories aren’t required or used, sales always equal production.

This simplifies the problem and the optimal no-inventory production maximizes the expected value of

$$\sum_{t=0}^{\infty} \beta^t \{ p_t Q_t - C(Q_t) \} .$$

The optimum decision rule is

$$Q^{ni}_t = \frac{a_0 + \nu_t - c_1}{c_2 + a_1}.$$

65.4 Inventories Useful but are Hardwired to be Zero Always

Next, we turn to a distinct problem in which inventories are useful – meaning that there are costs of $d_2(I_t - S_t)^2$ associated with having sales not equal to inventories – but we arbitrarily impose on the firm the costly restriction that it never hold inventories.

Here the firm’s maximization problem is

$$\max_{\{I_t, Q_t, S_t\}} \sum_{t=0}^{\infty} \beta^t \{ p_t S_t - C(Q_t) - d(I_t, S_t) \}$$

subject to the restrictions that $I_t = 0$ for all t and that $I_{t+1} = I_t + Q_t - S_t$.

The restriction that $I_t = 0$ implies that $Q_t = S_t$ and that the maximization problem reduces to

$$\max_{Q_t} \sum_{t=0}^{\infty} \beta^t \{ p_t Q_t - C(Q_t) - d(0, Q_t) \}$$

Here the optimal production plan is

$$Q^h_t = \frac{a_0 + \nu_t - c_1}{c_2 + a_1 + d_2}.$$

We introduce this I_t is hardwired to zero specification in order to shed light on the role that inventories play by comparing outcomes with those under our two other versions of the problem.

The bottom right panel displays a production path for the original problem that we are interested in (the blue line) as well with an optimal production path for the model in which inventories are not useful (the green path) and also for the model in which, although inventories are useful, they are hardwired to zero and the firm pays cost $d(0, Q_t)$ for not setting sales $S_t = Q_t$ equal to zero (the orange line).

Notice that it is typically optimal for the firm to produce more when inventories aren’t useful. Here there is no requirement to sell out of inventories and no costs from having sales deviate from inventories.
But “typical” does not mean “always”.
Thus, if we look closely, we notice that for small t, the green “production when inventories aren’t useful” line in the lower right panel is below optimal production in the original model.

High optimal production in the original model early on occurs because the firm wants to accumulate inventories quickly in order to acquire high inventories for use in later periods.

But how the green line compares to the blue line early on depends on the evolution of the demand shock, as we will see in a deterministically seasonal demand shock example to be analyzed below.

In that example, the original firm optimally accumulates inventories slowly because the next positive demand shock is in the distant future.

To make the green-blue model production comparison easier to see, let’s confine the graphs to the first 10 periods:

```
ex1.simulate(x0, T=10)
```

65.5 Example 2

Next, we shut down randomness in demand and assume that the demand shock ν_t follows a deterministic path:

$$
\nu_t = \alpha + \rho \nu_{t-1}
$$

Again, we’ll compute and display outcomes in some figures

```
ex2 = SmoothingExample(C2=[[0], [0]])
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
x0 = [0, 1, 0]
ex2.simulate(x0)
```

65.6 Example 3

Now we’ll put randomness back into the demand shock process and also assume that there are zero costs of holding inventories.

In particular, we’ll look at a situation in which \(d_1 = 0 \) but \(d_2 > 0 \).

Now it becomes optimal to set sales approximately equal to inventories and to use inventories to smooth production quite well, as the following figures confirm

```python
ex3 = SmoothingExample(d1=0)
x0 = [0, 1, 0]
ex3.simulate(x0)
```
To bring out some features of the optimal policy that are related to some technical issues in linear control theory, we’ll now temporarily assume that it is costless to hold inventories.

When we completely shut down the cost of holding inventories by setting $d_1 = 0$ and $d_2 = 0$, something absurd happens (because the Bellman equation is opportunistic and very smart).

(Technically, we have set parameters that end up violating conditions needed to assure stability of the optimally controlled state.)

The firm finds it optimal to set $Q_t \equiv \bar{Q} = \frac{-c_1}{2c_2}$, an output level that sets the costs of production to zero (when $c_1 > 0$, as it is with our default settings, then it is optimal to set production negative, whatever that means!).

Recall the law of motion for inventories

$$I_{t+1} = I_t + Q_t - S_t$$

So when $d_1 = d_2 = 0$ so that the firm finds it optimal to set $Q_t = \frac{-c_1}{2c_2}$ for all t, then

$$I_{t+1} - I_t = \frac{-c_1}{2c_2} - S_t < 0$$

for almost all values of S_t under our default parameters that keep demand positive almost all of the time.

The dynamic program instructs the firm to set production costs to zero and to run a Ponzi scheme by running inventories down forever.

(We can interpret this as the firm somehow going short in or borrowing inventories)

The following figures confirm that inventories head south without limit.
Let's shorten the time span displayed in order to highlight what is going on.
We'll set the horizon \(T = 30 \) with the following code

```
# shorter period
ex4.simulate(x0, T=30)
```
65.8 Example 5

Now we’ll assume that the demand shock that follows a linear time trend

\[v_t = b + at, \quad a > 0, \quad b > 0 \]

To represent this, we set \(C_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \) and

\[
A_{22} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad x_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad G = \begin{bmatrix} b \\ a \end{bmatrix}
\]

```python
# Set parameters
a = 0.5
b = 3.

ex5 = SmoothingExample(A2=[1, 0], [1, 1], C2=[[0], [0]], G=[b, a])

x0 = [0, 1, 0]  # set the initial inventory as 0
ex5.simulate(x0, T=10)
```
65.9 Example 6

Now we'll assume a deterministically seasonal demand shock.

To represent this we'll set

\[
A_{22} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix},
C_2 = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix},
G' = \begin{bmatrix}
b \\
a \\
0 \\
0 \\
0
\end{bmatrix}
\]

where \(a > 0, b > 0\) and

\[
x_0 = \begin{bmatrix}
1 \\
0 \\
1 \\
0 \\
0
\end{bmatrix}
\]

```python
ex6 = SmoothingExample(A22=[[1, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0]],
C2=[[0], [0], [0], [0], [0]],
G=[b, a, 0, 0, 0])
```

(continues on next page)
Now we’ll generate some more examples that differ simply from the initial season of the year in which we begin the demand shock

\[
\begin{align*}
x01 &= [0, 1, 1, 0, 0, 0] \\
\text{ex6.simulate}(x01, T=20)
\end{align*}
\]
$x_0 = [0, 1, 0, 0, 1, 0]$

`ex6.simulate(x_0, T=20)`
65.10 Exercises

Please try to analyze some inventory sales smoothing problems using the SmoothingExample class.

Exercise 65.10.1

Assume that the demand shock follows AR(2) process below:

$$\nu_t = \alpha + \rho_1 \nu_{t-1} + \rho_2 \nu_{t-2} + \epsilon_t,$$

where $\alpha = 1$, $\rho_1 = 1.2$, and $\rho_2 = -0.3$. You need to construct $A22$, C, and G matrices properly and then to input them as the keyword arguments of SmoothingExample class. Simulate paths starting from the initial condition $x_0 = [0, 1, 0, 0]'$.

After this, try to construct a very similar SmoothingExample with the same demand shock process but exclude the randomness ϵ_t. Compute the stationary states \bar{x} by simulating for a long period. Then try to add shocks with different magnitude to ν_t and simulate paths. You should see how firms respond differently by staring at the production plans.

Solution to Exercise 65.10.1
set parameters
\[\alpha = 1 \]
\[\rho_1 = 1.2 \]
\[\rho_2 = -0.3 \]

construct matrices
\[
A_{22} = \begin{bmatrix}
1 & 0 & 0 \\
1 & \rho_1 & \rho_2 \\
0 & 1 & 0
\end{bmatrix}
\]
\[
C_2 = \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\]
\[G = [0, 1, 0] \]

ex1 = SmoothingExample(A22=A22, C2=C2, G=G)

x0 = [0, 1, 0, 0] # initial condition
ex1.simulate(x0)

now silence the noise
ex1_no_noise = SmoothingExample(A22=A22, C2=[[0], [0], [0]], G=G)

initial condition
x0 = [0, 1, 0, 0]

compute stationary states
x_bar = ex1_no_noise.LQ.compute_sequence(x0, ts_length=250)[0][:, -1]
x_bar
array([3.69387755, 1. , 10. , 10.])

In the following, we add small and large shocks to \(\dot{\nu}_t \) and compare how firm responds differently in quantity. As the shock is not very persistent under the parameterization we are using, we focus on a short period response.

T = 40

```python
# small shock
x_bar1 = x_bar.copy()
x_bar1[2] += 2
ex1_no_noise.simulate(x_bar1, T=T)
```

```python
# large shock
x_bar1 = x_bar.copy()
x_bar1[2] += 10
ex1_no_noise.simulate(x_bar1, T=T)
```
Exercise 65.10.2

Change parameters of \(C(Q_t) \) and \(d(I_t, S_t) \).

1. Make production more costly, by setting \(c_2 = 5 \).
2. Increase the cost of having inventories deviate from sales, by setting \(d_2 = 5 \).

Solution to Exercise 65.10.2

\[
x_0 = [0, 1, 0]
\]

`SmoothingExample(c2=5).simulate(x0)`
Quantitative Economics with Python

SmoothingExample(d2=5).simulate(x0)

65.10. Exercises 1129
Part X

Multiple Agent Models
66.1 Outline

In 1969, Thomas C. Schelling developed a simple but striking model of racial segregation [Sch69]. His model studies the dynamics of racially mixed neighborhoods.

Like much of Schelling’s work, the model shows how local interactions can lead to surprising aggregate structure.

In particular, it shows that relatively mild preference for neighbors of similar race can lead in aggregate to the collapse of mixed neighborhoods, and high levels of segregation.

In recognition of this and other research, Schelling was awarded the 2005 Nobel Prize in Economic Sciences (joint with Robert Aumann).

In this lecture, we (in fact you) will build and run a version of Schelling’s model.

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
from random import uniform, seed
from math import sqrt
```
66.2 The Model

We will cover a variation of Schelling's model that is easy to program and captures the main idea.

66.2.1 Set-Up

Suppose we have two types of people: orange people and green people. For the purpose of this lecture, we will assume there are 250 of each type. These agents all live on a single unit square. The location of an agent is just a point \((x, y)\), where \(0 < x, y < 1\).

66.2.2 Preferences

We will say that an agent is **happy** if half or more of her 10 nearest neighbors are of the same type. Here ‘nearest’ is in terms of Euclidean distance. An agent who is not happy is called **unhappy**.

An important point here is that agents are not averse to living in mixed areas. They are perfectly happy if half their neighbors are of the other color.

66.2.3 Behavior

Initially, agents are mixed together (integrated). In particular, the initial location of each agent is an independent draw from a bivariate uniform distribution on \(S = (0, 1)^2\).

Now, cycling through the set of all agents, each agent is now given the chance to stay or move. We assume that each agent will stay put if they are happy and move if unhappy.

The algorithm for moving is as follows

1. Draw a random location in \(S\)
2. If happy at new location, move there
3. Else, go to step 1

In this way, we cycle continuously through the agents, moving as required. We continue to cycle until no one wishes to move.
66.3 Results

Let's have a look at the results we got when we coded and ran this model. As discussed above, agents are initially mixed randomly together.

But after several cycles, they become segregated into distinct regions.

In this instance, the program terminated after 4 cycles through the set of agents, indicating that all agents had reached a state of happiness.

What is striking about the pictures is how rapidly racial integration breaks down. This is despite the fact that people in the model don't actually mind living mixed with the other type.

Even with these preferences, the outcome is a high degree of segregation.
Chapter 66. Schelling’s Segregation Model
66.4 Exercises

Exercise 66.4.1
Implement and run this simulation for yourself.
Consider the following structure for your program.
Agents can be modeled as objects.
Here’s an indication of how they might look

<table>
<thead>
<tr>
<th>* Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* type (green or orange)</td>
</tr>
<tr>
<td>* location</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>* Methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* determine whether happy or not given locations of other agents</td>
</tr>
<tr>
<td>* If not happy, move</td>
</tr>
<tr>
<td>* find a new location where happy</td>
</tr>
</tbody>
</table>

And here’s some pseudocode for the main loop

```python
while agents are still moving
    for agent in agents
        give agent the opportunity to move
```

Use 250 agents of each type.

Solution to Exercise 66.4.1
Here’s one solution that does the job we want.
If you feel like a further exercise, you can probably speed up some of the computations and then increase the number of agents.

```python
seed(10)  # For reproducible random numbers

class Agent:
    def __init__(self, type):
        self.type = type
        self.draw_location()
    def draw_location(self):
        self.location = uniform(0, 1), uniform(0, 1)
    def get_distance(self, other):
        """Computes the euclidean distance between self and other agent."""
        a = (self.location[0] - other.location[0])**2
        b = (self.location[1] - other.location[1])**2
```

(continues on next page)
return sqrt(a + b)

def happy(self, agents):
 "True if sufficient number of nearest neighbors are of the same type."
 distances = []
 # distances is a list of pairs (d, agent), where d is distance from
 # agent to self
 for agent in agents:
 if self != agent:
 distance = self.get_distance(agent)
 distances.append((distance, agent))
 # == Sort from smallest to largest, according to distance == #
 distances.sort()
 # == Extract the neighboring agents == #
 neighbors = [agent for d, agent in distances[:num_neighbors]]
 # == Count how many neighbors have the same type as self == #
 num_same_type = sum(self.type == agent.type for agent in neighbors)
 return num_same_type >= require_same_type

def update(self, agents):
 "If not happy, then randomly choose new locations until happy."
 while not self.happy(agents):
 self.draw_location()

def plot_distribution(agents, cycle_num):
 "Plot the distribution of agents after cycle_num rounds of the loop."
 x_values_0, y_values_0 = [], []
 x_values_1, y_values_1 = [], []
 # == Obtain locations of each type == #
 for agent in agents:
 x, y = agent.location
 if agent.type == 0:
 x_values_0.append(x)
 y_values_0.append(y)
 else:
 x_values_1.append(x)
 y_values_1.append(y)
 fig, ax = plt.subplots(figsize=(8, 8))
 plot_args = {'markersize': 8, 'alpha': 0.6}
 ax.set_facecolor('azure')
 ax.plot(x_values_0, y_values_0, 'o', markerfacecolor='orange', **plot_args)
 ax.plot(x_values_1, y_values_1, 'o', markerfacecolor='green', **plot_args)
 ax.set_title(f'Cycle {cycle_num-1}')
 plt.show()

== Main ==
num_of_type_0 = 250
num_of_type_1 = 250
num_neighbors = 10 # Number of agents regarded as neighbors
require_same_type = 5 # Want at least this many neighbors to be same type

== Create a list of agents ==
agents = [Agent(0) for i in range(num_of_type_0)]
agents.extend(Agent(1) for i in range(num_of_type_1))
count = 1
== Loop until none wishes to move ==
while True:
 print('Entering loop ', count)
 plot_distribution(agents, count)
 count += 1
 no_one_moved = True
 for agent in agents:
 old_location = agent.location
 agent.update(agents)
 if agent.location != old_location:
 no_one_moved = False
 if no_one_moved:
 break

print('Converged, terminating.')

Entering loop 1
Entering loop 2
Entering loop 3
Entering loop 4
Converged, terminating.
67.1 Overview

This lecture describes what has come to be called a lake model.

The lake model is a basic tool for modeling unemployment. It allows us to analyze

- flows between unemployment and employment.
- how these flows influence steady state employment and unemployment rates.

It is a good model for interpreting monthly labor department reports on gross and net jobs created and jobs destroyed. The “lakes” in the model are the pools of employed and unemployed.

The “flows” between the lakes are caused by

- firing and hiring
- entry and exit from the labor force

For the first part of this lecture, the parameters governing transitions into and out of unemployment and employment are exogenous.

Later, we’ll determine some of these transition rates endogenously using the McCall search model.
We’ll also use some nifty concepts like ergodicity, which provides a fundamental link between cross-sectional and long run time series distributions.

These concepts will help us build an equilibrium model of ex-ante homogeneous workers whose different luck generates variations in their ex post experiences.

Let’s start with some imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import numpy as np
from quantecon import MarkovChain
from scipy.stats import norm
from scipy.optimize import brentq
from quantecon.distributions import BetaBinomial
from numba import jit
```

67.1.1 Prerequisites

Before working through what follows, we recommend you read the lecture on finite Markov chains.

You will also need some basic linear algebra and probability.

67.2 The Model

The economy is inhabited by a very large number of ex-ante identical workers.

The workers live forever, spending their lives moving between unemployment and employment.

Their rates of transition between employment and unemployment are governed by the following parameters:

- λ, the job finding rate for currently unemployed workers
- α, the dismissal rate for currently employed workers
- b, the entry rate into the labor force
- d, the exit rate from the labor force

The growth rate of the labor force evidently equals $g = b - d$.

67.2.1 Aggregate Variables

We want to derive the dynamics of the following aggregates

- E_t, the total number of employed workers at date t
- U_t, the total number of unemployed workers at t
- N_t, the number of workers in the labor force at t

We also want to know the values of the following objects

- The employment rate $e_t := E_t / N_t$.
- The unemployment rate $u_t := U_t / N_t$.

(Here and below, capital letters represent aggregates and lowercase letters represent rates)
67.2.2 Laws of Motion for Stock Variables

We begin by constructing laws of motion for the aggregate variables \(E_t, U_t, N_t \).

Of the mass of workers \(E_t \) who are employed at date \(t \),

- \((1 - d)E_t\) will remain in the labor force
- of these, \((1 - \alpha)(1 - d)E_t\) will remain employed

Of the mass of workers \(U_t \) workers who are currently unemployed,

- \((1 - d)U_t\) will remain in the labor force
- of these, \((1 - d)\lambda U_t\) will become employed

Therefore, the number of workers who will be employed at date \(t + 1 \) will be

\[
E_{t+1} = (1 - d)(1 - \alpha)E_t + (1 - d)\lambda U_t
\]

A similar analysis implies

\[
U_{t+1} = (1 - d)\alpha E_t + (1 - d)(1 - \lambda)U_t + b(E_t + U_t)
\]

The value \(b(E_t + U_t) \) is the mass of new workers entering the labor force unemployed.

The total stock of workers \(N_t = E_t + U_t \) evolves as

\[
N_{t+1} = (1 + b - d)N_t = (1 + g)N_t
\]

Letting \(X_t := \begin{pmatrix} U_t \\ E_t \end{pmatrix} \), the law of motion for \(X \) is

\[
X_{t+1} = AX_t \quad \text{where} \quad A := \begin{pmatrix} (1 - d)(1 - \lambda) + b & (1 - d)\alpha + b \\ (1 - d)\lambda & (1 - d)(1 - \alpha) \end{pmatrix}
\]

This law tells us how total employment and unemployment evolve over time.

67.2.3 Laws of Motion for Rates

Now let’s derive the law of motion for rates.

To get these we can divide both sides of \(X_{t+1} = AX_t \) by \(N_{t+1} \) to get

\[
\begin{pmatrix} U_{t+1}/N_{t+1} \\ E_{t+1}/N_{t+1} \end{pmatrix} = \frac{1}{1 + g} A \begin{pmatrix} U_t/N_t \\ E_t/N_t \end{pmatrix}
\]

Letting

\[
x_t := \begin{pmatrix} u_t \\ e_t \end{pmatrix} = \begin{pmatrix} U_t/N_t \\ E_t/N_t \end{pmatrix}
\]

we can also write this as

\[
x_{t+1} = \hat{A}x_t \quad \text{where} \quad \hat{A} := \frac{1}{1 + g} A
\]

You can check that \(e_t + u_t = 1 \) implies that \(e_{t+1} + u_{t+1} = 1 \).

This follows from the fact that the columns of \(\hat{A} \) sum to 1.
67.3 Implementation

Let’s code up these equations.

To do this we’re going to use a class that we’ll call LakeModel.

This class will

1. store the primitives \(\alpha, \lambda, b, d \)
2. compute and store the implied objects \(g, A, \hat{A} \)
3. provide methods to simulate dynamics of the stocks and rates
4. provide a method to compute the steady state of the rate

Please be careful because the implied objects \(g, A, \hat{A} \) will not change if you only change the primitives.

For example, if you would like to update a primitive like \(\alpha = 0.03 \), you need to create an instance and update it by

\[
\text{lm} = \text{LakeModel}(\alpha=0.03)
\]

In the exercises, we show how to avoid this issue by using getter and setter methods.

```python
class LakeModel:
    
    
    Solves the lake model and computes dynamics of unemployment stocks and rates.

    Parameters:
    1. \( \lambda \) : scalar
        The job finding rate for currently unemployed workers
    2. \( \alpha \) : scalar
        The dismissal rate for currently employed workers
    3. \( b \) : scalar
        Entry rate into the labor force
    4. \( d \) : scalar
        Exit rate from the labor force

    
    
    def __init__(self, \( \lambda=0.283 \), \( \alpha=0.013 \), \( b=0.0124 \), \( d=0.00822 \)):
        self.\( \lambda \), self.\( \alpha \), self.\( b \), self.\( d \) = \( \lambda \), \( \alpha \), \( b \), \( d \)
        self.\( g \) = \( b - d \)
        self.\( A \) = np.array([[\((1-d) \times (1-\lambda) + b\), \((1-d) \times (1-\alpha)\)]])
        self.\( \hat{A} \) = self.\( A \) / (1 + self.\( g \))

    def rate_steady_state(self, tol=1e-6):
        
        Finds the steady state of the system :math:`\dot{x}(t) = \hat{A} x(t)`
        
        Returns
        --------
        \( x_{\text{bar}} \) : steady state vector of employment and unemployment rates
        
    
    x = np.full(2, 0.5)
```

(continues on next page)
error = tol + 1
while error > tol:
 new_x = self.A_hat @ x
 error = np.max(np.abs(new_x - x))
 x = new_x
return x

def simulate_stock_path(self, X0, T):
 """
 Simulates the sequence of Employment and Unemployment stocks
 Parameters

 X0 : array
 Contains initial values (E0, U0)
 T : int
 Number of periods to simulate
 Returns

 X : iterator
 Contains sequence of employment and unemployment stocks
 """
 X = np.atleast_1d(X0) # Recast as array just in case
 for t in range(T):
 yield X
 X = self.A @ X

def simulate_rate_path(self, x0, T):
 """
 Simulates the sequence of employment and unemployment rates
 Parameters

 x0 : array
 Contains initial values (e0,u0)
 T : int
 Number of periods to simulate
 Returns

 x : iterator
 Contains sequence of employment and unemployment rates
 """
 x = np.atleast_1d(x0) # Recast as array just in case
 for t in range(T):
 yield x
 x = self.A_hat @ x

As explained, if we create an instance and update it by \(\text{lm} = \text{LakeModel}(\alpha=0.03) \), derived objects like \(A \) will also change.

\[\text{lm} = \text{LakeModel()} \]
\[\text{lm.} \]
67.3.1 Aggregate Dynamics

Let's run a simulation under the default parameters (see above) starting from $X_0 = (12, 138)$

```python
lm = LakeModel()
N_0 = 150  # Population
e_0 = 0.92  # Initial employment rate
u_0 = 1 - e_0  # Initial unemployment rate
T = 50      # Simulation length
U_0 = u_0 * N_0
E_0 = e_0 * N_0

fig, axes = plt.subplots(3, 1, figsize=(10, 8))
X_0 = (U_0, E_0)
X_path = np.vstack(tuple(lm.simulate_stock_path(X_0, T)))

axes[0].plot(X_path[:, 0], lw=2)
axes[0].set_title('Unemployment')

axes[1].plot(X_path[:, 1], lw=2)
axes[1].set_title('Employment')

axes[2].plot(X_path.sum(1), lw=2)
axes[2].set_title('Labor force')

for ax in axes:
    ax.grid()

plt.tight_layout()
plt.show()
```
The aggregates E_t and U_t don’t converge because their sum $E_t + U_t$ grows at rate g.

On the other hand, the vector of employment and unemployment rates x_t can be in a steady state \bar{x} if there exists an \bar{x} such that

- $\bar{x} = \bar{A}\bar{x}$
- the components satisfy $\bar{e} + \bar{u} = 1$

This equation tells us that a steady state level \bar{x} is an eigenvector of \bar{A} associated with a unit eigenvalue.

We also have $x_t \to \bar{x}$ as $t \to \infty$ provided that the remaining eigenvalue of \bar{A} has modulus less than 1.

This is the case for our default parameters:

```python
lm = LakeModel()
e, f = np.linalg.eigvals(lm.A_hat)
abs(e), abs(f)
```

```
(0.6953067378358462, 1.0)
```

Let’s look at the convergence of the unemployment and employment rate to steady state levels (dashed red line)
\[u_0 = 1 - e_0 \quad \# \text{Initial unemployment rate} \]
\[T = 50 \quad \# \text{Simulation length} \]

\[
x_{\text{bar}} = \text{lm}.\text{rate}_\text{steady}_\text{state}() \]

\[
\text{fig, axes} = \text{plt}.\text{subplots}(2, 1, \text{figsize}=(10, 8))
\]

\[
x_0 = (u_0, e_0)
\]

\[
x_{\text{path}} = \text{np}.\text{vstack}(\text{tuple}(\text{lm}.\text{simulate}_\text{rate}_\text{path}(x_0, T)))
\]

\[
titles = ['\text{Unemployment rate}', '\text{Employment rate}']
\]

\[
\text{for } i, \text{title} \text{ in enumerate(titles):}
\quad \text{axes}[i].\text{plot}(x_{\text{path}}[:, i], \text{lw}=2, \text{alpha}=0.5)
\quad \text{axes}[i].\text{hlines}(x_{\text{bar}}[i], 0, T, '\text'r', '\-'--')
\quad \text{axes}[i].\text{set_title}(\text{title})
\quad \text{axes}[i].\text{grid}()
\]

\[
\text{plt}.\text{tight}_\text{layout}()
\]

\[
\text{plt}.\text{show}()
\]
67.4 Dynamics of an Individual Worker

An individual worker’s employment dynamics are governed by a finite state Markov process. The worker can be in one of two states:

- \(s_t = 0 \) means unemployed
- \(s_t = 1 \) means employed

Let’s start off under the assumption that \(b = d = 0 \).

The associated transition matrix is then

\[
P = \begin{pmatrix}
1 - \lambda & \lambda \\
\alpha & 1 - \alpha
\end{pmatrix}
\]

Let \(\psi_t \) denote the marginal distribution over employment/unemployment states for the worker at time \(t \).

As usual, we regard it as a row vector.

We know from an earlier discussion that \(\psi_t \) follows the law of motion

\[
\psi_{t+1} = \psi_t P
\]

We also know from the lecture on finite Markov chains that if \(\alpha \in (0, 1) \) and \(\lambda \in (0, 1) \), then \(P \) has a unique stationary distribution, denoted here by \(\psi^* \).

The unique stationary distribution satisfies

\[
\psi^*[0] = \frac{\alpha}{\alpha + \lambda}
\]

Not surprisingly, probability mass on the unemployment state increases with the dismissal rate and falls with the job finding rate.

67.4.1 Ergodicity

Let’s look at a typical lifetime of employment-unemployment spells.

We want to compute the average amounts of time an infinitely lived worker would spend employed and unemployed. Let

\[
\bar{s}_{u,T} := \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{s_t = 0\}
\]

and

\[
\bar{s}_{e,T} := \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{s_t = 1\}
\]

(As usual, \(\mathbb{1}\{Q\} = 1 \) if statement \(Q \) is true and 0 otherwise)

These are the fraction of time a worker spends unemployed and employed, respectively, up until period \(T \).

If \(\alpha \in (0, 1) \) and \(\lambda \in (0, 1) \), then \(P \) is ergodic, and hence we have

\[
\lim_{T \to \infty} \bar{s}_{u,T} = \psi^*[0] \quad \text{and} \quad \lim_{T \to \infty} \bar{s}_{e,T} = \psi^*[1]
\]

with probability one.

Inspection tells us that \(P \) is exactly the transpose of \(\hat{A} \) under the assumption \(b = d = 0 \).

Thus, the percentages of time that an infinitely lived worker spends employed and unemployed equal the fractions of workers employed and unemployed in the steady state distribution.
67.4.2 Convergence Rate

How long does it take for time series sample averages to converge to cross-sectional averages?

We can use QuantEcon.py’s MarkovChain class to investigate this.

Let’s plot the path of the sample averages over 5,000 periods

```python
lm = LakeModel(d=0, b=0)
T = 5000  # Simulation length
α, λ = lm.α, lm.λ
P = [[1 - λ, λ],
     [α, 1 - α]]
mc = MarkovChain(P)
xbar = lm.rate_steady_state()

fig, axes = plt.subplots(2, 1, figsize=(10, 8))
s_path = mc.simulate(T, init=1)
s_bar_e = s_path.cumsum() / range(1, T+1)
s_bar_u = 1 - s_bar_e

to_plot = [s_bar_u, s_bar_e]
titles = ['Percent of time unemployed', 'Percent of time employed']

for i, plot in enumerate(to_plot):
    axes[i].plot(plot, lw=2, alpha=0.5)
    axes[i].hlines(xbar[i], 0, T, 'r', '--')
    axes[i].set_title(titles[i])
    axes[i].grid()

plt.tight_layout()
plt.show()
```
The stationary probabilities are given by the dashed red line.

In this case it takes much of the sample for these two objects to converge.

This is largely due to the high persistence in the Markov chain.

67.5 Endogenous Job Finding Rate

We now make the hiring rate endogenous.

The transition rate from unemployment to employment will be determined by the McCall search model [McC70].

All details relevant to the following discussion can be found in our treatment of that model.
67.5.1 Reservation Wage

The most important thing to remember about the model is that optimal decisions are characterized by a reservation wage \bar{w}.

- If the wage offer w in hand is greater than or equal to \bar{w}, then the worker accepts.
- Otherwise, the worker rejects.

As we saw in our discussion of the model, the reservation wage depends on the wage offer distribution and the parameters
- α, the separation rate
- β, the discount factor
- γ, the offer arrival rate
- c, unemployment compensation

67.5.2 Linking the McCall Search Model to the Lake Model

Suppose that all workers inside a lake model behave according to the McCall search model. The exogenous probability of leaving employment remains α.

But their optimal decision rules determine the probability λ of leaving unemployment. This is now

$$\lambda = \gamma \mathbb{P}\{w_t \geq \bar{w}\} = \gamma \sum_{w' \geq \bar{w}} p(w')$$

(67.1)

67.5.3 Fiscal Policy

We can use the McCall search version of the Lake Model to find an optimal level of unemployment insurance.

We assume that the government sets unemployment compensation c.

The government imposes a lump-sum tax τ sufficient to finance total unemployment payments.

To attain a balanced budget at a steady state, taxes, the steady state unemployment rate u, and the unemployment compensation rate must satisfy

$$\tau = uc$$

The lump-sum tax applies to everyone, including unemployed workers.

Thus, the post-tax income of an employed worker with wage w is $w - \tau$.

The post-tax income of an unemployed worker is $c - \tau$.

For each specification (c, τ) of government policy, we can solve for the worker’s optimal reservation wage.

This determines λ via (67.1) evaluated at post tax wages, which in turn determines a steady state unemployment rate $u(c, \tau)$.

For a given level of unemployment benefit c, we can solve for a tax that balances the budget in the steady state

$$\tau = u(c, \tau)c$$

To evaluate alternative government tax-unemployment compensation pairs, we require a welfare criterion.
We use a steady state welfare criterion

\[W := e \mathbb{E}[V | \text{employed}] + u U \]

where the notation \(V \) and \(U \) is as defined in the *McCall search model lecture*.

The wage offer distribution will be a discretized version of the lognormal distribution \(LN(\log(20), 1) \), as shown in the next figure.

![Distribution of pre-tax wages](image)

We take a period to be a month.

We set \(b \) and \(d \) to match monthly birth and death rates, respectively, in the U.S. population

- \(b = 0.0124 \)
- \(d = 0.00822 \)

Following [DFH06], we set \(\alpha \), the hazard rate of leaving employment, to

- \(\alpha = 0.013675 \)

67.5.4 Fiscal Policy Code

We will make use of techniques from the *McCall model lecture*

The first piece of code implements value function iteration

```python
# A default utility function
@jit
def u(c, σ):
    if c > 0:
        return c**(1 - σ) - 1 / (1 - σ)
    else:
        # (continues on next page)
```

67.5. Endogenous Job Finding Rate
class McCallModel:
 """
 Stores the parameters and functions associated with a given model.
 """

def __init__(self,
 α=0.2, # Job separation rate
 β=0.98, # Discount rate
 γ=0.7, # Job offer rate
 c=6.0, # Unemployment compensation
 σ=2.0, # Utility parameter
 w_vec=None, # Possible wage values
 p_vec=None): # Probabilities over w_vec

 self.α, self.β, self.γ, self.c = α, β, γ, c
 self.σ = σ

 # Add a default wage vector and probabilities over the vector using
 # the beta-binomial distribution
 if w_vec is None:
 n = 60 # Number of possible outcomes for wage
 # Wages between 10 and 20
 self.w_vec = np.linspace(10, 20, n)
 a, b = 600, 400 # Shape parameters
 dist = BetaBinomial(n-1, a, b)
 self.p_vec = dist.pdf()
 else:
 self.w_vec = w_vec
 self.p_vec = p_vec

@jit
def _update_bellman(α, β, γ, c, σ, w_vec, p_vec, V, V_new, U):
 """
 A jitted function to update the Bellman equations. Note that V_new is
 modified in place (i.e, modified by this function). The new value of U
 is returned.
 """

 for w_idx, w in enumerate(w_vec):
 # w_idx indexes the vector of possible wages
 V_new[w_idx] = u(w, σ) + β * ((1 - α) * V[w_idx] + α * U)
 U_new = u(c, σ) + β * (1 - γ) * U +
 β * γ * np.sum(np.maximum(U, V) * p_vec)

 return U_new

def solve_mccall_model(mcm, tol=1e-5, max_iter=2000):
 """
 Iterates to convergence on the Bellman equations
 Parameters
 (continues on next page)
The second piece of code is used to complete the reservation wage:

```python
def compute_reservation_wage(mcm, return_values=False):
    ""
    Computes the reservation wage of an instance of the McCall model
    by finding the smallest w such that V(w) > U.
    ""
    V, U = solve_mccall_model(mcm)
    w_idx = np.searchsorted(V - U, 0)
    if w_idx == len(V):
        w_bar = np.inf
    else:
        w_bar = mcm.w_vec[w_idx]
    if return_values:
        return V, U, w_bar
    else:
        return w_bar
```

(continues on next page)
else:
 w_bar = mcm.w_vec[w_idx]

if return_values == False:
 return w_bar
else:
 return w_bar, V, U

Now let's compute and plot welfare, employment, unemployment, and tax revenue as a function of the unemployment compensation rate.

```python
# Some global variables that will stay constant
a = 0.013
a_q = (1-(1-a)**3)  # Quarterly (a is monthly)
b = 0.0124
d = 0.00822
β = 0.98
γ = 1.0
σ = 2.0

# The default wage distribution --- a discretized lognormal
log_wage_mean, wage_grid_size, max_wage = 20, 200, 170
logw_dist = norm(np.log(log_wage_mean), 1)
w_vec = np.linspace(1e-8, max_wage, wage_grid_size + 1)
cdf = logw_dist.cdf(np.log(w_vec))
pdf = cdf[1:] - cdf[:-1]
p_vec = pdf / pdf.sum()
w_vec = (w_vec[1:] + w_vec[:-1]) / 2

def compute_optimal_quantities(c, τ):
    ""
    Compute the reservation wage, job finding rate and value functions
    of the workers given c and τ.
    ""

    mcm = McCallModel(α=a_q, β=β,
                      γ=γ,  # Post tax compensation
                      c=c-τ,  # Post tax compensation
                      σ=σ,
                      w_vec=w_vec-τ,  # Post tax wages
                      p_vec=p_vec)
    w_bar, V, U = compute_reservation_wage(mcm, return_values=True)
    λ = γ * np.sum(p_vec[w_vec - τ > w_bar])
    return w_bar, λ, V, U

def compute_steady_state_quantities(c, τ):
    ""
    Compute the steady state unemployment rate given c and τ using optimal
    quantities from the McCall model and computing corresponding steady
    state quantities
    ""
```

(continues on next page)
w_bar, λ, V, U = compute_optimal_quantities(c, τ)

Compute steady state employment and unemployment rates
lm = LakeModel(a=a_q, l=λ, b=b, d=d)
x = lm.rate_steady_state()
u, e = x

Compute steady state welfare
w = np.sum(V * p_vec * (w_vec - τ > w_bar)) / np.sum(p_vec * (w_vec - τ > w_bar))
welfare = e * w + u * U

return e, u, welfare

def find_balanced_budget_tax(c):

 Find the tax level that will induce a balanced budget.

 def steady_state_budget(t):
 e, u, w = compute_steady_state_quantities(c, t)
 return t - u * c

 τ = brentq(steady_state_budget, 0.0, 0.9 * c)
 return τ

Levels of unemployment insurance we wish to study

c_vec = np.linspace(5, 140, 60)

tax_vec = []
unempl_vec = []
empl_vec = []
welfare_vec = []

for c in c_vec:
 t = find_balanced_budget_tax(c)
 e_rate, u_rate, welfare = compute_steady_state_quantities(c, t)
 tax_vec.append(t)
 unempl_vec.append(u_rate)
 empl_vec.append(e_rate)
 welfare_vec.append(welfare)

fig, axes = plt.subplots(2, 2, figsize=(12, 10))

plots = [unempl_vec, empl_vec, tax_vec, welfare_vec]
titles = ['Unemployment', 'Employment', 'Tax', 'Welfare']

for ax, plot, title in zip(axes.flatten(), plots, titles):
 ax.plot(c_vec, plot, lw=2, alpha=0.7)
 ax.set_title(title)
 ax.grid()

plt.tight_layout()
plt.show()
Welfare first increases and then decreases as unemployment benefits rise.
The level that maximizes steady state welfare is approximately 62.

67.6 Exercises

Exercise 67.6.1
In the Lake Model, there is derived data such as A which depends on primitives like α and λ.
So, when a user alters these primitives, we need the derived data to update automatically.
(For example, if a user changes the value of b for a given instance of the class, we would like $g = b - d$ to update automatically)
In the code above, we took care of this issue by creating new instances every time we wanted to change parameters.
That way the derived data is always matched to current parameter values.
However, we can use descriptors instead, so that derived data is updated whenever parameters are changed.
This is safer and means we don’t need to create a fresh instance for every new parameterization.
(On the other hand, the code becomes denser, which is why we don’t always use the descriptor approach in our lectures.)
In this exercise, your task is to arrange the LakeModel class by using descriptors and decorators such as @property. (If you need to refresh your understanding of how these work, consult this lecture.)

Solution to Exercise 67.6.1

Here is one solution:

```python
class LakeModelModified:
    """
    Solves the lake model and computes dynamics of unemployment stocks and rates.
    
    Parameters:
    ----------
    λ : scalar
        The job finding rate for currently unemployed workers
    α : scalar
        The dismissal rate for currently employed workers
    b : scalar
        Entry rate into the labor force
    d : scalar
        Exit rate from the labor force
    """
    def __init__(self, λ=0.283, α=0.013, b=0.0124, d=0.00822):
        self._λ, self._α, self._b, self._d = λ, α, b, d
        self.compute_derived_values()

    def compute_derived_values(self):
        # Unpack names to simplify expression
        λ, α, b, d = self._λ, self._α, self._b, self._d
        self._g = b - d
        self._A = np.array([[(1-d) * (1-λ) + b, (1 - d) * α + b],
                            [(1-d) * λ, (1 - d) * (1 - α)]])
        self._A_hat = self._A / (1 + self._g)

    @property
    def g(self):
        return self._g

    @property
    def A(self):
        return self._A

    @property
    def A_hat(self):
        return self._A_hat

    @property
    def λ(self):
        return self._λ

    @λ.setter
    def λ(self, new_value):
        """
        (continues on next page)"""
```
self._λ = new_value
self.compute_derived_values()

@property
def α(self):
 return self._α

@α.setter
def α(self, new_value):
 self._α = new_value
 self.compute_derived_values()

@property
def b(self):
 return self._b

@b.setter
def b(self, new_value):
 self._b = new_value
 self.compute_derived_values()

@property
def d(self):
 return self._d

@d.setter
def d(self, new_value):
 self._d = new_value
 self.compute_derived_values()

def rate_steady_state(self, tol=1e-6):
 """
 Finds the steady state of the system :math:`x_{t+1} = \hat A x_t`
 """
 x = np.full(2, 0.5)
 error = tol + 1
 while error > tol:
 new_x = self.A_hat @ x
 error = np.max(np.abs(new_x - x))
 x = new_x
 return x

def simulate_stock_path(self, X0, T):
 """
 Simulates the sequence of Employment and Unemployment stocks
 """
 Parameters

 X0 : array
 Contains initial values (E0, U0)
 T : int
Number of periods to simulate

Returns

X : iterator
Contains sequence of employment and unemployment stocks

```python
X = np.atleast_1d(X0)  # Recast as array just in case
for t in range(T):
    yield X
    X = self.A @ X
```

```python
def simulate_rate_path(self, x0, T):
    ""
    Simulates the sequence of employment and unemployment rates
    ""
    Parameters
    ----------
    x0 : array
        Contains initial values (e0,u0)
    T : int
        Number of periods to simulate
    Returns
    -------
    x : iterator
        Contains sequence of employment and unemployment rates
    ""
    x = np.atleast_1d(x0)  # Recast as array just in case
    for t in range(T):
        yield x
        x = self.A_hat @ x
```

Exercise 67.6.2

Consider an economy with an initial stock of workers $N_0 = 100$ at the steady state level of employment in the baseline parameterization

- $\alpha = 0.013$
- $\lambda = 0.283$
- $b = 0.0124$
- $d = 0.00822$

(The values for α and λ follow [DFH06])

Suppose that in response to new legislation the hiring rate reduces to $\lambda = 0.2$.

Plot the transition dynamics of the unemployment and employment stocks for 50 periods.

Plot the transition dynamics for the rates.

How long does the economy take to converge to its new steady state?

What is the new steady state level of employment?
Note: It may be easier to use the class created in exercise 1 to help with changing variables.

Solution to Exercise 67.6.2

We begin by constructing the class containing the default parameters and assigning the steady state values to \(x_0 \)

```python
lm = LakeModelModified()
x0 = lm.rate_steady_state()
print(f"Initial Steady State: \{x0\}")
```

Initial Steady State: [0.08266806 0.91733194]

Initialize the simulation values

```python
N0 = 100
T = 50
```

New legislation changes \(\lambda \) to 0.2

```python
lm.\lambda = 0.2
xbar = lm.rate_steady_state()  # new steady state
X_path = np.vstack(tuple(lm.simulate_stock_path(x0 * N0, T)))
x_path = np.vstack(tuple(lm.simulate_rate_path(x0, T)))
print(f"New Steady State: \{xbar\}")
```

New Steady State: [0.11309573 0.88690427]

Now plot stocks

```python
fig, axes = plt.subplots(3, 1, figsize=[10, 9])
ax[0].plot(X_path[:, 0])
ax[0].set_title('Unemployment')
ax[1].plot(X_path[:, 1])
ax[1].set_title('Employment')
ax[2].plot(X_path.sum())
ax[2].set_title('Labor force')

for ax in axes:
    ax.grid()

plt.tight_layout()
plt.show()
```
And how the rates evolve

```python
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
titles = ['Unemployment rate', 'Employment rate']
for i, title in enumerate(titles):
    axes[i].plot(x_path[:, i])
    axes[i].hlines(xbar[i], 0, T, 'r', '--')
    axes[i].set_title(title)
    axes[i].grid()

plt.tight_layout()
plt.show()
```
We see that it takes 20 periods for the economy to converge to its new steady state levels.

Exercise 67.6.3

Consider an economy with an initial stock of workers $N_0 = 100$ at the steady state level of employment in the baseline parameterization.

Suppose that for 20 periods the birth rate was temporarily high ($b = 0.025$) and then returned to its original level.

Plot the transition dynamics of the unemployment and employment stocks for 50 periods.

Plot the transition dynamics for the rates.

How long does the economy take to return to its original steady state?

Solution to Exercise 67.6.3

This next exercise has the economy experiencing a boom in entrances to the labor market and then later returning to the original levels.

For 20 periods the economy has a new entry rate into the labor market.

Let's start off at the baseline parameterization and record the steady state
lm = LakeModelModified()
x0 = lm.rate_steady_state()

Here are the other parameters:

b_hat = 0.025
T_hat = 20

Let’s increase \(b \) to the new value and simulate for 20 periods

```python
lm.b = b_hat
# Simulate stocks
X_path1 = np.vstack(tuple(lm.simulate_stock_path(x0 * N0, T_hat)))
# Simulate rates
x_path1 = np.vstack(tuple(lm.simulate_rate_path(x0, T_hat)))
```

Now we reset \(b \) to the original value and then, using the state after 20 periods for the new initial conditions, we simulate for the additional 30 periods

```python
lm.b = 0.0124
# Simulate stocks
X_path2 = np.vstack(tuple(lm.simulate_stock_path(X_path1[-1, :], T-T_hat+1)))
# Simulate rates
x_path2 = np.vstack(tuple(lm.simulate_rate_path(x_path1[-1, :], T-T_hat+1)))
```

Finally, we combine these two paths and plot

```python
# note [1:] to avoid doubling period 20
x_path = np.vstack([x_path1, x_path2[1:]])
X_path = np.vstack([X_path1, X_path2[1:]])

fig, axes = plt.subplots(3, 1, figsize=[10, 9])

axes[0].plot(X_path[:, 0])
axes[0].set_title('Unemployment')

axes[1].plot(X_path[:, 1])
axes[1].set_title('Employment')

axes[2].plot(X_path.sum(1))
axes[2].set_title('Labor force')

for ax in axes:
    ax.grid()

plt.tight_layout()
plt.show()
And the rates

```python
fig, axes = plt.subplots(2, 1, figsize=[10, 6])
titles = ['Unemployment rate', 'Employment rate']

for i, title in enumerate(titles):
 axes[i].plot(x_path[:, i])
 axes[i].hlines(x0[i], 0, T, 'r', '--')
 axes[i].set_title(title)
 axes[i].grid()

plt.tight_layout()
plt.show()
```
67.6. Exercises
CHAPTER SIXTYEIGHT

RATIONAL EXPECTATIONS EQUILIBRIUM

Contents

- Rational Expectations Equilibrium
  - Overview
  - Rational Expectations Equilibrium
  - Computing an Equilibrium
  - Exercises

“If you’re so smart, why aren’t you rich?”

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install quantecon

68.1 Overview

This lecture introduces the concept of a rational expectations equilibrium.

To illustrate it, we describe a linear quadratic version of a model due to Lucas and Prescott [LP71].

That 1971 paper is one of a small number of research articles that ignited a rational expectations revolution.

We follow Lucas and Prescott by employing a setting that is readily “Bellmanized” (i.e., susceptible to being formulated as a dynamic programming problem).

Because we use linear quadratic setups for demand and costs, we can deploy the LQ programming techniques described in this lecture.

We will learn about how a representative agent’s problem differs from a planner’s, and how a planning problem can be used to compute quantities and prices in a rational expectations equilibrium.

We will also learn about how a rational expectations equilibrium can be characterized as a fixed point of a mapping from a perceived law of motion to an actual law of motion.

Equality between a perceived and an actual law of motion for endogenous market-wide objects captures in a nutshell what the rational expectations equilibrium concept is all about.

Finally, we will learn about the important “Big $K$, little $k$” trick, a modeling device widely used in macroeconomics.

Except that for us
• Instead of “Big $K$” it will be “Big $Y$”.
• Instead of “little $k$” it will be “little $y$”.

Let’s start with some standard imports:

```python
Quantitative Economics with Python

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
```

We’ll also use the LQ class from `QuantEcon.py`.

```python
from quantecon import LQ
```

### 68.1.1 The Big $Y$, little $y$ Trick

This widely used method applies in contexts in which a **representative firm** or agent is a “price taker” operating within a competitive equilibrium.

The following setting justifies the concept of a representative firm that stands in for a large number of other firms too.

There is a uniform unit measure of identical firms named $\omega \in \Omega = [0, 1]$.

The output of firm $\omega$ is $y(\omega)$.

The output of all firms is $Y = \int_0^1 y(\omega) d\omega$.

All firms end up choosing to produce the same output, so that at the end of the day $y(\omega) = y$ and $Y = y = \int_0^1 y(\omega) d\omega$.

This setting allows us to speak of a representative firm that chooses to produce $y$.

We want to impose that

- The representative firm or individual firm takes aggregate $Y$ as given when it chooses individual $y(\omega)$, but ....
- At the end of the day, $Y = y(\omega) = y$, so that the representative firm is indeed representative.

The Big $Y$, little $y$ trick accomplishes these two goals by

- Taking $Y$ as beyond control when posing the choice problem of who chooses $y$; but ....
- Imposing $Y = y$ *after* having solved the individual’s optimization problem.

Please watch for how this strategy is applied as the lecture unfolds.

We begin by applying the Big $Y$, little $y$ trick in a very simple static context.

### A Simple Static Example of the Big $Y$, little $y$ Trick

Consider a static model in which a unit measure of firms produce a homogeneous good that is sold in a competitive market.

Each of these firms ends up producing and selling output $y(\omega) = y$.

The price $p$ of the good lies on an inverse demand curve

$$p = a_0 - a_1 Y$$  \hspace{1cm} (68.1)

where

- $a_i > 0$ for $i = 0, 1$
\[ Y = \int_{\Omega} y(\omega) \, d\omega \] is the market-wide level of output.

For convenience, we'll often just write \( y \) instead of \( y(\omega) \) when we are describing the choice problem of an individual firm \( \omega \in \Omega \).

Each firm has a total cost function
\[ c(y) = c_1 y + 0.5c_2 y^2, \quad c_i > 0 \text{ for } i = 1, 2 \]

The profits of a representative firm are \( py - c(y) \).

Using (68.1), we can express the problem of the representative firm as
\[
\max_y \left[ (a_0 - a_1 Y) y - c_1 y - 0.5c_2 y^2 \right] \tag{68.2}
\]

In posing problem (68.2), we want the firm to be a price taker.

We do that by regarding \( p \) and therefore \( Y \) as exogenous to the firm.

The essence of the Big \( Y \), little \( y \) trick is not to set \( Y = ny \) before taking the first-order condition with respect to \( y \) in problem (68.2).

This assures that the firm is a price taker.

The first-order condition for problem (68.2) is
\[
a_0 - a_1 Y - c_1 - c_2 y = 0 \tag{68.3}
\]

At this point, but not before, we substitute \( Y = y \) into (68.3) to obtain the following linear equation
\[
a_0 - c_1 - (a_1 + c_2)Y = 0 \tag{68.4}
\]

to be solved for the competitive equilibrium market-wide output \( Y \).

After solving for \( Y \), we can compute the competitive equilibrium price \( p \) from the inverse demand curve (68.1).

### 68.1.2 Related Planning Problem

Define consumer surplus as the area under the inverse demand curve:
\[
S_c(Y) = \int_0^Y (a_0 - a_1 s) \, ds = a_0 Y - \frac{a_1}{2} Y^2.
\]

Define the social cost of production as
\[
S_p(Y) = c_1 Y + \frac{c_2}{2} Y^2
\]

Consider the planning problem
\[
\max_y [S_c(Y) - S_p(Y)]
\]

The first-order necessary condition for the planning problem is equation (68.4).

Thus, a \( Y \) that solves (68.4) is a competitive equilibrium output as well as an output that solves the planning problem.

This type of outcome provides an intellectual justification for liking a competitive equilibrium.
68.1.3 Further Reading

References for this lecture include

- [LP71]
- [Sar87], chapter XIV
- [LS18], chapter 7

68.2 Rational Expectations Equilibrium

Our first illustration of a rational expectations equilibrium involves a market with a unit measure of identical firms, each of which seeks to maximize the discounted present value of profits in the face of adjustment costs.

The adjustment costs induce the firms to make gradual adjustments, which in turn requires consideration of future prices. Individual firms understand that, via the inverse demand curve, the price is determined by the amounts supplied by other firms.

Hence each firm wants to forecast future total industry output.

In our context, a forecast is generated by a belief about the law of motion for the aggregate state.

Rational expectations equilibrium prevails when this belief coincides with the actual law of motion generated by production choices induced by this belief.

We formulate a rational expectations equilibrium in terms of a fixed point of an operator that maps beliefs into optimal beliefs.

68.2.1 Competitive Equilibrium with Adjustment Costs

To illustrate, consider a collection of \( n \) firms producing a homogeneous good that is sold in a competitive market.

Each firm sell output \( y_t(\omega) = y_t \).

The price \( p_t \) of the good lies on the inverse demand curve

\[
p_t = a_0 - a_1 Y_t
\]

where

- \( a_i > 0 \) for \( i = 0, 1 \)
- \( Y_t = \int_0^1 y_t(\omega)d\omega = y_t \) is the market-wide level of output

The Firm’s Problem

Each firm is a price taker.

While it faces no uncertainty, it does face adjustment costs

In particular, it chooses a production plan to maximize

\[
\sum_{t=0}^{\infty} \beta^t y_t
\]
where
\[ r_t := p_t y_t - \frac{\gamma (y_{t+1} - y_t)^2}{2}, \quad y_0 \text{ given} \]  \hspace{1cm} (68.7)

Regarding the parameters,

- $\beta \in (0, 1)$ is a discount factor
- $\gamma > 0$ measures the cost of adjusting the rate of output

Regarding timing, the firm observes $p_t$ and $y_t$ when it chooses $y_{t+1}$ at time $t$.

To state the firm’s optimization problem completely requires that we specify dynamics for all state variables.

This includes ones that the firm cares about but does not control like $p_t$.

We turn to this problem now.

**Prices and Aggregate Output**

In view of (68.5), the firm’s incentive to forecast the market price translates into an incentive to forecast aggregate output $Y_t$.

Aggregate output depends on the choices of other firms.

The output $y_t(\omega)$ of a single firm $\omega$ has a negligible effect on aggregate output $\int_0^1 y_t(\omega) d\omega$.

That justifies firms in regarding their forecasts of aggregate output as being unaffected by their own output decisions.

**Representative Firm’s Beliefs**

We suppose the firm believes that market-wide output $Y_t$ follows the law of motion

\[ Y_{t+1} = H(Y_t) \] \hspace{1cm} (68.8)

where $Y_0$ is a known initial condition.

The belief function $H$ is an equilibrium object, and hence remains to be determined.

**Optimal Behavior Given Beliefs**

For now, let’s fix a particular belief $H$ in (68.8) and investigate the firm’s response to it.

Let $v$ be the optimal value function for the firm’s problem given $H$.

The value function satisfies the Bellman equation

\[ v(y, Y) = \max_{y'} \left\{ a_0 y - a_1 y Y - \frac{\gamma (y' - y)^2}{2} + \beta v(y', H(Y)) \right\} \] \hspace{1cm} (68.9)

Let’s denote the firm’s optimal policy function by $h$, so that

\[ y_{t+1} = h(y_t, Y_t) \] \hspace{1cm} (68.10)

where

\[ h(y, Y) := \arg\max_{y'} \left\{ a_0 y - a_1 y Y - \frac{\gamma (y' - y)^2}{2} + \beta v(y', H(Y)) \right\} \] \hspace{1cm} (68.11)

Evidently $v$ and $h$ both depend on $H$. 

---

**68.2. Rational Expectations Equilibrium**
Characterization with First-Order Necessary Conditions

In what follows it will be helpful to have a second characterization of \( h \), based on first-order conditions. The first-order necessary condition for choosing \( y' \) is

\[
-\gamma(y' - y) + \beta v_y(y', H(Y)) = 0 \tag{68.12}
\]

An important useful envelope result of Benveniste-Scheinkman [BS79] implies that to differentiate \( v \) with respect to \( y \) we can naively differentiate the right side of (68.9), giving

\[
v_y(y, Y) = a_0 - a_1 Y + \gamma(y' - y)
\]

Substituting this equation into (68.12) gives the Euler equation

\[
-\gamma(y_{t+1} - y_t) + \beta[a_0 - a_1 Y_{t+1} + \gamma(y_{t+2} - y_{t+1})] = 0 \tag{68.13}
\]

The firm optimally sets an output path that satisfies (68.13), taking (68.8) as given, and subject to

- the initial conditions for \( (y_0, Y_0) \).
- the terminal condition \( \lim_{t \to \infty} \beta^t y_t v_y(y_t, Y_t) = 0 \).

This last condition is called the transversality condition, and acts as a first-order necessary condition “at infinity”.

A representative firm’s decision rule solves the difference equation (68.13) subject to the given initial condition \( y_0 \) and the transversality condition.

Note that solving the Bellman equation (68.9) for \( v \) and then \( h \) in (68.11) yields a decision rule that automatically imposes both the Euler equation (68.13) and the transversality condition.

The Actual Law of Motion for Output

As we’ve seen, a given belief translates into a particular decision rule \( h \).

Recalling that in equilibrium \( Y_t = y_t \), the actual law of motion for market-wide output is then

\[
Y_{t+1} = h(Y_t, Y_t) \tag{68.14}
\]

Thus, when firms believe that the law of motion for market-wide output is (68.8), their optimizing behavior makes the actual law of motion be (68.14).

68.2.2 Definition of Rational Expectations Equilibrium

A rational expectations equilibrium or recursive competitive equilibrium of the model with adjustment costs is a decision rule \( h \) and an aggregate law of motion \( H \) such that

1. Given belief \( H \), the map \( h \) is the firm’s optimal policy function.
2. The law of motion \( H \) satisfies \( H(Y) = h(Y, Y) \) for all \( Y \).

Thus, a rational expectations equilibrium equates the perceived and actual laws of motion (68.8) and (68.14).
Fixed Point Characterization

As we’ve seen, the firm’s optimum problem induces a mapping \( \Phi \) from a perceived law of motion \( H \) for market-wide output to an actual law of motion \( \Phi(H) \).

The mapping \( \Phi \) is the composition of two mappings, the first of which maps a perceived law of motion into a decision rule via (68.9)–(68.11), the second of which maps a decision rule into an actual law via (68.14).

The \( H \) component of a rational expectations equilibrium is a fixed point of \( \Phi \).

68.3 Computing an Equilibrium

Now let’s compute a rational expectations equilibrium.

68.3.1 Failure of Contractivity

Readers accustomed to dynamic programming arguments might try to address this problem by choosing some guess \( H_0 \) for the aggregate law of motion and then iterating with \( \Phi \).

Unfortunately, the mapping \( \Phi \) is not a contraction.

Indeed, there is no guarantee that direct iterations on \( \Phi \) converge. \(^1\)

There are examples in which these iterations diverge.

Fortunately, another method works here.

The method exploits a connection between equilibrium and Pareto optimality expressed in the fundamental theorems of welfare economics (see, e.g., [MCWG95]).

Lucas and Prescott [LP71] used this method to construct a rational expectations equilibrium.

Some details follow.

68.3.2 A Planning Problem Approach

Our plan of attack is to match the Euler equations of the market problem with those for a single-agent choice problem.

As we’ll see, this planning problem can be solved by LQ control (linear regulator).

Optimal quantities from the planning problem are rational expectations equilibrium quantities.

The rational expectations equilibrium price can be obtained as a shadow price in the planning problem.

We first compute a sum of consumer and producer surplus at time \( t \)

\[
s(Y_t, Y_{t+1}) := \int_0^{Y_t} (a_0 - a_1 x) \, dx - \frac{\gamma(Y_{t+1} - Y_t)^2}{2} \tag{68.15}
\]

The first term is the area under the demand curve, while the second measures the social costs of changing output.

\(^1\) A literature that studies whether models populated with agents who learn can converge to rational expectations equilibria features iterations on a modification of the mapping \( \Phi \) that can be approximated as \( \gamma \Phi + (1 - \gamma) I \). Here \( I \) is the identity operator and \( \gamma \in (0, 1) \) is a relaxation parameter. See [MS89] and [EH01] for statements and applications of this approach to establish conditions under which collections of adaptive agents who use least squares learning to converge to a rational expectations equilibrium.
The planning problem is to choose a production plan \( \{Y_t\} \) to maximize
\[
\sum_{t=0}^{\infty} \beta^t s(Y_t, Y_{t+1})
\]
subject to an initial condition for \( Y_0 \).

### 68.3.3 Solution of Planning Problem

Evaluating the integral in (68.15) yields the quadratic form \( a_0 Y_t - a_1 Y_t^2 / 2 \).

As a result, the Bellman equation for the planning problem is
\[
V(Y) = \max_{Y'} \left\{ a_0 Y - \frac{a_1}{2} Y^2 - \frac{\gamma(Y' - Y)^2}{2} + \beta V(Y') \right\}
\]
(68.16)

The associated first-order condition is
\[
-\gamma(Y' - Y) + \beta V'(Y') = 0
\]
(68.17)

Applying the same Benveniste-Scheinkman formula gives
\[
V'(Y) = a_0 - a_1 Y + \gamma(Y' - Y)
\]

Substituting this into equation (68.17) and rearranging leads to the Euler equation
\[
\beta a_0 + \gamma Y_t - [\beta a_1 + \gamma(1 + \beta)] Y_{t+1} + \gamma \beta Y_{t+2} = 0
\]
(68.18)

### 68.3.4 Key Insight

Return to equation (68.13) and set \( y_t = Y_t \) for all \( t \).

A small amount of algebra will convince you that when \( y_t = Y_t \), equations (68.18) and (68.13) are identical.

Thus, the Euler equation for the planning problem matches the second-order difference equation that we derived by

1. finding the Euler equation of the representative firm and
2. substituting into it the expression \( Y_t = y_t \) that “makes the representative firm be representative”.

If it is appropriate to apply the same terminal conditions for these two difference equations, which it is, then we have verified that a solution of the planning problem is also a rational expectations equilibrium quantity sequence.

It follows that for this example we can compute equilibrium quantities by forming the optimal linear regulator problem corresponding to the Bellman equation (68.16).

The optimal policy function for the planning problem is the aggregate law of motion \( H \) that the representative firm faces within a rational expectations equilibrium.

### Structure of the Law of Motion

As you are asked to show in the exercises, the fact that the planner’s problem is an LQ control problem implies an optimal policy — and hence aggregate law of motion — taking the form
\[
Y_{t+1} = \kappa_0 + \kappa_1 Y_t
\]
(68.19)

for some parameter pair \( \kappa_0, \kappa_1 \).
Now that we know the aggregate law of motion is linear, we can see from the firm’s Bellman equation (68.9) that the firm’s problem can also be framed as an LQ problem.

As you’re asked to show in the exercises, the LQ formulation of the firm’s problem implies a law of motion that looks as follows

\[ y_{t+1} = h_0 + h_1 y_t + h_2 Y_t \]  \hspace{1cm} (68.20)

Hence a rational expectations equilibrium will be defined by the parameters \((\kappa_0, \kappa_1, h_0, h_1, h_2)\) in (68.19)–(68.20).

### 68.4 Exercises

#### Exercise 68.4.1

Consider the firm problem described above.

Let the firm’s belief function \(H\) be as given in (68.19).

Formulate the firm’s problem as a discounted optimal linear regulator problem, being careful to describe all of the objects needed.

Use the class LQ from the QuantEcon.py package to solve the firm’s problem for the following parameter values:

\[ a_0 = 100, \ a_1 = 0.05, \ \beta = 0.95, \ \gamma = 10, \ \kappa_0 = 95.5, \ \kappa_1 = 0.95 \]

Express the solution of the firm’s problem in the form (68.20) and give the values for each \(h_j\).

If there were a unit measure of identical competitive firms all behaving according to (68.20), what would (68.20) imply for the actual law of motion (68.8) for market supply.

#### Solution to Exercise 68.4.1

To map a problem into a discounted optimal linear control problem, we need to define

- state vector \(x_t\) and control vector \(u_t\)
- matrices \(A, B, Q, R\) that define preferences and the law of motion for the state

For the state and control vectors, we choose

\[ x_t = \begin{bmatrix} y_t \\ Y_t \\ 1 \end{bmatrix}, \quad u_t = y_{t+1} - y_t \]

For \(B, Q, R\) we set

\[ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \kappa_1 & \kappa_0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad R = \begin{bmatrix} 0 & a_1/2 & -a_0/2 \\ a_1/2 & 0 & 0 \\ -a_0/2 & 0 & 0 \end{bmatrix}, \quad Q = \gamma/2 \]

By multiplying out you can confirm that

- \(x_t'Rx_t + u_t'Qu_t = -r_t\)
- \(x_{t+1} = Ax_t + Bu_t\)
We’ll use the module `lqcontrol.py` to solve the firm’s problem at the stated parameter values. This will return an LQ policy $F$ with the interpretation $u_t = -Fx_t$, or

$$y_{t+1} - y_t = -F_0 y_t - F_1 Y_t - F_2$$

Matching parameters with $y_{t+1} = h_0 + h_1 y_t + h_2 Y_t$ leads to

$$h_0 = -F_2, \quad h_1 = 1 - F_0, \quad h_2 = -F_1$$

Here’s our solution

```python
Model parameters
a0 = 100
a1 = 0.05
β = 0.95
γ = 10.0

Beliefs
κ0 = 95.5
κ1 = 0.95

Formulate the LQ problem
A = np.array([[1, 0, 0], [0, κ1, κ0], [0, 0, 1]])
B = np.array([[1, 0, 0]])
B.shape = 3, 1
R = np.array([[0, a1/2, -a0/2], [a1/2, 0, 0], [-a0/2, 0, 0]])
Q = 0.5 * γ

Solve for the optimal policy
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
out1 = f"F = [{F[0]:.3f}, {F[1]:.3f}, {F[2]:.3f}]"
h0, h1, h2 = -F[2], 1 - F[0], -F[1]
out2 = f"(h0, h1, h2) = ({h0:.3f}, {h1:.3f}, {h2:.3f})"

print(out1)
print(out2)
```

F = [-0.000, 0.046, -96.949]
(h0, h1, h2) = (96.949, 1.000, -0.046)

The implication is that

$$y_{t+1} = 96.949 + y_t - 0.046 Y_t$$

For the case $n > 1$, recall that $Y_t = n y_t$, which, combined with the previous equation, yields

$$Y_{t+1} = n (96.949 + y_t - 0.046 Y_t) = n96.949 + (1 - n0.046)Y_t$$

---

Exercise 68.4.2
Consider the following $\kappa_0, \kappa_1$ pairs as candidates for the aggregate law of motion component of a rational expectations equilibrium (see (68.19)).

Extending the program that you wrote for Exercise 68.4.1, determine which if any satisfy the definition of a rational expectations equilibrium

- (94.0886298678, 0.923409232937)
- (93.2119845412, 0.984323478873)
- (95.0818452486, 0.952459076301)

Describe an iterative algorithm that uses the program that you wrote for Exercise 68.4.1 to compute a rational expectations equilibrium.

(You are not being asked actually to use the algorithm you are suggesting)

Solution to Exercise 68.4.2

To determine whether a $\kappa_0, \kappa_1$ pair forms the aggregate law of motion component of a rational expectations equilibrium, we can proceed as follows:

- Determine the corresponding firm law of motion $y_{t+1} = h_0 + h_1 y_t + h_2 Y_t$.
- Test whether the associated aggregate law $Y_{t+1} = nh(Y_t/n, Y_t)$ evaluates to $Y_{t+1} = \kappa_0 + \kappa_1 Y_t$.

In the second step, we can use $Y_t = ny_t = y_t$, so that $Y_{t+1} = nh(Y_t/n, Y_t)$ becomes

$$Y_{t+1} = h(Y_t, Y_t) = h_0 + (h_1 + h_2)Y_t$$

Hence to test the second step we can test $\kappa_0 = h_0$ and $\kappa_1 = h_1 + h_2$.

The following code implements this test:

```python
candidates = ((94.0886298678, 0.923409232937),
 (93.2119845412, 0.984323478873),
 (95.0818452486, 0.952459076301))

for k0, k1 in candidates:
 # Form the associated law of motion
 A = np.array([[1, 0, 0], [0, k1, k0], [0, 0, 1]])

 # Solve the LQ problem for the firm
 lq = LQ(Q, R, A, B, beta=beta)
 P, F, d = lq.stationary_values()
 F = F.flatten()
 h0, h1, h2 = -F[2], 1 - F[0], -F[1]

 # Test the equilibrium condition
 if np.allclose((k0, k1), (h0, h1 + h2)):
 print('Equilibrium pair = (%f, %f)' % (k0, k1))
 print('f(h0, h1, h2) = (%f, %f, %f)' % (h0, h1, h2))
 break
```

Equilibrium pair = 95.0818452486, 0.952459076301
f(h0, h1, h2) = {h0}, {h1}, {h2}
The output tells us that the answer is pair (iii), which implies \((h_0, h_1, h_2) = (95.0819, 1.0000, -0.0475)\).
(Notice we use \texttt{np.allclose} to test equality of floating-point numbers, since exact equality is too strict).

Regarding the iterative algorithm, one could loop from a given \((\kappa_0, \kappa_1)\) to the associated firm law and then to a new \((\kappa_0, \kappa_1)\) pair.

This amounts to implementing the operator \(\Phi\) described in the lecture.
(There is in general no guarantee that this iterative process will converge to a rational expectations equilibrium)

**Exercise 68.4.3**

Recall the planner’s problem described above

1. Formulate the planner’s problem as an LQ problem.
2. Solve it using the same parameter values in exercise 1
   - \(a_0 = 100, a_1 = 0.05, \beta = 0.95, \gamma = 10\)
3. Represent the solution in the form \(Y_{t+1} = \kappa_0 + \kappa_1 Y_t\).
4. Compare your answer with the results from exercise 2.

**Solution to Exercise 68.4.3**

We are asked to write the planner problem as an LQ problem.

For the state and control vectors, we choose

\[
x_t = \begin{bmatrix} Y_t \\ 1 \end{bmatrix}, \quad u_t = Y_{t+1} - Y_t
\]

For the LQ matrices, we set

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad R = \begin{bmatrix} a_1/2 & -a_0/2 \\ -a_0/2 & 0 \end{bmatrix}, \quad Q = \gamma/2
\]

By multiplying out you can confirm that

- \(x_t^2 Rx_t + u_t^2 Q u_t = -s(Y_t, Y_{t+1})\)
- \(x_{t+1} = Ax_t + Bu_t\)

By obtaining the optimal policy and using \(u_t = -Fx_t\) or

\[
Y_{t+1} - Y_t = -F_0 Y_t - F_1
\]

we can obtain the implied aggregate law of motion via \(\kappa_0 = -F_1\) and \(\kappa_1 = 1 - F_0\).

The Python code to solve this problem is below:

```python
Formulate the planner’s LQ problem
A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1 / 2, -a0 / 2], [-a0 / 2, 0]])
Q = \gamma / 2
```

(continues on next page)
# Solve for the optimal policy

```python
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
```

# Print the results

```python
F = F.flatten()
x0, x1 = -F[1], 1 - F[0]
print(x0, x1)
```

95.08187459215002 0.9524590627039248

The output yields the same \((\kappa_0, \kappa_1)\) pair obtained as an equilibrium from the previous exercise.

---

**Exercise 68.4.4**

A monopolist faces the industry demand curve (68.5) and chooses \(\{Y_t\}\) to maximize \(\sum_{t=0}^{\infty} \beta^t r_t\) where

\[
r_t = p_t Y_t - \gamma (Y_{t+1} - Y_t)^2 / 2
\]

Formulate this problem as an LQ problem.

Compute the optimal policy using the same parameters as **Exercise 68.4.2**.

In particular, solve for the parameters in

\[Y_{t+1} = m_0 + m_1 Y_t\]

Compare your results with **Exercise 68.4.2** – comment.

---

**Solution to Exercise 68.4.4**

The monopolist’s LQ problem is almost identical to the planner’s problem from the previous exercise, except that

\[
R = \begin{bmatrix}
ap_1 & -a_0 / 2 \\
-a_0 / 2 & 0
\end{bmatrix}
\]

The problem can be solved as follows

```python
A = np.array([[1, 0], [0, 1]])
B = np.array([[1], [0]])
R = np.array([[a1, -a0 / 2], [-a0 / 2, 0]])
Q = γ / 2
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values()
F = F.flatten()
m0, m1 = -F[1], 1 - F[0]
print(m0, m1)
```
We see that the law of motion for the monopolist is approximately $Y_{t+1} = 73.4729 + 0.9265Y_t$.

In the rational expectations case, the law of motion was approximately $Y_{t+1} = 95.0818 + 0.9525Y_t$.

One way to compare these two laws of motion is by their fixed points, which give long-run equilibrium output in each case.

For laws of the form $Y_{t+1} = c_0 + c_1Y_t$, the fixed point is $c_0/(1 - c_1)$.

If you crunch the numbers, you will see that the monopolist adopts a lower long-run quantity than obtained by the competitive market, implying a higher market price.

This is analogous to the elementary static-case results.
STABILITY IN LINEAR RATIONAL EXPECTATIONS MODELS

Contents

- Stability in Linear Rational Expectations Models
  - Overview
  - Linear Difference Equations
  - Illustration: Cagan’s Model
  - Some Python Code
  - Alternative Code
  - Another Perspective
  - Log money Supply Feeds Back on Log Price Level
  - Big $P$, Little $p$ Interpretation
  - Fun with SymPy

In addition to what’s in Anaconda, this lecture deploys the following libraries:

```
!pip install quantecon

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) #set default figure size
import numpy as np
import quantecon as qe
from sympy import *
init_printing()
```
69.1 Overview

This lecture studies stability in the context of an elementary rational expectations model.

We study a rational expectations version of Philip Cagan’s model \([\text{Cag56}]\) linking the price level to the money supply. Cagan did not use a rational expectations version of his model, but Sargent \([\text{Sar77}]\) did.

We study a rational expectations version of this model because it is intrinsically interesting and because it has a mathematical structure that appears in virtually all linear rational expectations model, namely, that a key endogenous variable equals a mathematical expectation of a geometric sum of future values of another variable.

The model determines the price level or rate of inflation as a function of the money supply or the rate of change in the money supply.

In this lecture, we’ll encounter:

• a convenient formula for the expectation of geometric sum of future values of a variable
• a way of solving an expectational difference equation by mapping it into a vector first-order difference equation and appropriately manipulating an eigen decomposition of the transition matrix in order to impose stability
• a way to use a Big \(K\), little \(k\) argument to allow apparent feedback from endogenous to exogenous variables within a rational expectations equilibrium
• a use of eigenvector decompositions of matrices that allowed Blanchard and Khan (1981) \([\text{BK80}]\) and Whiteman (1983) \([\text{Whi83}]\) to solve a class of linear rational expectations models
• how to use SymPy to get analytical formulas for some key objects comprising a rational expectations equilibrium

Matrix decompositions employed here are described in more depth in this lecture Lagrangian formulations.

We formulate a version of Cagan’s model under rational expectations as an expectational difference equation whose solution is a rational expectations equilibrium.

We’ll start this lecture with a quick review of deterministic (i.e., non-random) first-order and second-order linear difference equations.

69.2 Linear Difference Equations

We’ll use the backward shift or lag operator \(L\).

The lag operator \(L\) maps a sequence \(\{x_t\}_{t=0}^\infty\) into the sequence \(\{x_{t-1}\}_{t=0}^\infty\)

We’ll deploy \(L\) by using the equality \(Lx_t \equiv x_{t-1}\) in algebraic expressions.

Further, the inverse \(L^{-1}\) of the lag operator is the forward shift operator.

We’ll often use the equality \(L^{-1}x_t \equiv x_{t+1}\) below.

The algebra of lag and forward shift operators can simplify representing and solving linear difference equations.
69.2.1 First Order

We want to solve a linear first-order scalar difference equation.
Let $|\lambda| < 1$ and let $\{u_t\}_{t=-\infty}^{\infty}$ be a bounded sequence of scalar real numbers.
Let $L$ be the lag operator defined by $Lx_t = x_{t-1}$ and let $L^{-1}$ be the forward shift operator defined by $L^{-1}x_t = x_{t+1}$.

Then

$$(1 - \lambda L)y_t = u_t, \forall t$$

(69.1)

has solutions

$$y_t = (1 - \lambda L)^{-1}u_t + k\lambda^t$$

(69.2)
or

$$y_t = \sum_{j=0}^{\infty} \lambda^j u_{t-j} + k\lambda^t$$

for any real number $k$.

You can verify this fact by applying $(1 - \lambda L)$ to both sides of equation (69.2) and noting that $(1 - \lambda L)\lambda^t = 0$.

To pin down $k$ we need one condition imposed from outside (e.g., an initial or terminal condition) on the path of $y$.

Now let $|\lambda| > 1$.

Rewrite equation (69.1) as

$$y_{t-1} = \lambda^{-1}y_t - \lambda^{-1}u_t, \forall t$$

(69.3)
or

$$(1 - \lambda^{-1}L^{-1})y_t = -\lambda^{-1}u_{t+1}.$$ (69.4)

A solution is

$$y_t = -\lambda^{-1} \left( \frac{1}{1 - \lambda^{-1}L^{-1}} \right) u_{t+1} + k\lambda^t$$

(69.5)

for any $k$.

To verify that this is a solution, check the consequences of operating on both sides of equation (69.5) by $(1 - \lambda L)$ and compare to equation (69.1).

For any bounded $\{u_t\}$ sequence, solution (69.2) exists for $|\lambda| < 1$ because the distributed lag in $u$ converges.

Solution (69.5) exists when $|\lambda| > 1$ because the distributed lead in $u$ converges.

When $|\lambda| > 1$, the distributed lag in $u$ in (69.2) may diverge, in which case a solution of this form does not exist.

The distributed lead in $u$ in (69.5) need not converge when $|\lambda| < 1$.

69.2.2 Second Order

Now consider the second order difference equation

$$(1 - \lambda_1 L)(1 - \lambda_2 L)y_{t+1} = u_t$$

(69.6)
where \( \{ u_t \} \) is a bounded sequence, \( y_0 \) is an initial condition, \( |\lambda_1| < 1 \) and \( |\lambda_2| > 1 \).

We seek a bounded sequence \( \{ y_t \}_{t=0}^\infty \) that satisfies (69.6). Using insights from our analysis of the first-order equation, operate on both sides of (69.6) by the forward inverse of \( (1 - \lambda_2 L) \) to rewrite equation (69.6) as

\[
(1 - \lambda_1 L) y_{t+1} = -\frac{\lambda_2^{-1}}{1 - \lambda_2^{-1}L} u_{t+1}
\]

or

\[
y_{t+1} = \lambda_1 y_t - \lambda^{-1}_2 \sum_{j=0}^{\infty} \lambda^{-j}_2 u_{t+j+1}.
\]

(69.7)

Thus, we obtained equation (69.7) by solving a stable root (in this case \( \lambda_1 \)) backward, and an unstable root (in this case \( \lambda_2 \)) forward.

Equation (69.7) has a form that we shall encounter often.

- \( \lambda_1 y_t \) is called the **feedback part**
- \( -\frac{\lambda_2^{-1}}{1 - \lambda_2^{-1}L} u_{t+1} \) is called the **feedforward part**

### 69.3 Illustration: Cagan’s Model

Now let’s use linear difference equations to represent and solve Sargent’s [Sar77] rational expectations version of Cagan’s model [Cag56] that connects the price level to the public’s anticipations of future money supplies.

Cagan did not use a rational expectations version of his model, but Sargent [Sar77]

Let

- \( m_d^d \) be the log of the demand for money
- \( m_t \) be the log of the supply of money
- \( p_t \) be the log of the price level

It follows that \( p_{t+1} - p_t \) is the rate of inflation.

The logarithm of the demand for real money balances \( m_d^d - p_t \) is an inverse function of the expected rate of inflation \( p_{t+1} - p_t \) for \( t \geq 0 \):

\[
m_d^d - p_t = -\beta(p_{t+1} - p_t), \quad \beta > 0
\]

Equate the demand for log money \( m_d^d \) to the supply of log money \( m_t \) in the above equation and rearrange to deduce that the logarithm of the price level \( p_t \) is related to the logarithm of the money supply \( m_t \) by

\[
p_t = (1 - \lambda)m_t + \lambda p_{t+1}
\]

(69.8)

where \( \lambda \equiv \frac{\beta}{1+\beta} \in (0, 1) \).

(We note that the characteristic polynomial if \( 1 - \lambda^{-1} z^{-1} = 0 \) so that the zero of the characteristic polynomial in this case is \( \lambda \in (0, 1) \) which here is inside the unit circle.)

Solving the first order difference equation (69.8) forward gives

\[
p_t = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j m_{t+j},
\]

(69.9)
which is the unique **stable** solution of difference equation (69.8) among a class of more general solutions

\[ p_t = (1 - \lambda) \sum_{j=0}^{\infty} \lambda^j m_{t+j} + c \lambda^{-t} \]  
(69.10)

that is indexed by the real number \( c \in \mathbb{R} \).

Because we want to focus on stable solutions, we set \( c = 0 \).

Equation (69.10) attributes **perfect foresight** about the money supply sequence to the holders of real balances.

We begin by assuming that the log of the money supply is **exogenous** in the sense that it is an autonomous process that does not feed back on the log of the price level.

In particular, we assume that the log of the money supply is described by the linear state space system

\[
m_t = G x_t \\
x_{t+1} = Ax_t
\]

(69.11)

where \( x_t \) is an \( n \times 1 \) vector that does not include \( p_t \) or lags of \( p_t \), \( A \) is an \( n \times n \) matrix with eigenvalues that are less than \( \lambda^{-1} \) in absolute values, and \( G \) is a \( 1 \times n \) selector matrix.

Variables appearing in the vector \( x_t \) contain information that might help predict future values of the money supply.

We’ll start with an example in which \( x_t \) includes only \( m_t \), possibly lagged values of \( m \), and a constant.

An example of such an \( \{m_t\} \) process that fits into state space system (69.11) is one that satisfies the second order linear difference equation

\[ m_{t+1} = \alpha + \rho_1 m_t + \rho_2 m_{t-1} \]

where the zeros of the characteristic polynomial \((1 - \rho_1 z - \rho_2 z^2)\) are strictly greater than 1 in modulus.

(Please see *this* QuantEcon lecture for more about characteristic polynomials and their role in solving linear difference equations.)

We seek a stable or non-explosive solution of the difference equation (69.8) that obeys the system comprised of (69.8)-(69.11).

By stable or non-explosive, we mean that neither \( m_t \) nor \( p_t \) diverges as \( t \to +\infty \).

This requires that we shut down the term \( c \lambda^{-t} \) in equation (69.10) above by setting \( c = 0 \).

The solution we are after is

\[ p_t = F x_t \]

(69.12)

where

\[ F = (1 - \lambda)G(I - \lambda A)^{-1} \]

(69.13)

**Note:** As mentioned above, an **explosive solution** of difference equation (69.8) can be constructed by adding to the right hand of (69.12) a sequence \( c \lambda^{-t} \) where \( c \) is an arbitrary positive constant.

69.3. Illustration: Cagan’s Model
69.4 Some Python Code

We’ll construct examples that illustrate (69.11).

Our first example takes as the law of motion for the log money supply the second order difference equation

\[ m_{t+1} = \alpha + \rho_1 m_t + \rho_2 m_{t-1} \]  

(69.14)

that is parameterized by \( \rho_1, \rho_2, \alpha \)

To capture this parameterization with system (69.9) we set

\[
\begin{bmatrix}
1 & m_t \\
m_{t-1} & 1
\end{bmatrix}, \quad A = \begin{bmatrix}
1 & 0 & 0 \\
\alpha & \rho_1 & \rho_2 \\
0 & 1 & 0
\end{bmatrix}, \quad G = [0 \ 1 \ 0]
\]

Here is Python code

```python
lambda_ = .9
alpha = 0
rho1 = .9
rho2 = .05
A = np.array([[1, 0, 0],
 [alpha, rho1, rho2],
 [0, 1, 0]])
G = np.array([[0, 1, 0]])
```

The matrix \( A \) has one eigenvalue equal to unity.

It is associated with the \( A_{11} \) component that captures a constant component of the state \( x_t \).

We can verify that the two eigenvalues of \( A \) not associated with the constant in the state \( x_t \) are strictly less than unity in modulus.

```python
eigvals = np.linalg.eigvals(A)
print(eigvals)
```

```
[-0.05249378 0.95249378 1.]
```

```python
(abs(eigvals) <= 1).all()
```

```
True
```

Now let’s compute \( F \) in formulas (69.12) and (69.13).

```python
compute the solution, i.e. formula (3)
F = (1 - lambda_) * G @ np.linalg.inv(np.eye(A.shape[0]) - lambda_ * A)
print("F= ", F)
```

```
F= [[0. 0.66889632 0.03010033]]
```

Now let’s simulate paths of \( m_t \) and \( p_t \) starting from an initial value \( x_0 \).
In the above graph, why is the log of the price level always less than the log of the money supply?

Because

- according to equation (69.9), \( p_t \) is a geometric weighted average of current and future values of \( m_t \), and
it happens that in this example future $m$'s are always less than the current $m$

69.5 Alternative Code

We could also have run the simulation using the quantecon `LinearStateSpace` code.

The following code block performs the calculation with that code.

```python
construct a LinearStateSpace instance
stack G and F
G_ext = np.vstack([G, F])
C = np.zeros((A.shape[0], 1))
ss = qe.LinearStateSpace(A, C, G_ext, mu_0=x0)

T = 100

simulate using LinearStateSpace
x, y = ss.simulate(ts_length=T)

plot
plt.figure()
plt.plot(range(T), y[0,:], label='m_t')
plt.plot(range(T), y[1,:], label='p_t')
plt.xlabel('t')
plt.title(f'$\lambda=${\lambda}, $\alpha=${\alpha}, $\rho_1=${\rho1}, $\rho_2=${\rho2}')
plt.legend()
plt.show()
```

![Graph showing the time series for $m_t$ and $p_t$.]
69.5.1 Special Case

To simplify our presentation in ways that will let focus on an important idea, in the above second-order difference equation (69.14) that governs $m_t$, we now set $\alpha = 0$, $\rho_1 = \rho \in (-1, 1)$, and $\rho_2 = 0$ so that the law of motion for $m_t$ becomes

$$m_{t+1} = \rho m_t$$

and the state $x_t$ becomes

$$x_t = m_t.$$

Consequently, we can set $G = 1, A = \rho$ making our formula (69.13) for $F$ become

$$F = (1 - \lambda)(1 - \lambda \rho)^{-1}.$$ 

so that the log the log price level satisfies

$$p_t = F m_t.$$ 

Please keep these formulas in mind as we investigate an alternative route to and interpretation of our formula for $F$.

69.6 Another Perspective

Above, we imposed stability or non-explosiveness on the solution of the key difference equation (69.8) in Cagan’s model by solving the unstable root of the characteristic polynomial forward.

To shed light on the mechanics involved in imposing stability on a solution of a potentially unstable system of linear difference equations and to prepare the way for generalizations of our model in which the money supply is allowed to feed back on the price level itself, we stack equations (69.8) and (69.15) to form the system

$$\begin{bmatrix} m_{t+1} \\ p_{t+1} \end{bmatrix} = \begin{bmatrix} \rho & 0 \\ -\frac{1 - \lambda}{\lambda} & \lambda^{-1} \end{bmatrix} \begin{bmatrix} m_t \\ p_t \end{bmatrix}$$

or

$$y_{t+1} = H y_t, \quad t \geq 0$$

where

$$H = \begin{bmatrix} \rho & 0 \\ -\frac{1 - \lambda}{\lambda} & \lambda^{-1} \end{bmatrix}.$$ 

Transition matrix $H$ has eigenvalues $\rho \in (0, 1)$ and $\lambda^{-1} > 1$.

Because an eigenvalue of $H$ exceeds unity, if we iterate on equation (69.17) starting from an arbitrary initial vector $y_0 = \begin{bmatrix} m_0 \\ p_0 \end{bmatrix}$ with $m_0 > 0, p_0 > 0$, we discover that in general absolute values of both components of $y_t$ diverge toward $+\infty$ as $t \to +\infty$.

To substantiate this claim, we can use the eigenvector matrix decomposition of $H$ that is available to us because the eigenvalues of $H$ are distinct

$$H = Q \Lambda Q^{-1}.$$ 

Here $\Lambda$ is a diagonal matrix of eigenvalues of $H$ and $Q$ is a matrix whose columns are eigenvectors associated with the corresponding eigenvalues.
Note that

\[ H^t = QA^t Q^{-1} \]

so that

\[ y_t = QA^t Q^{-1} y_0 \]

For almost all initial vectors \( y_0 \), the presence of the eigenvalue \( \lambda^{-1} > 1 \) causes both components of \( y_t \) to diverge in absolute value to \(+\infty\).

To explore this outcome in more detail, we can use the following transformation

\[ y_t^* = Q^{-1} y_t \]

that allows us to represent the dynamics in a way that isolates the source of the propensity of paths to diverge:

\[ y_{t+1}^* = \Lambda^t y_t^* \]

Staring at this equation indicates that unless

\[ y_0^* = \begin{bmatrix} y_{1,0}^* \\ 0 \end{bmatrix} \]  \hspace{1cm} (69.19)

the path of \( y_t^* \) and therefore the paths of both components of \( y_t = Q y_t^* \) will diverge in absolute value as \( t \to +\infty \). (We say that the paths explode)

Equation (69.19) also leads us to conclude that there is a unique setting for the initial vector \( y_0 \) for which both components of \( y_t \) do not diverge.

The required setting of \( y_0 \) must evidently have the property that

\[ Q y_0 = y_0^* = \begin{bmatrix} y_{1,0}^* \\ 0 \end{bmatrix} \]

But note that since \( y_0 = \begin{bmatrix} m_0 \\ p_0 \end{bmatrix} \) and \( m_0 \) is given to us an initial condition, \( p_0 \) has to do all the adjusting to satisfy this equation.

Sometimes this situation is described by saying that while \( m_0 \) is truly a \textbf{state} variable, \( p_0 \) is a \textbf{jump} variable that must adjust at \( t = 0 \) in order to satisfy the equation.

Thus, in a nutshell the unique value of the vector \( y_0 \) for which the paths of \( y_t \) do not diverge must have second component \( p_0 \) that verifies equality (69.19) by setting the second component of \( y_0^* \) equal to zero.

The component \( p_0 \) of the initial vector \( y_0 = \begin{bmatrix} m_0 \\ p_0 \end{bmatrix} \) must evidently satisfy

\[ Q^{(2)} y_0 = 0 \]

where \( Q^{(2)} \) denotes the second row of \( Q^{-1} \), a restriction that is equivalent to

\[ Q^{21} m_0 + Q^{22} p_0 = 0 \]  \hspace{1cm} (69.20)

where \( Q^{ij} \) denotes the \((i, j)\) component of \( Q^{-1} \).

Solving this equation for \( p_0 \), we find

\[ p_0 = -Q^{22} Q^{-1} Q^{21} m_0. \]  \hspace{1cm} (69.21)

This is the unique \textbf{stabilizing value} of \( p_0 \) expressed as a function of \( m_0 \).
69.6.1 Refining the Formula

We can get an even more convenient formula for $p_0$ that is cast in terms of components of $Q$ instead of components of $Q^{-1}$.

To get this formula, first note that because $(Q^{21} Q^{22})$ is the second row of the inverse of $Q$ and because $Q^{-1}Q = I$, it follows that

$$
\begin{bmatrix}
Q^{21} & Q^{22}
\end{bmatrix}
\begin{bmatrix}
Q_{11}
Q_{21}
\end{bmatrix} = 0
$$

which implies that

$$Q^{21}Q_{11} + Q^{22}Q_{21} = 0.$$

Therefore,

$$-(Q^{22})^{-1}Q^{21} = Q_{21}Q_{11}^{-1}.$$

So we can write

$$p_0 = Q_{21}Q_{11}^{-1}m_0. \quad (69.22)$$

It can be verified that this formula replicates itself over time in the sense that

$$p_t = Q_{21}Q_{11}^{-1}m_t. \quad (69.23)$$

To implement formula (69.23), we want to compute $Q_1$ the eigenvector of $Q$ associated with the stable eigenvalue $\rho$ of $Q$.

By hand it can be verified that the eigenvector associated with the stable eigenvalue $\rho$ is proportional to

$$Q_1 = \begin{bmatrix} 1 - \lambda \rho \\ 1 - \lambda \end{bmatrix}.$$ 

Notice that if we set $A = \rho$ and $G = 1$ in our earlier formula for $p_t$ we get

$$p_t = G(I - \lambda A)^{-1}m_t = (1 - \lambda)(1 - \lambda \rho)^{-1}m_t,$$

a formula that is equivalent with

$$p_t = Q_{21}Q_{11}^{-1}m_t,$$

where

$$Q_1 = \begin{bmatrix} Q_{11} \\ Q_{21} \end{bmatrix}.$$

69.6.2 Remarks about Feedback

We have expressed (69.16) in what superficially appears to be a form in which $y_{t+1}$ feeds back on $y_t$, even though what we actually want to represent is that the component $p_t$ feeds forward on $p_{t+1}$, and through it, on future $m_{t+j}$, $j = 0, 1, 2, \ldots$. 

A tell-tale sign that we should look beyond its superficial “feedback” form is that $\lambda^{-1} > 1$ so that the matrix $H$ in (69.16) is unstable

- it has one eigenvalue $\rho$ that is less than one in modulus that does not imperil stability, but ...
- it has a second eigenvalue $\lambda^{-1}$ that exceeds one in modulus and that makes $H$ an unstable matrix

We’ll keep these observations in mind as we turn now to a case in which the log money supply actually does feed back on the log of the price level.
69.7 Log money Supply Feeds Back on Log Price Level

An arrangement of eigenvalues that split around unity, with one being below unity and another being greater than unity, sometimes prevails when there is feedback from the log price level to the log money supply.

Let the feedback rule be

\[ m_{t+1} = \rho m_t + \delta p_t \tag{69.24} \]

where \( \rho \in (0, 1) \) and where we shall now allow \( \delta \neq 0 \).

**Warning:** If things are to fit together as we wish to deliver a stable system for some initial value \( p_0 \) that we want to determine uniquely, \( \delta \) cannot be too large.

The forward-looking equation (69.8) continues to describe equality between the demand and supply of money.

We assume that equations (69.8) and (69.24) govern \( y_t \equiv \begin{bmatrix} m_t \\ p_t \end{bmatrix} \) for \( t \geq 0 \).

The transition matrix \( H \) in the law of motion

\[ y_{t+1} = Hy_t \]

now becomes

\[ H = \begin{bmatrix} \rho & \delta \\ -(1 - \lambda)/\lambda & \lambda^{-1} \end{bmatrix}. \]

We take \( m_0 \) as a given initial condition and as before seek an initial value \( p_0 \) that stabilizes the system in the sense that \( y_t \) converges as \( t \to +\infty \).

Our approach is identical with the one followed above and is based on an eigenvalue decomposition in which, cross our fingers, one eigenvalue exceeds unity and the other is less than unity in absolute value.

When \( \delta \neq 0 \) as we now assume, the eigenvalues of \( H \) will no longer be \( \rho \in (0, 1) \) and \( \lambda^{-1} > 1 \)

We'll just calculate them and apply the same algorithm that we used above.

That algorithm remains valid so long as the eigenvalues split around unity as before.

Again we assume that \( m_0 \) is an initial condition, but that \( p_0 \) is not given but to be solved for.

Let's write and execute some Python code that will let us explore how outcomes depend on \( \delta \).

```python
def construct_H(ρ, λ, δ):
 "construct matrix H given parameters."
 H = np.empty((2, 2))
 H[0, :] = ρ, δ
 H[1, :] = -(1 - λ) / λ, 1 / λ
 return H

def H_eigvals(ρ=.9, λ=.5, δ=0):
 "compute the eigenvalues of matrix H given parameters."
 # construct H matrix
 H = construct_H(ρ, λ, δ)
 # compute eigenvalues
 eigvals = np.linalg.eigvals(H)
 return eigvals
```
Notice that a negative $\delta$ will not imperil the stability of the matrix $H$, even if it has a big absolute value.

```python
small negative δ
H_eigvals(\delta=-0.05)
```

array([0.8562829, 2.0437171])

```python
large negative δ
H_eigvals(\delta=-1.5)
```

array([0.10742784, 2.79257216])

A sufficiently small positive $\delta$ also causes no problem.

```python
sufficiently small positive δ
H_eigvals(\delta=0.05)
```

array([0.94750622, 1.95249378])

But a large enough positive $\delta$ makes both eigenvalues of $H$ strictly greater than unity in modulus. For example,

```python
H_eigvals(\delta=0.2)
```

array([1.12984379, 1.77015621])

We want to study systems in which one eigenvalue exceeds unity in modulus while the other is less than unity in modulus, so we avoid values of $\delta$ that are too.

That is, we want to avoid too much positive feedback from $p_t$ to $m_{t+1}$.

```python
def magic_p0(m0, \rho=.9, \lambda=.5, \delta=0):
 """
 Use the magic formula (8) to compute the level of p_0 that makes the system stable.
 """
 H = construct_H(\rho, \lambda, \delta)
 eigvals, Q = np.linalg.eig(H)

 # find the index of the smaller eigenvalue
 ind = 0 if eigvals[0] < eigvals[1] else 1

 # verify that the eigenvalue is less than unity
 if eigvals[ind] > 1:
```
print("both eigenvalues exceed unity in modulus")

return None

p0 = Q[1, ind] / Q[0, ind] * m0

return p0

Let's plot how the solution $p_0$ changes as $m_0$ changes for different settings of $\delta$.

m_range = np.arange(0.1, 2., 0.1)

for $\delta$ in [-0.05, 0, 0.05]:
    plt.plot(m_range, [magic_p0(m0, $\delta$) for m0 in m_range], label=f"$\delta$={\delta}")
plt.legend()
plt.xlabel("$m_0$")
plt.ylabel("$p_0$")
plt.show()

To look at things from a different angle, we can fix the initial value $m_0$ and see how $p_0$ changes as $\delta$ changes.

m0 = 1

$\delta$_range = np.linspace(-0.05, 0.05, 100)
plt.plot($\delta$_range, [magic_p0(m0, $\delta$) for $\delta$ in $\delta$_range])
plt.xlabel("$\delta$")
plt.ylabel("$p_0$")
plt.title(f"$m_0$={m0}")
plt.show()
Notice that when \( \delta \) is large enough, both eigenvalues exceed unity in modulus, causing a stabilizing value of \( p_0 \) not to exist.

\[
\text{magic}_p(0, \delta=0.2)
\]

both eigenvalues exceed unity in modulus

### 69.8 Big \( P \), Little \( p \) Interpretation

It is helpful to view our solutions of difference equations having feedback from the price level or inflation to money or the rate of money creation in terms of the Big \( K \), little \( k \) idea discussed in Rational Expectations Models.

This will help us sort out what is taken as given by the decision makers who use the difference equation (69.9) to determine \( p_t \) as a function of their forecasts of future values of \( m_t \).

Let’s write the stabilizing solution that we have computed using the eigenvector decomposition of \( H \) as \( P_t = F^* m_t \), where

\[
F^* = Q_{11} Q_{i1}^{-1}.
\]

Then from \( P_{t+1} = F^* m_{t+1} \) and \( m_{t+1} = \rho m_t + \delta P_t \) we can deduce the recursion \( P_{t+1} = F^* \rho m_t + F^* \delta P_t \) and create the stacked system

\[
\begin{bmatrix}
  m_{t+1} \\
  P_{t+1}
\end{bmatrix} =
\begin{bmatrix}
  \rho & \delta \\
  F^* \rho & F^* \delta
\end{bmatrix}
\begin{bmatrix}
  m_t \\
  P_t
\end{bmatrix}
\]

or

\[
x_{t+1} = \Lambda x_t
\]

where \( x_t = \begin{bmatrix} m_t \\ P_t \end{bmatrix} \).
Apply formula (69.13) for $F$ to deduce that

$$p_t = F \begin{bmatrix} m_t \\ P_t \end{bmatrix} = F \begin{bmatrix} m_t \\ F^* m_t \end{bmatrix}$$

which implies that

$$p_t = \begin{bmatrix} F_1 & F_2 \end{bmatrix} \begin{bmatrix} m_t \\ F^* m_t \end{bmatrix} = F_1 m_t + F_2 F^* m_t$$

so that we can anticipate that

$$F^* = F_1 + F_2 F^*$$

We shall verify this equality in the next block of Python code that implements the following computations.

1. For the system with $\delta \neq 0$ so that there is feedback, we compute the stabilizing solution for $p_t$ in the form $p_t = F^* m_t$ where $F^* = Q_{21} Q_1^{-1}$ as above.

2. Recalling the system (69.11), (69.12), and (69.13) above, we define $x_t = \begin{bmatrix} m_t \\ P_t \end{bmatrix}$ and notice that it is Big $P_t$ and not little $p_t$ here. Then we form $A$ and $G$ as $A = \begin{bmatrix} \rho & \delta \\ F^* \rho & F^* \delta \end{bmatrix}$ and $G = [1 \ 0]$ and we compute $[F_1 \ F_2] \equiv F$ from equation (69.13) above.

3. We compute $F_1 + F_2 F^*$ and compare it with $F^*$ and check for the anticipated equality.

```python
set parameters
ρ = .9
λ = .5
δ = .05

solve for F_star
H = construct_H(ρ, λ, δ)
eigvals, Q = np.linalg.eig(H)

ind = 0 if eigvals[0] < eigvals[1] else 1
F_star = Q[1, ind] / Q[0, ind]
F_star

0.950124378879109

solve for F_check
A = np.empty((2, 2))
A[0, :] = ρ, δ
A[1, :] = F_star * A[0, :]
G = np.array([1, 0])

F_check = (1 - λ) * G @ np.linalg.inv(np.eye(2) - λ * A)
F_check

array([0.92755597, 0.02375311])

Compare F^* with $F_1 + F_2 F^*$
\[F _ \text{check}[0] + F _ \text{check}[1] \times F _ \text{star}, F _ \text{star} \]

\[(0.9501243787911, 0.95012437879109)\]

69.9 Fun with SymPy

This section is a gift for readers who have made it this far.

It puts SymPy to work on our model.

Thus, we use SymPy to compute some key objects comprising the eigenvector decomposition of \(H \).

We start by generating an \(H \) with nonzero \(\delta \).

\[\lambda, \delta, \rho = \text{symbols}'(\lambda, \delta, \rho') \]

\[H_1 = \text{Matrix}([[\rho, \delta], [-(1 - \lambda) / \lambda, \lambda ** -1]]) \]

\[H_1 \]

\[\begin{bmatrix} \rho & \delta \\ \frac{\lambda-1}{\lambda} & \frac{1}{\lambda} \end{bmatrix} \]

\[H_1.\text{eigenvals()} \]

\[\left\{ \frac{\lambda \rho + 1}{2 \lambda} - \frac{\sqrt{4 \delta \lambda^2 - 4 \delta \lambda + \lambda^2 \rho^2 - 2 \lambda \rho + 1}}{2 \lambda} : 1, \frac{\lambda \rho + 1}{2 \lambda} + \frac{\sqrt{4 \delta \lambda^2 - 4 \delta \lambda + \lambda^2 \rho^2 - 2 \lambda \rho + 1}}{2 \lambda} : 1 \right\} \]

\[H_1.\text{eigenvects()} \]

\[\begin{bmatrix} \left(\frac{\lambda \rho + 1}{2 \lambda} - \frac{\sqrt{4 \delta \lambda^2 - 4 \delta \lambda + \lambda^2 \rho^2 - 2 \lambda \rho + 1}}{2 \lambda} \right), 1, \left[\frac{\lambda(\frac{\lambda+1}{\lambda} - \frac{\sqrt{4 \delta \lambda^2 - 4 \delta \lambda + \lambda^2 \rho^2 - 2 \lambda \rho + 1}}{\lambda-1} \right)}{\lambda-1} - \frac{1}{\lambda-1} \right), \left(\frac{\lambda \rho + 1}{2 \lambda} + \frac{\sqrt{4 \delta \lambda^2 - 4 \delta \lambda}}{2 \lambda} \right) \right] \]

Now let’s compute \(H \) when \(\delta \) is zero.

\[H_2 = \text{Matrix}([[\rho, 0], [-(1 - \lambda) / \lambda, \lambda ** -1]]) \]

\[H_2 \]

\[\begin{bmatrix} \rho & 0 \\ \frac{\lambda-1}{\lambda} & \frac{1}{\lambda} \end{bmatrix} \]
Below we do induce SymPy to do the following fun things for us analytically:

1. We compute the matrix Q whose first column is the eigenvector associated with ρ. and whose second column is the eigenvector associated with λ^{-1}.
2. We use SymPy to compute the inverse Q^{-1} of Q (both in symbols).
3. We use SymPy to compute $Q_{21}Q_{11}^{-1}$ (in symbols).
4. Where Q_{ij} denotes the (i, j) component of Q^{-1}, we use SymPy to compute $-(Q^{22})^{-1}Q^{21}$ (again in symbols)

```python
# construct Q
vec = []
for i, (eigval, _, eigvec) in enumerate(H2.eigenvects()):
    vec.append(eigvec[0])
    if eigval == \rho:
        ind = i
Q = vec[ind].col_insert(1, vec[1-ind])

Q

\[
\begin{bmatrix}
\frac{\lambda\rho-1}{\lambda-1} & 0 \\
1 & 1
\end{bmatrix}
\]

$Q^{-1}$

\[
Q^{-1} = Q ** (-1)
\]

$Q_{21}Q_{11}^{-1}$

\[
\begin{bmatrix}
\frac{\lambda-1}{\lambda-1} & 0 \\
\frac{1}{\lambda\rho-1} & 1
\end{bmatrix}
\]
\[
\frac{\lambda - 1}{\lambda \rho - 1}
\]

\[-(Q^{22})^{-1}Q^{21}\]

\[-\frac{Q_{\text{inv}[1, 0]}}{Q_{\text{inv}[1, 1]}}\]

\[-\frac{1 - \lambda}{\lambda \rho - 1}\]
In addition to what's in Anaconda, this lecture will need the following libraries:

```python
!pip install quantecon
```

## 70.1 Overview

This lecture describes the concept of Markov perfect equilibrium.

Markov perfect equilibrium is a key notion for analyzing economic problems involving dynamic strategic interaction, and a cornerstone of applied game theory.

In this lecture, we teach Markov perfect equilibrium by example.

We will focus on settings with

- two players
- quadratic payoff functions
- linear transition rules for the state

Other references include chapter 7 of [LS18].

Let's start with some standard imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import quantecon asqe
```
70.2 Background

Markov perfect equilibrium is a refinement of the concept of Nash equilibrium. It is used to study settings where multiple decision-makers interact non-cooperatively over time, each pursuing its own objective.

The agents in the model face a common state vector, the time path of which is influenced by – and influences – their decisions.

In particular, the transition law for the state that confronts each agent is affected by decision rules of other agents.

Individual payoff maximization requires that each agent solve a dynamic programming problem that includes this transition law.

Markov perfect equilibrium prevails when no agent wishes to revise its policy, taking as given the policies of all other agents.

Well known examples include

- Choice of price, output, location or capacity for firms in an industry (e.g., [EP95], [Rya12], [DS10]).
- Rate of extraction from a shared natural resource, such as a fishery (e.g., [LM80], [VL11]).

Let’s examine a model of the first type.

70.2.1 Example: A Duopoly Model

Two firms are the only producers of a good, the demand for which is governed by a linear inverse demand function

\[ p = a_0 - a_1 (q_1 + q_2) \]  

(70.1)

Here \( p = p_t \) is the price of the good, \( q_i = q_{it} \) is the output of firm \( i = 1, 2 \) at time \( t \) and \( a_0 > 0, a_1 > 0 \).

In (70.1) and what follows,

- the time subscript is suppressed when possible to simplify notation
- \( \hat{x} \) denotes a next period value of variable \( x \)

Each firm recognizes that its output affects total output and therefore the market price.

The one-period payoff function of firm \( i \) is price times quantity minus adjustment costs:

\[ \pi_i = pq_i - \gamma (\hat{q}_i - q_i)^2, \quad \gamma > 0, \]  

(70.2)

Substituting the inverse demand curve (70.1) into (70.2) lets us express the one-period payoff as

\[ \pi_i(q_i, q_{-i}, \hat{q}_i) = a_0 q_i - a_1 q_i^2 - a_1 q_i q_{-i} - \gamma (\hat{q}_i - q_i)^2, \]  

(70.3)

where \( q_{-i} \) denotes the output of the firm other than \( i \).

The objective of the firm is to maximize \( \sum_{t=0}^{\infty} \beta^t \pi_{it} \).

Firm \( i \) chooses a decision rule that sets next period quantity \( \hat{q}_i \) as a function \( f_i \) of the current state \( (q_i, q_{-i}) \).

An essential aspect of a Markov perfect equilibrium is that each firm takes the decision rule of the other firm as known and given.

Given \( f_{-i} \), the Bellman equation of firm \( i \) is

\[ v_i(q_i, q_{-i}) = \max_{\hat{q}_i} \{ \pi_i(q_i, q_{-i}, \hat{q}_i) + \beta v_i(\hat{q}_i, f_{-i}(q_{-i}, q_i)) \} \]  

(70.4)
Definition A Markov perfect equilibrium of the duopoly model is a pair of value functions \((v_1, v_2)\) and a pair of policy functions \((f_1, f_2)\) such that, for each \(i \in \{1, 2\}\) and each possible state,

- The value function \(v_i\) satisfies Bellman equation (70.4).
- The maximizer on the right side of (70.4) equals \(f_i(q_i, q_{-i})\).

The adjective “Markov” denotes that the equilibrium decision rules depend only on the current values of the state variables, not other parts of their histories.

“Perfect” means complete, in the sense that the equilibrium is constructed by backward induction and hence builds in optimizing behavior for each firm at all possible future states.

- These include many states that will not be reached when we iterate forward on the pair of equilibrium strategies \(f_i\) starting from a given initial state.

70.2.2 Computation

One strategy for computing a Markov perfect equilibrium is iterating to convergence on pairs of Bellman equations and decision rules.

In particular, let \(v_j^i, f_j^i\) be the value function and policy function for firm \(i\) at the \(j\)-th iteration. Imagine constructing the iterates

\[
v_i^{j+1}(q_i, q_{-i}) = \max_{\hat{q}_i} \left\{ \pi_i(q_i, q_{-i}, \hat{q}_i) + \beta v_j^i(\hat{q}_i, f_{-i}(q_{-i}, q_i)) \right\}
\]

(70.5)

These iterations can be challenging to implement computationally.

However, they simplify for the case in which one-period payoff functions are quadratic and transition laws are linear — which takes us to our next topic.

70.3 Linear Markov Perfect Equilibria

As we saw in the duopoly example, the study of Markov perfect equilibria in games with two players leads us to an interrelated pair of Bellman equations.

In linear-quadratic dynamic games, these “stacked Bellman equations” become “stacked Riccati equations” with a tractable mathematical structure.

We’ll lay out that structure in a general setup and then apply it to some simple problems.

70.3.1 Coupled Linear Regulator Problems

We consider a general linear-quadratic regulator game with two players.

For convenience, we’ll start with a finite horizon formulation, where \(t_0\) is the initial date and \(t_1\) is the common terminal date.

Player \(i\) takes \(\{u_{-it}\}\) as given and minimizes

\[
\sum_{t=t_0}^{t_1-1} \beta^{t-t_0} \left\{ x_t^R x_t + u_t^Q u_t + u_{-it}^S u_{-it} + 2 x_t^W u_{it} + 2 u_{-it}^M u_{it} \right\}
\]

(70.6)

while the state evolves according to

\[
x_{t+1} = Ax_t + B_1 u_{1t} + B_2 u_{2t}
\]

(70.7)
Here
- $x_t$ is an $n \times 1$ state vector and $u_{it}$ is a $k_i \times 1$ vector of controls for player $i$
- $R_i$ is $n \times n$
- $S_i$ is $k_{-i} \times k_{-i}$
- $Q_i$ is $k_i \times k_i$
- $W_i$ is $n \times k_i$
- $M_i$ is $k_{-i} \times k_{-i}$
- $A$ is $n \times n$
- $B_i$ is $n \times k_i$

### 70.3.2 Computing Equilibrium

We formulate a linear Markov perfect equilibrium as follows.

Player $i$ employs linear decision rules $u_{it} = -F_{it}x_t$, where $F_{it}$ is a $k_i \times n$ matrix.

A Markov perfect equilibrium is a pair of sequences $\{F_{1t}, F_{2t}\}$ over $t = t_0, \ldots, t_1 - 1$ such that
- $\{F_{1t}\}$ solves player 1’s problem, taking $\{F_{2t}\}$ as given, and
- $\{F_{2t}\}$ solves player 2’s problem, taking $\{F_{1t}\}$ as given

If we take $u_{2t} = -F_{2t}x_t$ and substitute it into (70.6) and (70.7), then player 1’s problem becomes minimization of

$$
\sum_{t=t_0}^{t_1-1} \beta^{t-t_0} \{x_t'\Pi_{1t}x_t + u_{1t}'Q_1u_{1t} + 2u_{1t}'\Gamma_{1t}x_t\}
$$

subject to

$$
x_{t+1} = \Lambda_{1t}x_t + B_1u_{1t},
$$

where
- $\Lambda_{it} := A - B_{-i}F_{it}$
- $\Pi_{it} := R_i + F'_{-it}S_iF_{-it}$
- $\Gamma_{it} := W'_i - M'_iF_{-it}$

This is an LQ dynamic programming problem that can be solved by working backwards.

Decision rules that solve this problem are

$$
F_{1t} = (Q_1 + \beta B_1'P_{1t+1}B_1)^{-1}(\beta B_1'P_{1t+1}\Lambda_{1t} + \Gamma_{1t})
$$

where $P_{1t}$ solves the matrix Riccati difference equation

$$
P_{1t} = \Pi_{1t} - (\beta B_1'P_{1t+1}\Lambda_{1t} + \Gamma_{1t})'(Q_1 + \beta B_1'P_{1t+1}B_1)^{-1}(\beta B_1'P_{1t+1}\Lambda_{1t} + \Gamma_{1t}) + \beta \Lambda_{1t}'P_{1t+1}\Lambda_{1t} \tag{70.11}
$$

Similarly, decision rules that solve player 2’s problem are

$$
F_{2t} = (Q_2 + \beta B_2'P_{2t+1}B_2)^{-1}(\beta B_2'P_{2t+1}\Lambda_{2t} + \Gamma_{2t})
$$

where $P_{2t}$ solves

$$
P_{2t} = \Pi_{2t} - (\beta B_2'P_{2t+1}\Lambda_{2t} + \Gamma_{2t})'(Q_2 + \beta B_2'P_{2t+1}B_2)^{-1}(\beta B_2'P_{2t+1}\Lambda_{2t} + \Gamma_{2t}) + \beta \Lambda_{2t}'P_{2t+1}\Lambda_{2t} \tag{70.13}
$$
Quantitative Economics with Python

Here, in all cases \( t = t_0, \ldots, t_1 - 1 \) and the terminal conditions are \( P_{it_1} = 0 \).

The solution procedure is to use equations (70.10), (70.11), (70.12), and (70.13), and “work backwards” from time \( t_1 - 1 \).

Since we’re working backward, \( P_{1t+1} \) and \( P_{2t+1} \) are taken as given at each stage.

Moreover, since

- some terms on the right-hand side of (70.10) contain \( F_{2t} \)
- some terms on the right-hand side of (70.12) contain \( F_{1t} \)

we need to solve these \( k_1 + k_2 \) equations simultaneously.

### Key Insight

A key insight is that equations (70.10) and (70.12) are linear in \( F_{1t} \) and \( F_{2t} \).

After these equations have been solved, we can take \( F_{it} \) and solve for \( P_{it} \) in (70.11) and (70.13).

### Infinite Horizon

We often want to compute the solutions of such games for infinite horizons, in the hope that the decision rules \( F_{it} \) settle down to be time-invariant as \( t_1 \rightarrow +\infty \).

In practice, we usually fix \( t_1 \) and compute the equilibrium of an infinite horizon game by driving \( t_0 \rightarrow -\infty \).

This is the approach we adopt in the next section.

#### 70.3.3 Implementation

We use the function `nmash` from `QuantEcon.py` that computes a Markov perfect equilibrium of the infinite horizon linear-quadratic dynamic game in the manner described above.

### 70.4 Application

Let’s use these procedures to treat some applications, starting with the duopoly model.

#### 70.4.1 A Duopoly Model

To map the duopoly model into coupled linear-quadratic dynamic programming problems, define the state and controls as

\[
x_t := \begin{bmatrix} 1 \\ q_{1t} \\ q_{2t} \end{bmatrix} \quad \text{and} \quad u_{it} := q_{i,t+1} - q_{it}, \quad i = 1, 2
\]

If we write

\[
x_t' R_i x_t + u_{it}' Q_i u_{it}
\]

where \( Q_1 = Q_2 = \gamma \),

\[
R_1 := \begin{bmatrix} 0 & -\frac{a_0}{2} & 0 \\ -\frac{a_0}{2} & a_1 & \frac{a_1}{2} \\ 0 & \frac{a_1}{2} & 0 \end{bmatrix} \quad \text{and} \quad R_2 := \begin{bmatrix} 0 & 0 & -\frac{a_0}{2} \\ 0 & a_1 & \frac{a_1}{2} \\ -\frac{a_0}{2} & \frac{a_1}{2} & 0 \end{bmatrix}
\]
then we recover the one-period payoffs in expression (70.3).

The law of motion for the state \( x_t \) is \( x_{t+1} = Ax_t + B_1 u_{1t} + B_2 u_{2t} \) where

\[
A := \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad B_1 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad B_2 := \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

The optimal decision rule of firm \( i \) will take the form \( u_{it} = -F_i x_t \), inducing the following closed-loop system for the evolution of \( x \) in the Markov perfect equilibrium:

\[
x_{t+1} = (A - B_1 F_1 - B_1 F_2)x_t \tag{70.14}
\]

### 70.4.2 Parameters and Solution

Consider the previously presented duopoly model with parameter values of:
- \( a_0 = 10 \)
- \( a_1 = 2 \)
- \( \beta = 0.96 \)
- \( \gamma = 12 \)

From these, we compute the infinite horizon MPE using the preceding code:

```python
import numpy as np
import quantecon as qe

Parameters
a0 = 10.0
a1 = 2.0
beta = 0.96
gamma = 12.0

In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]))
B2 = np.array([[0.], [0.], [1.]]

R1 = np.array([[0., -a0 / 2., 0.],
 [-a0 / 2., a1, a1 / 2.],
 [0., a1 / 2., 0.]])

R2 = np.array([[0., 0., -a0 / 2.],
 [0., 0., a1 / 2.],
 [-a0 / 2., a1 / 2., a1]])

Q1 = Q2 = gamma
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, beta=beta)
```

(continues on next page)
# Display policies

```python
print("Computed policies for firm 1 and firm 2:
")
print(f"F1 = \{F1\}")
print(f"F2 = \{F2\}")
print("\n")
```

Running the code produces the following output.

One way to see that $F_i$ is indeed optimal for firm $i$ taking $F_2$ as given is to use QuantEcon.py’s LQ class.

In particular, let’s take $F_2$ as computed above, plug it into (70.8) and (70.9) to get firm 1’s problem and solve it using LQ.

We hope that the resulting policy will agree with $F_1$ as computed above

```python
A1 = A - B2 @ F2
lq1 = qe.LQ(Q1, R1, A1, B1, beta=β)
F1_ih, F1_ih, d = lq1.stationary_values()
F1_ih
```

```
array([-0.66846613, 0.29512482, 0.07584666])
```

This is close enough for rock and roll, as they say in the trade.

Indeed, np.allclose agrees with our assessment

```python
np.allclose(F1, F1_ih)
```

```
True
```

### 70.4.3 Dynamics

Let’s now investigate the dynamics of price and output in this simple duopoly model under the MPE policies.

Given our optimal policies $F_1$ and $F_2$, the state evolves according to (70.14).

The following program

- imports $F_1$ and $F_2$ from the previous program along with all parameters.
- computes the evolution of $x_t$ using (70.14).
- extracts and plots industry output $q_t = q_{1t} + q_{2t}$ and price $p_t = a_0 - a_1 q_t$.

```python
AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n-1):
 x[:, t+1] = AF @ x[:, t]
```

(continues on next page)
```python
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(q, 'b-', lw=2, alpha=0.75, label='total output')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='price')
ax.set_title('Output and prices, duopoly MPE')
ax.legend(frameon=False)
plt.show()
```

Note that the initial condition has been set to $q_{10} = q_{20} = 1.0$.

To gain some perspective we can compare this to what happens in the monopoly case.

The first panel in the next figure compares output of the monopolist and industry output under the MPE, as a function of time.

The second panel shows analogous curves for price.

Here parameters are the same as above for both the MPE and monopoly solutions.

The monopolist initial condition is $q_0 = 2.0$ to mimic the industry initial condition $q_{10} = q_{20} = 1.0$ in the MPE case.

As expected, output is higher and prices are lower under duopoly than monopoly.
70.4. Application
70.5 Exercises

Exercise 70.5.1

Replicate the *pair of figures* showing the comparison of output and prices for the monopolist and duopoly under MPE. Parameters are as in duopoly_mpe.py and you can use that code to compute MPE policies under duopoly. The optimal policy in the monopolist case can be computed using `QuantEcon.py`'s LQ class.

Solution to Exercise 70.5.1

First, let's compute the duopoly MPE under the stated parameters

```python
== Parameters ==
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

== In LQ form ==
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])
R1 = [[0., -a0/2, 0.],
 [-a0 / 2., a1, a1 / 2.],
 [0., a1 / 2., 0.]]
R2 = [[0., 0., -a0 / 2],
 [0., 0., a1 / 2.],
 [-a0 / 2, a1 / 2., a1]]
Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

== Solve using QE's nnash function ==
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, beta=β)
```

Now we evaluate the time path of industry output and prices given initial condition $q_{10} = q_{20} = 1$.

```python
AF = A - B1 @ F1 - B2 @ F2
n = 20
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n-1):
 x[:, t+1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE
```

Next, let's have a look at the monopoly solution.
For the state and control, we take
\[ x_t = q_t - \bar{q} \quad \text{and} \quad u_t = q_{t+1} - q_t \]

To convert to an LQ problem we set
\[ R = a_1 \quad \text{and} \quad Q = \gamma \]
in the payoff function \( x_t'Rx_t + u_t'Qu_t \) and
\[ A = B = 1 \]
in the law of motion \( x_{t+1} = Ax_t + Bu_t \).

We solve for the optimal policy \( u_t = -Fx_t \) and track the resulting dynamics of \( \{q_t\} \), starting at \( q_0 = 2.0 \).

```python
R = a1
Q = \gamma
A = B = 1
lq_alt = qe.LQ(Q, R, A, B, beta=\beta)
P, F, d = lq_alt.stationary_values()
q_bar = a0 / (2.0 * a1)
qm = np.empty(n)
qm[0] = 2
x0 = qm[0] - q_bar
x = x0
for i in range(1, n):
 x = A * x - B * F * x
 qm[i] = float(x) + q_bar
pm = a0 - a1 * qm
```

Let’s have a look at the different time paths

```python
fig, axes = plt.subplots(2, 1, figsize=(9, 9))
ax = axes[0]
ax.plot(qm, 'b-', lw=2, alpha=0.75, label='monopolist output')
ax.plot(q, 'g-', lw=2, alpha=0.75, label='MPE total output')
ax.set(ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)
ax = axes[1]
ax.plot(pm, 'b-', lw=2, alpha=0.75, label='monopolist price')
ax.plot(p, 'g-', lw=2, alpha=0.75, label='MPE price')
ax.set(ylim=(2, 4))
ax.legend(loc='upper right', frameon=0)
plt.show()
```
Exercise 70.5.2

In this exercise, we consider a slightly more sophisticated duopoly problem.

It takes the form of infinite horizon linear-quadratic game proposed by Judd [Jud90].

Two firms set prices and quantities of two goods interrelated through their demand curves.

Relevant variables are defined as follows:

- $I_{it}$ = inventories of firm $i$ at beginning of $t$
- $q_{it}$ = production of firm $i$ during period $t$
- $p_{it}$ = price charged by firm $i$ during period $t$
- $S_{it}$ = sales made by firm $i$ during period $t$
- $E_{it}$ = costs of production of firm $i$ during period $t$
$C_{it}$ = costs of carrying inventories for firm $i$ during $t$

The firms’ cost functions are

- $C_{it} = c_{i1} + c_{i2}I_{it} + 0.5c_{i3}I_{it}^2$
- $E_{it} = e_{i1} + e_{i2}q_{it} + 0.5e_{i3}q_{it}^2$ where $e_{ij}, c_{ij}$ are positive scalars

Inventories obey the laws of motion

$$I_{i,t+1} = (1 - \delta)I_{it} + q_{it} - S_{it}$$

Demand is governed by the linear schedule

$$S_t = Dp_{it} + b$$

where

- $S_t = [S_{1t} \ S_{2t}]'$
- $D$ is a $2 \times 2$ negative definite matrix and
- $b$ is a vector of constants

Firm $i$ maximizes the undiscounted sum

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} (p_{it}S_{it} - E_{it} - C_{it})$$

We can convert this to a linear-quadratic problem by taking

$$u_{it} = \begin{bmatrix} p_{it} \\ q_{it} \end{bmatrix} \quad \text{and} \quad x_t = \begin{bmatrix} I_{1t} \\ I_{2t} \\ 1 \end{bmatrix}$$

Decision rules for price and quantity take the form $u_{it} = -F_ix_t$.

The Markov perfect equilibrium of Judd’s model can be computed by filling in the matrices appropriately.

The exercise is to calculate these matrices and compute the following figures.

The first figure shows the dynamics of inventories for each firm when the parameters are

$\delta = 0.02$
$D = \text{np.array([[[-1, 0.5], [0.5, -1]])}}$
$b = \text{np.array([[25, 25]])}$
$c1 = c2 = \text{np.array([[1, -2, 1]])}$
$e1 = e2 = \text{np.array([[10, 10, 3]])}$

Inventories trend to a common steady state.

If we increase the depreciation rate to $\delta = 0.05$, then we expect steady state inventories to fall.

This is indeed the case, as the next figure shows.

In this exercise, reproduce the figure when $\delta = 0.02$.

**Solution to Exercise 70.5.2**

We treat the case $\delta = 0.02$
Chapter 70. Markov Perfect Equilibrium

\[ \delta = 0.02 \]

\[ \delta = 0.05 \]
\( \delta = 0.02 \)
\[
D = \text{np.array}([[-1, 0.5], [0.5, -1]])
\]
\[
b = \text{np.array}([25, 25])
\]
\[
c1 = c2 = \text{np.array}([1, -2, 1])
\]
\[
e1 = e2 = \text{np.array}([10, 10, 3])
\]
\[
\delta_1 = 1 - \delta
\]

Recalling that the control and state are

\[
u_{it} = \begin{bmatrix} p_{it} \\ q_{it} \end{bmatrix} \quad \text{and} \quad x_t = \begin{bmatrix} I_{1t} \\ I_{2t} \\ 1 \end{bmatrix}
\]

we set up the matrices as follows:

```python
== Create matrices needed to compute the Nash feedback equilibrium ==

A = np.array([[\delta_1, 0, -\delta_1 * b[0]],
 [0, \delta_1, -\delta_1 * b[1]],
 [0, 0, 1]])

B1 = \delta_1 * np.array([[-D[0, 0]],
 [0, -D[1, 0]],
 [0, 0]])

B2 = \delta_1 * np.array([[0, -D[0, 1]],
 [1, -D[1, 1]],
 [0, 0]])

R1 = -np.array([[0.5 * c1[2], 0, 0.5 * c1[1]],
 [0, 0, 0],
 [0.5 * c1[1], 0, c1[0]])]

R2 = -np.array([[0, 0, 0],
 [0, 0.5 * c2[2], 0.5 * c2[1]],
 [0, 0.5 * c2[1], c2[0]]])

Q1 = np.array([[0, 0],
 [0, D[0, 0]]])

Q2 = np.array([[0, 0],
 [0, D[1, 1]]])

S1 = np.zeros((2, 2))
S2 = np.copy(S1)

W1 = np.array([[0, 0],
 [0, 0],
 [-0.5 * e1[1], b[0] / 2.1]])

W2 = np.array([[0, 0],
 [0, 0],
 [-0.5 * e2[1], b[1] / 2.1]])

M1 = np.array([[0, 0],
 [0, D[0, 1] / 2.1]])

M2 = np.copy(M1)

We can now compute the equilibrium using `qe.nnash`

```python
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1, Q2, S1,
                          W1, W2, M1, M2)
```

(continues on next page)
S2, W1, W2, M1, M2)

print("Firm 1's feedback rule:")
print(F1)

print("Firm 2's feedback rule:")
print(F2)

Firm 1's feedback rule:

[[2.4366582e-01 2.72360627e-02 -6.82788293e+00]
 [3.92370734e-01 1.39696451e-01 -3.77341073e+01]]

Firm 2's feedback rule:

[[2.72360627e-02 2.4366582e-01 -6.82788293e+00]
 [1.39696451e-01 3.92370734e-01 -3.77341073e+01]]

Now let's look at the dynamics of inventories, and reproduce the graph corresponding to $\delta = 0.02$

AF = A - B1 @ F1 - B2 @ F2
n = 25
x = np.empty((3, n))
x[:, 0] = 2, 0, 1
for t in range(n-1):
 x[:, t+1] = AF @ x[:, t]
I1 = x[0, :]
I2 = x[1, :]
fig, ax = plt.subplots(figsize=(9, 5))
ax.plot(I1, 'b-', lw=2, alpha=0.75, label='inventories, firm 1')
ax.plot(I2, 'g-', lw=2, alpha=0.75, label='inventories, firm 2')
ax.set_title(rf'\delta = {\delta}$')
ax.legend()
plt.show()
71.1 Overview

In this lecture, we study a simplified version of an uncertainty traps model of Fajgelbaum, Schaal and Taschereau-Dumouchel [FSTD15].

The model features self-reinforcing uncertainty that has big impacts on economic activity.

In the model,

- Fundamentals vary stochastically and are not fully observable.
- At any moment there are both active and inactive entrepreneurs; only active entrepreneurs produce.
- Agents – active and inactive entrepreneurs – have beliefs about the fundamentals expressed as probability distributions.
- Greater uncertainty means greater dispersions of these distributions.
- Entrepreneurs are risk-averse and hence less inclined to be active when uncertainty is high.
- The output of active entrepreneurs is observable, supplying a noisy signal that helps everyone inside the model infer fundamentals.
- Entrepreneurs update their beliefs about fundamentals using Bayes’ Law, implemented via Kalman filtering.

Uncertainty traps emerge because:

- High uncertainty discourages entrepreneurs from becoming active.
- A low level of participation – i.e., a smaller number of active entrepreneurs – diminishes the flow of information about fundamentals.
• Less information translates to higher uncertainty, further discouraging entrepreneurs from choosing to be active, and so on.

Uncertainty traps stem from a positive externality: high aggregate economic activity levels generates valuable information.

Let’s start with some standard imports:

```python
# QuantitativeEconomicswithPython

Uncertaintytrapsstemfromapositiveexternality: highaggregateeconomicactivitylevelsgeneratesvaluableinformation.

Let’sstartwithsomestandardimports:

```matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
import itertools
```

### 71.2 The Model

The original model described in [FSTD15] has many interesting moving parts.

Here we examine a simplified version that nonetheless captures many of the key ideas.

#### 71.2.1 Fundamentals

The evolution of the fundamental process \( \{\theta_t\} \) is given by

\[
\theta_{t+1} = \rho \theta_t + \sigma \theta w_{t+1}
\]

where

- \( \sigma > 0 \) and \( 0 < \rho < 1 \)
- \( \{w_t\} \) is IID and standard normal

The random variable \( \theta_t \) is not observable at any time.

#### 71.2.2 Output

There is a total \( \bar{M} \) of risk-averse entrepreneurs.

Output of the \( m \)-th entrepreneur, conditional on being active in the market at time \( t \), is equal to

\[
x_m = \theta + \epsilon_m \quad \text{where} \quad \epsilon_m \sim N(0, \gamma_x^{-1})
\]  

(71.1)

Here the time subscript has been dropped to simplify notation.

The inverse of the shock variance, \( \gamma_x \), is called the shock’s precision.

The higher is the precision, the more informative \( x_m \) is about the fundamental.

Output shocks are independent across time and firms.
71.2.3 Information and Beliefs

All entrepreneurs start with identical beliefs about $\theta_0$. Signals are publicly observable and hence all agents have identical beliefs always. Dropping time subscripts, beliefs for current $\theta$ are represented by the normal distribution $N(\mu, \gamma^{-1})$. Here $\gamma$ is the precision of beliefs; its inverse is the degree of uncertainty. These parameters are updated by Kalman filtering.

Let

- $\mathcal{M} \subset \{1, \ldots, \tilde{M}\}$ denote the set of currently active firms.
- $M := |\mathcal{M}|$ denote the number of currently active firms.
- $X$ be the average output $\frac{1}{M} \sum_{m \in \mathcal{M}} x_m$ of the active firms.

With this notation and primes for next period values, we can write the updating of the mean and precision via

$$\mu' = \rho \gamma \mu + M \gamma_x X$$

$$\gamma' = \left( \frac{\rho^2 \gamma^2 + M \gamma_x^2 + \sigma_\theta^2}{\gamma + M \gamma_x} \right)^{-1}$$

These are standard Kalman filtering results applied to the current setting.

Exercise 1 provides more details on how (71.2) and (71.3) are derived and then asks you to fill in remaining steps.

The next figure plots the law of motion for the precision in (71.3) as a 45 degree diagram, with one curve for each $M \in \{0, \ldots, 6\}$. The other parameter values are $\rho = 0.99, \gamma_x = 0.5, \sigma_\theta = 0.5$.

Points where the curves hit the 45 degree lines are long-run steady states for precision for different values of $M$. Thus, if one of these values for $M$ remains fixed, a corresponding steady state is the equilibrium level of precision

- high values of $M$ correspond to greater information about the fundamental, and hence more precision in steady state
- low values of $M$ correspond to less information and more uncertainty in steady state

In practice, as we’ll see, the number of active firms fluctuates stochastically.

71.2.4 Participation

Omitting time subscripts once more, entrepreneurs enter the market in the current period if

$$\mathbb{E}[u(x_m - F_m)] > c$$

Here

- the mathematical expectation of $x_m$ is based on (71.1) and beliefs $N(\mu, \gamma^{-1})$ for $\theta$
- $F_m$ is a stochastic but pre-visible fixed cost, independent across time and firms
- $c$ is a constant reflecting opportunity costs
The statement that $F_m$ is pre-visible means that it is realized at the start of the period and treated as a constant in (71.4). The utility function has the constant absolute risk aversion form

$$u(x) = \frac{1}{a} (1 - \exp(-ax)) \quad (71.5)$$

where $a$ is a positive parameter.

Combining (71.4) and (71.5), entrepreneur $m$ participates in the market (or is said to be active) when

$$\frac{1}{a} \{1 - E[\exp(-a(\theta + \epsilon_m - F_m))]\} > c$$

Using standard formulas for expectations of lognormal random variables, this is equivalent to the condition

$$\psi(\mu, \gamma, F_m) := \frac{1}{a} \left( 1 - \exp \left( -a\mu + aF_m + \frac{a^2 (1 + \frac{1}{\gamma})}{2} \right) \right) - c > 0 \quad (71.6)$$

### 71.3 Implementation

We want to simulate this economy.

As a first step, let’s put together a class that bundles

- the parameters, the current value of $\theta$ and the current values of the two belief parameters $\mu$ and $\gamma$
- methods to update $\theta$, $\mu$ and $\gamma$, as well as to determine the number of active firms and their outputs

The updating methods follow the laws of motion for $\theta$, $\mu$ and $\gamma$ given above. The method to evaluate the number of active firms generates $F_1, \ldots, F_M$ and tests condition (71.6) for each firm.

The `init` method encodes as default values the parameters we’ll use in the simulations below

```python
class UncertaintyTrapEcon:
 def __init__(self,
 a=1.5, # Risk aversion
 γ_x=0.5, # Production shock precision
 p=0.99, # Correlation coefficient for θ
 σ_θ=0.5, # Standard dev of θ shock
 num_firms=100, # Number of firms
 σ_F=1.5, # Standard dev of fixed costs
 c=-420, # External opportunity cost
 μ_init=0, # Initial value for μ
 γ_init=4, # Initial value for γ
 θ_init=0): # Initial value for θ
 # == Record values ==#
 self.a, self.γ_x, self.p, self.σ_θ = a, γ_x, p, σ_θ
 self.num_firms, self.σ_F, self.c = num_firms, σ_F, c
 self.σ_x = np.sqrt(1/γ_x)
 # == Initialize states ==#
 self.γ, self.μ, self.θ = γ_init, μ_init, θ_init

 def ψ(self, F):
 templ = -self.a * (self.μ - F)
```

(continues on next page)
In the results below we use this code to simulate time series for the major variables.

### Results

Let’s look first at the dynamics of $\mu$, which the agents use to track $\theta$

We see that $\mu$ tracks $\theta$ well when there are sufficient firms in the market.

However, there are times when $\mu$ tracks $\theta$ poorly due to insufficient information.

These are episodes where the uncertainty traps take hold.

During these episodes

- precision is low and uncertainty is high
- few firms are in the market

To get a clearer idea of the dynamics, let’s look at all the main time series at once, for a given set of shocks

Notice how the traps only take hold after a sequence of bad draws for the fundamental.
Thus, the model gives us a propagation mechanism that maps bad random draws into long downturns in economic activity.

### 71.5 Exercises

#### Exercise 71.5.1

Fill in the details behind (71.2) and (71.3) based on the following standard result (see, e.g., p. 24 of [YS05]).

**Fact** Let \( \mathbf{x} = (x_1, \ldots, x_M) \) be a vector of IID draws from common distribution \( N(\theta, 1/\gamma_x) \) and let \( \bar{x} \) be the sample mean. If \( \gamma_x \) is known and the prior for \( \theta \) is \( N(\mu, 1/\gamma) \), then the posterior distribution of \( \theta \) given \( \mathbf{x} \) is

\[
\pi(\theta \mid \mathbf{x}) = N(\mu_0, 1/\gamma_0)
\]

where

\[
\mu_0 = \frac{\mu \gamma + M \bar{x} \gamma_x}{\gamma + M \gamma_x} \quad \text{and} \quad \gamma_0 = \gamma + M \gamma_x
\]

#### Solution to Exercise 71.5.1

This exercise asked you to validate the laws of motion for \( \gamma \) and \( \mu \) given in the lecture, based on the stated result about Bayesian updating in a scalar Gaussian setting. The stated result tells us that after observing average output \( X \) of the \( M \) firms, our posterior beliefs will be

\[
N(\mu_0, 1/\gamma_0)
\]
Chapter 71. Uncertainty Traps
where

\[ \mu_0 = \mu \gamma + \frac{M}{\gamma + M \gamma_x} \quad \text{and} \quad \gamma_0 = \gamma + M \gamma_x \]

If we take a random variable \( \theta \) with this distribution and then evaluate the distribution of \( \rho \theta + \sigma \theta \) where \( w \) is independent and standard normal, we get the expressions for \( \mu' \) and \( \gamma' \) given in the lecture.

**Exercise 71.5.2**

Modulo randomness, replicate the simulation figures shown above.

- Use the parameter values listed as defaults in the `init` method of the `UncertaintyTrapEcon` class.

**Solution to Exercise 71.5.2**

First, let’s replicate the plot that illustrates the law of motion for precision, which is

\[ \gamma_{t+1} = \left( \frac{\rho^2}{\gamma_t + M \gamma_x} + \sigma_\theta^2 \right)^{-1} \]

Here \( M \) is the number of active firms. The next figure plots \( \gamma_{t+1} \) against \( \gamma_t \) on a 45 degree diagram for different values of \( M \)

```python
econ = UncertaintyTrapEcon()
ρ, σ_θ, γ_x = econ.ρ, econ.σ_θ, econ.γ_x # Simplify names
γ = np.linspace(1e-10, 3, 200) # γ grid
fig, ax = plt.subplots(figsize=(9, 9)) # 45 degree line
ax.plot(γ, γ, 'k-') # 45 degree line

for M in range(7):
 γ_next = 1 / (ρ**2 / (γ + M * γ_x) + σ_θ**2)
 label_string = f"\$M = {M}\$"
 ax.plot(γ, γ_next, lw=2, label=label_string)
ax.legend(loc='lower right', fontsize=14)
ax.set_xlabel(r"\γ", fontsize=16)
ax.set_ylabel(r"\γ", fontsize=16)
ax.grid()
plt.show()
```
The points where the curves hit the 45 degree lines are the long-run steady states corresponding to each $M$, if that value of $M$ was to remain fixed. As the number of firms falls, so does the long-run steady state of precision.

Next let’s generate time series for beliefs and the aggregates – that is, the number of active firms and average output.

```python
sim_length=2000

μ_vec = np.empty(sim_length)
θ_vec = np.empty(sim_length)
γ_vec = np.empty(sim_length)
X_vec = np.empty(sim_length)
M_vec = np.empty(sim_length)

μ_vec[0] = econ.μ
γ_vec[0] = econ.γ
θ_vec[0] = 0
```

(continues on next page)
\begin{verbatim}
# Record final values of aggregates
X, M = econ.gen_aggregates()
X_vec[-1] = X
M_vec[-1] = M

First, let's see how well \( \mu \) tracks \( \theta \) in these simulations
\end{verbatim}
Quantitative Economics with Python

Now let’s plot the whole thing together
fig, axes = plt.subplots(4, 1, figsize=(12, 20))
# Add some spacing
fig.subplots_adjust(hspace=0.3)
series = (θ_vec, μ_vec, γ_vec, M_vec)
names = r'$\theta$', r'$\mu$', r'$\gamma$', r'$M$'
for ax, vals, name in zip(axes, series, names):
# Determine suitable y limits
s_max, s_min = max(vals), min(vals)
s_range = s_max - s_min
y_max = s_max + s_range * 0.1
y_min = s_min - s_range * 0.1
ax.set_ylim(y_min, y_max)
# Plot series
ax.plot(range(sim_length), vals, alpha=0.6, lw=2)
ax.set_title(f"time series for {name}", fontsize=16)
ax.grid()
plt.show()

1238

Chapter 71. Uncertainty Traps


71.5. Exercises
If you run the code above you’ll get different plots, of course.

Try experimenting with different parameters to see the effects on the time series.

(It would also be interesting to experiment with non-Gaussian distributions for the shocks, but this is a big exercise since it takes us outside the world of the standard Kalman filter)
In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
```

### 72.1 Overview

In this lecture, we describe the structure of a class of models that build on work by Truman Bewley [Bew77]. We begin by discussing an example of a Bewley model due to Rao Aiyagari [Aiy94].

The model features

- Heterogeneous agents
- A single exogenous vehicle for borrowing and lending
- Limits on amounts individual agents may borrow

The Aiyagari model has been used to investigate many topics, including

- precautionary savings and the effect of liquidity constraints [Aiy94]
- risk sharing and asset pricing [HL96]
- the shape of the wealth distribution [BBZ15]
- etc., etc., etc.

Let’s start with some imports:
72.1.1 References

The primary reference for this lecture is [Aiy94].
A textbook treatment is available in chapter 18 of [LS18].
A continuous time version of the model by SeHyoun Ahn and Benjamin Moll can be found here.

72.2 The Economy

72.2.1 Households

Infinitely lived households/consumers face idiosyncratic income shocks. A unit interval of ex-ante identical households face a common borrowing constraint. The savings problem faced by a typical household is

\[
\max \mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

subject to

\[
a_{t+1} + c_t \leq wz_t + (1 + r)a_t \quad c_t \geq 0, \quad \text{and} \quad a_t \geq -B
\]

where

- \(c_t\) is current consumption
- \(a_t\) is assets
- \(z_t\) is an exogenous component of labor income capturing stochastic unemployment risk, etc.
- \(w\) is a wage rate
- \(r\) is a net interest rate
- \(B\) is the maximum amount that the agent is allowed to borrow

The exogenous process \(\{z_t\}\) follows a finite state Markov chain with given stochastic matrix \(P\).

The wage and interest rate are fixed over time.

In this simple version of the model, households supply labor inelastically because they do not value leisure.
72.3 Firms

Firms produce output by hiring capital and labor.
Firms act competitively and face constant returns to scale.
Since returns to scale are constant the number of firms does not matter.
Hence we can consider a single (but nonetheless competitive) representative firm.
The firm’s output is

\[ Y_t = A K_t^\alpha N^{1-\alpha} \]

where

• \(A\) and \(\alpha\) are parameters with \(A > 0\) and \(\alpha \in (0, 1)\)

• \(K_t\) is aggregate capital

• \(N\) is total labor supply (which is constant in this simple version of the model)
The firm’s problem is

\[ \max_{K, N} \left\{ AK_t^\alpha N^{1-\alpha} - (r + \delta) K - wN \right\} \]

The parameter \(\delta\) is the depreciation rate.
From the first-order condition with respect to capital, the firm’s inverse demand for capital is

\[ r = A \alpha \left( \frac{N}{K} \right)^{1-\alpha} - \delta \]

(72.1)
Using this expression and the firm’s first-order condition for labor, we can pin down the equilibrium wage rate as a function of \(r\) as

\[ w(r) = A(1 - \alpha)(A\alpha/(r + \delta))^{\alpha/(1-\alpha)} \]

(72.2)

72.3.1 Equilibrium

We construct a stationary rational expectations equilibrium (SREE).
In such an equilibrium

• prices induce behavior that generates aggregate quantities consistent with the prices

• aggregate quantities and prices are constant over time

In more detail, an SREE lists a set of prices, savings and production policies such that

• households want to choose the specified savings policies taking the prices as given

• firms maximize profits taking the same prices as given

• the resulting aggregate quantities are consistent with the prices; in particular, the demand for capital equals the supply

• aggregate quantities (defined as cross-sectional averages) are constant

In practice, once parameter values are set, we can check for an SREE by the following steps

1. pick a proposed quantity \(K\) for aggregate capital
2. determine corresponding prices, with interest rate \( r \) determined by (72.1) and a wage rate \( w(r) \) as given in (72.2)
3. determine the common optimal savings policy of the households given these prices
4. compute aggregate capital as the mean of steady state capital given this savings policy

If this final quantity agrees with \( K \) then we have a SREE.

### 72.4 Code

Let’s look at how we might compute such an equilibrium in practice.

To solve the household’s dynamic programming problem we’ll use the DiscreteDP class from QuantEcon.py.

Our first task is the least exciting one: write code that maps parameters for a household problem into the \( R \) and \( Q \) matrices needed to generate an instance of DiscreteDP.

Below is a piece of boilerplate code that does just this.

In reading the code, the following information will be helpful

- \( R \) needs to be a matrix where \( R[s, a] \) is the reward at state \( s \) under action \( a \).
- \( Q \) needs to be a three-dimensional array where \( Q[s, a, s'] \) is the probability of transitioning to state \( s' \) when the current state is \( s \) and the current action is \( a \).

(A more detailed discussion of DiscreteDP is available in the Discrete State Dynamic Programming lecture in the Advanced Quantitative Economics with Python lecture series.)

Here we take the state to be \( s_t := (a_t, z_t) \), where \( a_t \) is assets and \( z_t \) is the shock.

The action is the choice of next period asset level \( a_{t+1} \).

We use Numba to speed up the loops so we can update the matrices efficiently when the parameters change.

The class also includes a default set of parameters that we’ll adopt unless otherwise specified.

```python
class Household:
 """
 This class takes the parameters that define a household asset accumulation
 problem and computes the corresponding reward and transition matrices \(R \)
 and \(Q \) required to generate an instance of DiscreteDP, and thereby solve
 for the optimal policy.

 Comments on indexing: We need to enumerate the state space \(S \) as a sequence
 \(S = \{0, \ldots, n\} \). To this end, \((a_i, z_i) \) index pairs are mapped to \(s_i \)
 indices according to the rule
 \[
 s_i = a_i \times z\text{_size} + z_i
 \]
 To invert this map, use
 \[
 a_i = \frac{s_i}{z\text{_size}} \text{ (integer division)}
 \]
 \[
 z_i = s_i \mod z\text{_size}
 \]
 """

 def __init__(self,
 r=0.01, # Interest rate
 ...)
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
w=1.0, # Wages
β=0.96, # Discount factor
a_min=1e-10, # Minimum
Π=[[0.9, 0.1], [0.1, 0.9]], # Markov chain
z_vals=[0.1, 1.0], # Exogenous states
a_max=18, # Maximum
a_size=200):

 # Store values, set up grids over a and z
 self.r, self.w, self.β = r, w, β
 self.a_min, self.a_max, self.a_size = a_min, a_max, a_size

 self.Π = np.asarray(Π)
 self.z_vals = np.asarray(z_vals)
 self.z_size = len(z_vals)

 self.a_vals = np.linspace(a_min, a_max, a_size)
 self.n = a_size * self.z_size

 # Build the array Q
 self.Q = np.zeros((self.n, a_size, self.n))
 self.build_Q()

 # Build the array R
 self.R = np.empty((self.n, a_size))
 self.build_R()

 def set_prices(self, r, w):
 ""
 Use this method to reset prices. Calling the method will trigger a
 re-build of R.
 ""
 self.r, self.w = r, w
 self.build_R()

 def build_Q(self):
 populate_Q(self.Q, self.a_size, self.z_size, self.Π)

 def build_R(self):
 self.R.fill(-np.inf)
 populate_R(self.R,
 self.a_size,
 self.z_size,
 self.a_vals,
 self.z_vals,
 self.r,
 self.w)

 # Do the hard work using JIT-ed functions

 @jit(nopython=True)
 def populate_R(R, a_size, z_size, a_vals, z_vals, r, w):
 n = a_size * z_size
 for s_i in range(n):
 a_i = s_i // z_size
```

(continues on next page)
As a first example of what we can do, let’s compute and plot an optimal accumulation policy at fixed prices.

```python
Example prices
r = 0.03
w = 0.956

Create an instance of Household
am = Household(a_max=20, r=r, w=w)

Use the instance to build a discrete dynamic program
am_ddp = DiscreteDP(am.R, am.Q, am.β)

Solve using policy function iteration
results = am_ddp.solve(method='policy_iteration')

Simplify names
z_size, a_size = am.z_size, am.a_size
z_vals, a_vals = am.z_vals, am.a_vals
n = a_size * z_size

Get all optimal actions across the set of a indices with z fixed in each row
a_star = np.empty((z_size, a_size))
for s_i in range(n):
 a_i = s_i // z_size
 z_i = s_i % z_size
 a_star[z_i, a_i] = a_vals[results.sigma[s_i]]

fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(a_vals, a_vals, 'k--') # 45 degrees
```

(continues on next page)
The plot shows asset accumulation policies at different values of the exogenous state.

Now we want to calculate the equilibrium.

Let's do this visually as a first pass.

The following code draws aggregate supply and demand curves.

The intersection gives equilibrium interest rates and capital.
A = 1.0
N = 1.0
α = 0.33
β = 0.96
δ = 0.05

```python
def r_to_w(r):
 """
 Equilibrium wages associated with a given interest rate r.
 """
 return A * (1 - α) * (A * α / (r + δ)) ** (α / (1 - α))

def rd(K):
 """
 Inverse demand curve for capital. The interest rate associated with a
given demand for capital K.
 """
 return A * α * (N / K) ** (1 - α) - δ

def prices_to_capital_stock(am, r):
 """
 Map prices to the induced level of capital stock.
 Parameters:

 am : Household
 An instance of an aiyagari_household.Household
 r : float
 The interest rate
 """
 w = r_to_w(r)
 am.set_prices(r, w)
 aiyagari_ddp = DiscreteDP(am.R, am.Q, β)
 # Compute the optimal policy
 results = aiyagari_ddp.solve(method='policy_iteration')
 # Compute the stationary distribution
 stationary_probs = results.mc.stationary_distributions[0]
 # Extract the marginal distribution for assets
 asset_probs = asset_marginal(stationary_probs, am.a_size, am.z_size)
 # Return K
 return np.sum(asset_probs * am.a_vals)
```

# Create an instance of Household
am = Household(a_max=20)

# Use the instance to build a discrete dynamic program
am_ddp = DiscreteDP(am.R, am.Q, am.β)

# Create a grid of r values at which to compute demand and supply of capital
num_points = 20
r_vals = np.linspace(0.005, 0.04, num_points)

# Compute supply of capital

(continues on next page)
k_vals = np.empty(num_points)
for i, r in enumerate(r_vals):
    k_vals[i] = prices_to_capital_stock(am, r)

# Plot against demand for capital by firms
fig, ax = plt.subplots(figsize=(11, 8))
ax.plot(k_vals, r_vals, lw=2, alpha=0.6, label='supply of capital')
ax.plot(k_vals, rd(k_vals), lw=2, alpha=0.6, label='demand for capital')
ax.grid()
ax.set_xlabel('capital')
ax.set_ylabel('interest rate')
ax.legend(loc='upper right')
plt.show()
Part XI

Asset Pricing and Finance
“A little knowledge of geometric series goes a long way” – Robert E. Lucas, Jr.

“Asset pricing is all about covariances” – Lars Peter Hansen

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
!pip install quantecon
```

## 73.1 Overview

An asset is a claim on one or more future payoffs.

The spot price of an asset depends primarily on

- the anticipated income stream
- attitudes about risk
- rates of time preference

In this lecture, we consider some standard pricing models and dividend stream specifications.

We study how prices and dividend-price ratios respond in these different scenarios.

We also look at creating and pricing derivative assets that repackage income streams.

Key tools for the lecture are

- Markov processes
- formulas for predicting future values of functions of a Markov state
Quantitative Economics with Python

- a formula for predicting the discounted sum of future values of a Markov state

Let’s start with some imports:

```python
Import necessary libraries
import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe
from numpy.linalg import eigvals, solve
```

### 73.2 Pricing Models

Let \( \{d_t\}_{t \geq 0} \) be a stream of dividends

- A time-\( t \) **cum-dividend** asset is a claim to the stream \( d_t, d_{t+1}, \ldots \).
- A time-\( t \) **ex-dividend** asset is a claim to the stream \( d_{t+1}, d_{t+2}, \ldots \).

Let’s look at some equations that we expect to hold for prices of assets under ex-dividend contracts (we will consider cum-dividend pricing in the exercises).

#### 73.2.1 Risk-Neutral Pricing

Our first scenario is risk-neutral pricing.

Let \( \beta = 1/(1 + \rho) \) be an intertemporal discount **factor**, where \( \rho \) is the **rate** at which agents discount the future.

The basic risk-neutral asset pricing equation for pricing one unit of an ex-dividend asset is

\[
    p_t = \beta \mathbb{E}_t [d_{t+1} + p_{t+1}]
\]

(73.1)

This is a simple “cost equals expected benefit” relationship.

Here \( \mathbb{E}_t[y] \) denotes the best forecast of \( y \), conditioned on information available at time \( t \).

More precisely, \( \mathbb{E}_t[y] \) is the mathematical expectation of \( y \) conditional on information available at time \( t \).

#### 73.2.2 Pricing with Random Discount Factor

What happens if for some reason traders discount payouts differently depending on the state of the world?

Michael Harrison and David Kreps [HK79] and Lars Peter Hansen and Scott Richard [HR87] showed that in quite general settings the price of an ex-dividend asset obeys

\[
    p_t = \mathbb{E}_t [m_{t+1}(d_{t+1} + p_{t+1})]
\]

(73.2)

for some **stochastic discount factor** \( m_{t+1} \).

Here the fixed discount factor \( \beta \) in (73.1) has been replaced by the random variable \( m_{t+1} \).

How anticipated future payoffs are evaluated now depends on statistical properties of \( m_{t+1} \).

The stochastic discount factor can be specified to capture the idea that assets that tend to have good payoffs in bad states of the world are valued more highly than other assets whose payoffs don’t behave that way.
This is because such assets pay well when funds are more urgently wanted.
We give examples of how the stochastic discount factor has been modeled below.

### 73.2.3 Asset Pricing and Covariances

Recall that, from the definition of a conditional covariance \( \text{cov}_t(x_{t+1}, y_{t+1}) \), we have

\[
\mathbb{E}_t(x_{t+1} y_{t+1}) = \text{cov}_t(x_{t+1}, y_{t+1}) + \mathbb{E}_t x_{t+1} \mathbb{E}_t y_{t+1}
\]  

(73.3)

If we apply this definition to the asset pricing equation (73.2) we obtain

\[
p_t = \mathbb{E}_t m_{t+1} \mathbb{E}_t (d_{t+1} + p_{t+1}) + \text{cov}_t(m_{t+1}, d_{t+1} + p_{t+1})
\]  

(73.4)

It is useful to regard equation (73.4) as a generalization of equation (73.1)

- In equation (73.1), the stochastic discount factor \( m_{t+1} = \beta \), a constant.
- In equation (73.1), the covariance term \( \text{cov}_t(m_{t+1}, d_{t+1} + p_{t+1}) \) is zero because \( m_{t+1} = \beta \).
- In equation (73.1), \( \mathbb{E}_t m_{t+1} \) can be interpreted as the reciprocal of the one-period risk-free gross interest rate.
- When \( m_{t+1} \) covaries more negatively with the payout \( p_{t+1} + d_{t+1} \), the price of the asset is lower.

Equation (73.4) asserts that the covariance of the stochastic discount factor with the one period payout \( d_{t+1} + p_{t+1} \) is an important determinant of the price \( p_t \).

We give examples of some models of stochastic discount factors that have been proposed later in this lecture and also in a later lecture.

### 73.2.4 The Price-Dividend Ratio

Aside from prices, another quantity of interest is the **price-dividend ratio** \( v_t := p_t / d_t \).

Let's write down an expression that this ratio should satisfy.

We can divide both sides of (73.2) by \( d_t \) to get

\[
v_t = \mathbb{E}_t \left[ m_{t+1} \frac{d_{t+1}}{d_t} (1 + v_{t+1}) \right]
\]  

(73.5)

Below we’ll discuss the implication of this equation.

### 73.3 Prices in the Risk-Neutral Case

What can we say about price dynamics on the basis of the models described above?

The answer to this question depends on

1. the process we specify for dividends
2. the stochastic discount factor and how it correlates with dividends

For now we’ll study the risk-neutral case in which the stochastic discount factor is constant.

We’ll focus on how an asset price depends on a dividend process.
**73.3.1 Example 1: Constant Dividends**

The simplest case is risk-neutral price of a constant, non-random dividend stream \( d_t = d > 0 \).

Removing the expectation from (73.1) and iterating forward gives

\[
P_t = \beta(d + p_{t+1}) \\
= \beta(d + \beta(d + p_{t+2})) \\
\vdots \\
= \beta(d + \beta d + \beta^2 d + \cdots + \beta^{k-2} d + \beta^{k-1} p_{t+k})
\]

If \( \lim_{k \to +\infty} \beta^{k-1} p_{t+k} = 0 \), this sequence converges to

\[
\bar{p} := \frac{\beta d}{1 - \beta}
\]

(73.6)

This is the equilibrium price in the constant dividend case.

Indeed, simple algebra shows that setting \( p_t = \bar{p} \) for all \( t \) satisfies the difference equation \( p_t = \beta(d + p_{t+1}) \).

**73.3.2 Example 2: Dividends with Deterministic Growth Paths**

Consider a growing, non-random dividend process \( d_{t+1} = gd_t \) where \( 0 < g\beta < 1 \).

While prices are not usually constant when dividends grow over time, a price dividend-ratio can be.

If we guess this, substituting \( v_t = v \) into (73.5) as well as our other assumptions, we get \( v = \beta g (1 + v) \).

Since \( \beta g < 1 \), we have a unique positive solution:

\[
v = \frac{\beta g}{1 - \beta g}
\]

The price is then

\[
p_t = \frac{\beta g}{1 - \beta g} d_t
\]

If, in this example, we take \( g = 1 + \kappa \) and let \( \rho := 1/\beta - 1 \), then the price becomes

\[
p_t = \frac{1 + \kappa}{\rho - \kappa} d_t
\]

This is called the *Gordon formula*.

**73.3.3 Example 3: Markov Growth, Risk-Neutral Pricing**

Next, we consider a dividend process

\[
d_{t+1} = g_{t+1} d_t
\]

(73.7)

The stochastic growth factor \( \{g_t\} \) is given by

\[
g_t = g(X_t), \quad t = 1, 2, ...
\]

where
1. \( \{X_t\} \) is a finite Markov chain with state space \( S \) and transition probabilities

\[
P(x, y) := \mathbb{P}\{X_{t+1} = y \mid X_t = x\} \quad (x, y \in S)
\]

2. \( g \) is a given function on \( S \) taking nonnegative values

You can think of

- \( S \) as \( n \) possible “states of the world” and \( X_t \) as the current state.
- \( g \) as a function that maps a given state \( X_t \) into a growth of dividends factor \( g_t = g(X_t) \).
- \( \ln g_t = \ln(d_{t+1}/d_t) \) is the growth rate of dividends.

(For a refresher on notation and theory for finite Markov chains see this lecture)

The next figure shows a simulation, where

- \( \{X_t\} \) evolves as a discretized AR1 process produced using Tauchen’s method.
- \( g_t = \exp(X_t) \), so that \( \ln g_t = X_t \) is the growth rate.

```python
mc = qe.tauchen(0.96, 0.25, n=25)
sim_length = 80

x_series = mc.simulate(sim_length, init=np.median(mc.state_values))
g_series = np.exp(x_series)
d_series = np.cumprod(g_series) # Assumes \(d_0 = 1 \)

series = [x_series, g_series, d_series, np.log(d_series)]
labels = ['X_t', 'g_t', 'd_t', '$\log(d_t)$]

fig, axes = plt.subplots(2, 2)
for ax, s, label in zip(axes.flatten(), series, labels):
 ax.plot(s, 'b-', lw=2, label=label)
 ax.legend(loc='upper left', frameon=False)
plt.tight_layout()
plt.show()
```

73.3. Prices in the Risk-Neutral Case
Pricing Formula

To obtain asset prices in this setting, let’s adapt our analysis from the case of deterministic growth. In that case, we found that $v$ is constant.

This encourages us to guess that, in the current case, $v_t$ is a fixed function of the state $X_t$.

We seek a function $v$ such that the price-dividend ratio satisfies $v_t = v(X_t)$.

We can substitute this guess into (73.5) to get

$$v(X_t) = \beta \mathbb{E}_t [g(X_{t+1})(1 + v(X_{t+1}))].$$

If we condition on $X_t = x$, this becomes

$$v(x) = \beta \sum_{y \in S} g(y)(1 + v(y))P(x, y)$$

or

$$v(x) = \beta \sum_{y \in S} K(x, y)(1 + v(y)) \quad \text{where} \quad K(x, y) := g(y)P(x, y)$$

(73.8)

Suppose that there are $n$ possible states $x_1, \ldots, x_n$.

We can then think of (73.8) as $n$ stacked equations, one for each state, and write it in matrix form as

$$v = \beta K(\mathbb{1} + v)$$

(73.9)

Here

- $v$ is understood to be the column vector $(v(x_1), \ldots, v(x_n))'$.
- $K$ is the matrix $(K(x_i, x_j))_{1 \leq i, j \leq n}$.
- $\mathbb{1}$ is a column vector of ones.

When does equation (73.9) have a unique solution?

From the Neumann series lemma and Gelfand’s formula, equation (73.9) has a unique solution when $\beta K$ has spectral radius strictly less than one.

Thus, we require that the eigenvalues of $K$ be strictly less than $\beta^{-1}$ in modulus.

The solution is then

$$v = (I - \beta K)^{-1} \beta K \mathbb{1}$$

(73.10)

73.3.4 Code

Let’s calculate and plot the price-dividend ratio at some parameters.

As before, we’ll generate $\{X_t\}$ as a discretized AR1 process and set $g_t = \exp(X_t)$.

Here’s the code, including a test of the spectral radius condition

```python
n = 25 # Size of state space
beta = 0.9
mc = qe.tauchen(0.96, 0.02, n=n)
```

(continues on next page)
K = mc.P * np.exp(mc.state_values)

warning_message = "Spectral radius condition fails"
assert np.max(np.abs(eigvals(K))) < 1 / β, warning_message

I = np.identity(n)
v = solve(I - β * K, β * K @ np.ones(n))

fig, ax = plt.subplots()
ax.plot(mc.state_values, v, 'g-o', lw=2, alpha=0.7, label='$v$')
ax.set_ylabel("price-dividend ratio")
ax.set_xlabel("state")
ax.legend(loc='upper left')
plt.show()


### 73.4.1 Pricing a Lucas Tree

Let’s start with a version of the celebrated asset pricing model of Robert E. Lucas, Jr. [Luc78].

Lucas considered an abstract pure exchange economy with these features:

- a single non-storable consumption good
- a Markov process that governs the total amount of the consumption good available each period
- a single tree that each period yields fruit that equals the total amount of consumption available to the economy
- a competitive market in shares in the tree that entitles their owners to corresponding shares of the dividend stream, i.e., the fruit stream, yielded by the tree
- a representative consumer who in a competitive equilibrium
  - consumes the economy’s entire endowment each period
  - owns 100 percent of the shares in the tree

As in [Luc78], we suppose that the stochastic discount factor takes the form

\[
m_{t+1} = \beta \frac{u'(c_{t+1})}{u'(c_t)}
\]

where \( u \) is a concave utility function and \( c_t \) is time \( t \) consumption of a representative consumer.

(A derivation of this expression is given in a later lecture)

Assume the existence of an endowment that follows growth process (73.7).

The asset being priced is a claim on the endowment process, i.e., the Lucas tree described above.

Following [Luc78], we suppose that in equilibrium the representative consumer’s consumption equals the aggregate endowment, so that \( d_t = c_t \) for all \( t \).

For utility, we’ll assume the constant relative risk aversion (CRRA) specification

\[
u(c) = \frac{c^{1-\gamma}}{1 - \gamma} \text{ with } \gamma > 0
\]

When \( \gamma = 1 \) we let \( u(c) = \ln c \).

Inserting the CRRA specification into (73.11) and using \( c_t = d_t \) gives

\[
m_{t+1} = \beta \left( \frac{c_{t+1}}{c_t} \right)^{-\gamma} = \beta g_{t+1}^{-\gamma}
\]

Substituting this into (73.5) gives the price-dividend ratio formula

\[
v(X_t) = \beta \mathbb{E}_t \left[ g(X_{t+1})^{1-\gamma}(1 + v(X_{t+1})) \right]
\]

Conditioning on \( X_t = x \), we can write this as

\[
v(x) = \beta \sum_{y \in S} g(y)^{1-\gamma}(1 + v(y)) P(x, y)
\]

If we let

\[
J(x, y) := g(y)^{1-\gamma} P(x, y)
\]

then we can rewrite equation (73.14) in vector form as

\[
v = \beta J(1 + v)
\]
Assuming that the spectral radius of $J$ is strictly less than $\beta^{-1}$, this equation has the unique solution

$$v = (I - \beta J)^{-1} \beta J \mathbb{1}$$  \hspace{1cm} (73.15)

We will define a function `tree_price` to compute $v$ given parameters stored in the class `AssetPriceModel`.

class AssetPriceModel:

    """
    A class that stores the primitives of the asset pricing model.
    Parameters
    ----------
    $\beta$ : scalar, float
        Discount factor
    $mc$ : MarkovChain
        Contains the transition matrix and set of state values for the state process
    $\gamma$ : scalar(float)
        Coefficient of risk aversion
    $g$ : callable
        The function mapping states to growth rates
    """

    def __init__(self, $\beta$=0.96, $mc$=None, $\gamma$=2.0, $g$=np.exp):
        self.$\beta$, self.$\gamma$ = $\beta$, $\gamma$
        self.$g$ = $g$

        # A default process for the Markov chain
        if $mc$ is None:
            self.$\rho$ = 0.9
            self.$\sigma$ = 0.02
            self.$mc$ = qe.tauchen(self.$\rho$, self.$\sigma$, n=25)
        else:
            self.$mc$ = $mc$

        self.$n$ = self.$mc$.P.shape[0]

    def test_stability(self, $Q$):
        """
        Stability test for a given matrix $Q$.
        """
        sr = np.max(np.abs(eigvals($Q$)))
        if not sr < 1 / self.$\beta$:
            msg = f"Spectral radius condition failed with radius = {sr}"
            raise ValueError(msg)

    def tree_price($ap$):
        """
        Computes the price-dividend ratio of the Lucas tree.
        Parameters
        ----------
        $ap$ : AssetPriceModel
            An instance of AssetPriceModel containing primitives
        """

(continues on next page)
v : array_like(float)
   Lucas tree price-dividend ratio

   
   # Simplify names, set up matrices
   \( \beta, \gamma, P, y = \text{ap.}\beta, \text{ap.}\gamma, \text{ap.mc.P, ap.mc.state_values} \)
   J = P \ast \text{ap.g(y)}^{\ast}(1 - \gamma)

   
   # Make sure that a unique solution exists
   \text{ap.test_stability(J)}

   # Compute \( v \)
   I = \text{np.identity(ap.n)}
   Ones = \text{np.ones(ap.n)}
   v = \text{solve}(I - \beta \ast J, \beta \ast J \odot \text{Ones})

   return v

Here's a plot of \( v \) as a function of the state for several values of \( \gamma \), with a positively correlated Markov process and \( g(x) = \exp(x) \)

\[
\gamma_s = [1.2, 1.4, 1.6, 1.8, 2.0]
\]
\text{ap = AssetPriceModel()}
\text{states = ap.mc.state_values}

\[
\text{fig, ax = plt.subplots()}
\]
\[
\text{for } \gamma \text{ in } \gamma_s:
   \text{ap.}\gamma = \gamma
   \text{v = tree_price(ap)}
   \text{ax.plot(states, v, lw=2, alpha=0.6, label=rf"\$\gamma = \{\gamma\}\$")}
\]
\text{ax.set_title('Price-dividend ratio as a function of the state')}
\text{ax.set_ylabel('price-dividend ratio')}
\text{ax.set_xlabel('state')}
\text{ax.legend(loc='upper right')}
\text{plt.show()}
Notice that $v$ is decreasing in each case.

This is because, with a positively correlated state process, higher states indicate higher future consumption growth.

With the stochastic discount factor (73.13), higher growth decreases the discount factor, lowering the weight placed on future dividends.

**Special Cases**

In the special case $\gamma = 1$, we have $J = P$.

Recalling that $P^i \mathbb{1} = \mathbb{1}$ for all $i$ and applying *Neumann’s geometric series lemma*, we are led to

$$
v = \beta (I - \beta P)^{-1} \mathbb{1} = \beta \sum_{i=0}^{\infty} \beta^i P^i \mathbb{1} = \beta \frac{1}{1 - \beta} \mathbb{1}
$$

Thus, with log preferences, the price-dividend ratio for a Lucas tree is constant.

Alternatively, if $\gamma = 0$, then $J = K$ and we recover the risk-neutral solution (73.10).

This is as expected, since $\gamma = 0$ implies $u(c) = c$ (and hence agents are risk-neutral).

### 73.4.2 A Risk-Free Consol

Consider the same pure exchange representative agent economy.

A risk-free consol promises to pay a constant amount $\zeta > 0$ each period.

Recycling notation, let $p_t$ now be the price of an ex-coupon claim to the consol.

An ex-coupon claim to the consol entitles an owner at the end of period $t$ to

- $\zeta$ in period $t+1$, plus
- the right to sell the claim for $p_{t+1}$ next period

The price satisfies (73.2) with $d_t = \zeta$, or

$$
p_t = \mathbb{E}_t [m_{t+1} (\zeta + p_{t+1})]
$$
Quantitative Economics with Python

With the stochastic discount factor (73.13), this becomes

\[ p_t = E_t [\beta q_{t+1} (\zeta + p_{t+1})] \]  

(73.16)

Guessing a solution of the form \( p_t = p(X_t) \) and conditioning on \( X_t = x \), we get

\[ p(x) = \beta \sum_{y \in S} g(y)^{-\gamma} (\zeta + p(y)) P(x, y) \]

Letting \( M(x, y) = P(x, y) g(y)^{-\gamma} \) and rewriting in vector notation yields the solution

\[ p = (I - \beta M)^{-1} \beta M \zeta 1 \]  

(73.17)

The above is implemented in the function consol_price.

```python
def consol_price(ap, \zeta):
 """
 Computes price of a consol bond with payoff \(\zeta \)

 Parameters

 ap: AssetPriceModel
 An instance of AssetPriceModel containing primitives
 \zeta: scalar(float)
 Coupon of the console

 Returns

 p: array_like(float)
 Console bond prices
 """
 # Simplify names, set up matrices
 \beta, \gamma, P, y = ap.\beta, ap.\gamma, ap.mc.P, ap.mc.state_values
 M = P * ap.g(y)**(-\gamma)

 # Make sure that a unique solution exists
 ap.test_stability(M)

 # Compute price
 I = np.identity(ap.n)
 Ones = np.ones(ap.n)
 p = solve(I - \beta * M, \beta * \zeta * M @ Ones)
 return p
```

### 73.4.3 Pricing an Option to Purchase the Consol

Let's now price options of various maturities.

We'll study an option that gives the owner the right to purchase a consol at a price \( p_S \).
An Infinite Horizon Call Option

We want to price an infinite horizon option to purchase a consol at a price $p_S$.

The option entitles the owner at the beginning of a period either

1. to purchase the bond at price $p_S$ now, or
2. not to exercise the option to purchase the asset now but to retain the right to exercise it later

Thus, the owner either exercises the option now or chooses not to exercise and wait until next period.

This is termed an infinite-horizon call option with strike price $p_S$.

The owner of the option is entitled to purchase the consol at price $p_S$ at the beginning of any period, after the coupon has been paid to the previous owner of the bond.

The fundamentals of the economy are identical with the one above, including the stochastic discount factor and the process for consumption.

Let $w(X_t, p_S)$ be the value of the option when the time $t$ growth state is known to be $X_t$ but before the owner has decided whether to exercise the option at time $t$ (i.e., today).

Recalling that $p(X_t)$ is the value of the consol when the initial growth state is $X_t$, the value of the option satisfies

$$w(X_t, p_S) = \max \left\{ \beta E_t \frac{u'(c_{t+1})}{u'(c_t)} w(X_{t+1}, p_S), p(X_t) - p_S \right\}$$

The first term on the right is the value of waiting, while the second is the value of exercising now.

We can also write this as

$$w(x, p_S) = \max \left\{ \beta \sum_{y \in S} P(x, y) g(y)^{-\gamma} w(y, p_S), p(x) - p_S \right\}$$ (73.18)

With $M(x, y) = P(x, y) g(y)^{-\gamma}$ and $w$ as the vector of values $(w(x_i), p_S)^{n}_{i=1}$, we can express (73.18) as the nonlinear vector equation

$$w = \max \{ \beta M w, p - p_S \mathbb{1} \}$$ (73.19)

To solve (73.19), form an operator $T$ that maps vector $w$ into vector $T w$ via

$$T w = \max \{ \beta M w, p - p_S \mathbb{1} \}$$

Start at some initial $w$ and iterate with $T$ to convergence.

We can find the solution with the following function call_option

```python

def call_option(ap, ζ, p_s, ϵ=1e-7):
 """
 Computes price of a call option on a consol bond.

 Parameters

 ap: AssetPriceModel
 An instance of AssetPriceModel containing primitives
 ζ : scalar(float)
 Coupon of the console
 """
```

(continues on next page)
Quantitative Economics with Python

p_s : scalar(float)
    Strike price

e : scalar(float), optional(default=\(1e^{-8}\))
    Tolerance for infinite horizon problem

Returns
-------
w : array_like(float)
    Infinite horizon call option prices

```
Simplify names, set up matrices
β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
M = P * ap.g(y)**(-γ)

Make sure that a unique consol price exists
ap.test_stability(M)

Compute option price
p = consol_price(ap, ζ)
w = np.zeros(ap.n)
error = ε + 1
while error > ε:
 # Maximize across columns
 w_new = np.maximum(β * M @ w, p - p_s)
 # Find maximal difference of each component and update
 error = np.amax(np.abs(w - w_new))
w = w_new

return w
```

Here’s a plot of \( w \) compared to the consol price when \( P_S = 40 \)

```
ap = AssetPriceModel(β=0.9)
ζ = 1.0
strike_price = 40

x = ap.mc.state_values
p = consol_price(ap, ζ)
w = call_option(ap, ζ, strike_price)

fig, ax = plt.subplots()
ax.plot(x, p, 'b-', lw=2, label='consol price')
ax.plot(x, w, 'g-', lw=2, label='value of call option')
ax.set_xlabel("state")
ax.legend(loc='upper right')
plt.show()
```
In high values of the Markov growth state, the value of the option is close to zero.
This is despite the facts that the Markov chain is irreducible and that low states — where the consol prices are high — will be visited recurrently.
The reason for low valuations in high Markov growth states is that $\beta = 0.9$, so future payoffs are discounted substantially.

### 73.4.4 Risk-Free Rates

Let's look at risk-free interest rates over different periods.

#### The One-period Risk-free Interest Rate

As before, the stochastic discount factor is $m_{t+1} = \beta g_{t+1}^{-\gamma}$.

It follows that the reciprocal $R_t^{-1}$ of the gross risk-free interest rate $R_t$ in state $x$ is

$$E_t m_{t+1} = \beta \sum_{y \in S} P(x, y) g(y)^{-\gamma}$$

We can write this as

$$m_1 = \beta M \mathbf{1}$$

where the $i$-th element of $m_1$ is the reciprocal of the one-period gross risk-free interest rate in state $x_i$.

#### Other Terms

Let $m_j$ be an $n \times 1$ vector whose $i$ th component is the reciprocal of the $j$ -period gross risk-free interest rate in state $x_i$. Then $m_1 = \beta M$, and $m_{j+1} = M m_j$ for $j \geq 1$. 
73.5 Exercises

Exercise 73.5.1
In the lecture, we considered ex-dividend assets.

A cum-dividend asset is a claim to the stream \( d_t, d_{t+1}, ... \).

Following (73.1), find the risk-neutral asset pricing equation for one unit of a cum-dividend asset.

With a constant, non-random dividend stream \( d_t = d > 0 \), what is the equilibrium price of a cum-dividend asset?

With a growing, non-random dividend process \( d_t = gd_t \) where \( 0 < g \beta < 1 \), what is the equilibrium price of a cum-dividend asset?

Solution to Exercise 73.5.1
For a cum-dividend asset, the basic risk-neutral asset pricing equation is

\[
p_t = d_t + \beta \mathbb{E}_t [p_{t+1}]
\]

With constant dividends, the equilibrium price is

\[
p_t = \frac{1}{1 - \beta} d_t
\]

With a growing, non-random dividend process, the equilibrium price is

\[
p_t = \frac{1}{1 - \beta g} d_t
\]

Exercise 73.5.2
Consider the following primitives

```python
n = 5
P = np.full((n, n), 0.0125)
P[range(n), range(n)] += 1 - P.sum(1)
State values of the Markov chain
s = np.array([0.95, 0.975, 1.0, 1.025, 1.05])
γ = 2.0
β = 0.94
```

Let \( g \) be defined by \( g(x) = x \) (that is, \( g \) is the identity map).

Compute the price of the Lucas tree.

Do the same for

- the price of the risk-free consol when \( \zeta = 1 \)
- the call option on the consol when \( \zeta = 1 \) and \( p_S = 150.0 \)

Solution to Exercise 73.5.2
First, let's enter the parameters:
Quantitative Economics with Python

```python
n = 5
P = np.full((n, n), 0.0125)
P[range(n), range(n)] += 1 - P.sum(1)
s = np.array([0.95, 0.975, 1.0, 1.025, 1.05]) # State values
mc = qe.MarkovChain(P, state_values=s)

γ = 2.0
β = 0.94
ζ = 1.0
p_s = 150.0

Next, we'll create an instance of AssetPriceModel to feed into the functions

```python
apm = AssetPriceModel(β=β, mc=mc, γ=γ, g=lambda x: x)
```

Now we just need to call the relevant functions on the data:

```python
tree_price(apm)
```

```python
array([29.47401578, 21.93570661, 17.57142236, 14.72515002, 12.72221763])
```

```python
consol_price(apm, ζ)
```

```python
array([753.87100476, 242.55144082, 148.67554548, 109.25108965, 87.56860139])
```

```python
call_option(apm, ζ, p_s)
```

```python
array([603.87100476, 176.83933430, 108.67734499, 80.05179254, 64.30843748])
```

Let's show the last two functions as a plot

```python
fig, ax = plt.subplots()
ax.plot(s, consol_price(apm, ζ), label='consol')
ax.plot(s, call_option(apm, ζ, p_s), label='call option')
ax.legend()
plt.show()
```
Exercise 73.5.3

Let’s consider finite horizon call options, which are more common than infinite horizon ones. Finite horizon options obey functional equations closely related to (73.18).

A k period option expires after k periods.

If we view today as date zero, a k period option gives the owner the right to exercise the option to purchase the risk-free consol at the strike price p_S at dates $0, 1, \ldots, k - 1$.

The option expires at time k.

Thus, for $k = 1, 2, \ldots$, let $w(x, k)$ be the value of a k-period option.

It obeys

$$w(x, k) = \max \left\{ \beta \sum_{y \in S} P(x, y) g(y)^{-\gamma} w(y, k - 1), p(x) - p_S \right\}$$

where $w(x, 0) = 0$ for all x.

We can express this as a sequence of nonlinear vector equations

$$w_k = \max\{ \beta M w_k, p - p_S \} \quad k = 1, 2, \ldots \quad \text{with } w_0 = 0$$

Write a function that computes w_k for any given k.

Compute the value of the option with $k = 5$ and $k = 25$ using parameter values as in Exercise 73.5.1.

Is one higher than the other? Can you give intuition?

Solution to Exercise 73.5.3

Here’s a suitable function:
def finite_horizon_call_option(ap, ζ, p_s, k):
 """
 Computes k period option value.
 """
 # Simplify names, set up matrices
 β, γ, P, y = ap.β, ap.γ, ap.mc.P, ap.mc.state_values
 M = P * ap.g(y)**(-γ)

 # Make sure that a unique solution exists
 ap.test_stability(M)

 # Compute option price
 p = consol_price(ap, ζ)
 w = np.zeros(ap.n)
 for i in range(k):
 # Maximize across columns
 w = np.maximum(β * M @ w, p - p_s)

 return w

Now let’s compute the option values at k=5 and k=25

fig, ax = plt.subplots()
for k in [5, 25]:
 w = finite_horizon_call_option(apm, ζ, p_s, k)
 ax.plot(s, w, label=rf'$k = {k}$')
ax.legend()
plt.show()

Not surprisingly, options with larger k are worth more.
This is because an owner has a longer horizon over which the option can be exercised.
COMPETITIVE EQUILIBRIA WITH ARROW SECURITIES

74.1 Introduction

This lecture presents Python code for experimenting with competitive equilibria of an infinite-horizon pure exchange economy with

- Heterogeneous agents
- Endowments of a single consumption that are person-specific functions of a common Markov state
- Complete markets in one-period Arrow state-contingent securities
- Discounted expected utility preferences of a kind often used in macroeconomics and finance
- Common expected utility preferences across agents
- Common beliefs across agents
- A constant relative risk aversion (CRRA) one-period utility function that implies the existence of a representative consumer whose consumption process can be plugged into a formula for the pricing kernel for one-step Arrow securities and thereby determine equilibrium prices before determining an equilibrium distribution of wealth

Diverse endowments across agents provide motivations for individuals to want to reallocate consumption goods across time and Markov states

We impose restrictions that allow us to Bellmanize competitive equilibrium prices and quantities

We use Bellman equations to describe

- asset prices
- continuation wealth levels for each person
- state-by-state natural debt limits for each person

In the course of presenting the model we shall describe these important ideas

- a resolvent operator widely used in this class of models
- absence of borrowing limits in finite horizon economies
- state-by-state borrowing limits required in infinite horizon economies
- a counterpart of the law of iterated expectations known as a law of iterated values
- a state-variable degeneracy that prevails within a competitive equilibrium and that opens the way to various appearances of resolvent operators
74.2 The setting

In effect, this lecture implements a Python version of the model presented in section 9.3.3 of Ljungqvist and Sargent [LS18].

74.2.1 Preferences and endowments

In each period \(t \geq 0 \), a stochastic event \(s_t \in S \) is realized. Let the history of events up until time \(t \) be denoted \(s^t = [s_0, s_1, \ldots, s_{t-1}, s_t] \).

(Sometimes we inadvertently reverse the recording order and denote a history as \(s^t = [s_t, s_{t-1}, \ldots, s_1, s_0] \).)

The unconditional probability of observing a particular sequence of events \(s^t \) is given by a probability measure \(\pi_t(s^t) \).

For \(t > \tau \), we write the probability of observing \(s^t \) conditional on the realization of \(s^\tau \) as \(\pi_t(s^t|s^\tau) \).

We assume that trading occurs after observing \(s_0 \), which we capture by setting \(\pi_0(s_0) = 1 \) for the initially given value of \(s_0 \).

In this lecture we shall follow much macroeconomics and econometrics and assume that \(\pi_t(s^t) \) is induced by a Markov process.

There are \(K \) consumers named \(k = 1, \ldots, K \).

Consumer \(k \) owns a stochastic endowment of one good \(y^k_t(s^t) \) that depends on the history \(s^t \).

The history \(s^t \) is publicly observable.

Consumer \(i \) purchases a history-dependent consumption plan \(c^k = \{c^k_t(s^t)\}_{t=0}^{\infty} \)

Consumer \(i \) orders consumption plans by

\[
U^k(c^k) = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u^k[c^k_t(s^t)] \pi_t(s^t),
\]

where \(0 < \beta < 1 \).

The right side is equal to \(E_0 \sum_{t=0}^{\infty} \beta^t u^k(c^k_t) \), where \(E_0 \) is the mathematical expectation operator, conditioned on \(s_0 \).

Here \(u^k(c) \) is an increasing, twice continuously differentiable, strictly concave function of consumption \(c \geq 0 \) of one good.

The utility function pf person \(k \) satisfies the Inada condition

\[
\lim_{c \downarrow 0} u^k_t(c) = +\infty.
\]

This condition implies that each agent chooses strictly positive consumption for every date-history pair \((t, s^t)\).

Those interior solutions enable us to confine our analysis to Euler equations that hold with equality and also guarantee that natural debt limits don't bind in economies like ours with sequential trading of Arrow securities.

We adopt the assumption, routinely employed in much of macroeconomics, that consumers share probabilities \(\pi_i(s^t) \) for all \(t \) and \(s^t \).

A feasible allocation satisfies

\[
\sum_i c^k_t(s^t) \leq \sum_i y^k_t(s^t)
\]

for all \(t \) and for all \(s^t \).
74.3 Recursive Formulation

Following descriptions in section 9.3.3 of Ljungqvist and Sargent [LS18] chapter 9, we set up a competitive equilibrium of a pure exchange economy with complete markets in one-period Arrow securities.

When endowments $y^k(s)$ are all functions of a common Markov state s, the pricing kernel takes the form $Q(s'|s)$, where $Q(s'|s)$ is the price of one unit of consumption in state s' at date $t + 1$ when the Markov state at date t is s.

These enable us to provide a recursive formulation of a consumer’s optimization problem.

Consumer i’s state at time t is its financial wealth a^k_t and Markov state s_t.

Let $v^k(a, s)$ be the optimal value of consumer i’s problem starting from state (a, s).

- $v^k(a, s)$ is the maximum expected discounted utility that consumer i with current financial wealth a can attain in Markov state s.

The optimal value function satisfies the Bellman equation

$$v^k(a, s) = \max_{c, \tilde{a}(s')} \left\{ u_k(c) + \beta \sum_{s'} v^k(\tilde{a}(s'), s'|s) \right\}$$

where maximization is subject to the budget constraint

$$c + \sum_{s'} \tilde{a}(s')Q(s'|s) \leq y^k(s) + a$$

and also the constraints

$$c \geq 0,$$

$$-\tilde{a}(s') \leq \tilde{A}^k(s'), \quad \forall s' \in S$$

with the second constraint evidently being a set of state-by-state debt limits.

Note that the value function and decision rule that solve the Bellman equation implicitly depend on the pricing kernel $Q(\cdot|\cdot)$ because it appears in the agent’s budget constraint.

Use the first-order conditions for the problem on the right of the Bellman equation and a Benveniste-Scheinkman formula and rearrange to get

$$Q(s_{t+1}|s_t) = \frac{\beta u_k'(c^k_{t+1})\pi(s_{t+1}|s_t)}{u_k(c^k_t)},$$

where it is understood that $c^k_t = c^k(s_t)$ and $c^k_{t+1} = c^k(s_{t+1})$.

A recursive competitive equilibrium is an initial distribution of wealth \tilde{a}_0, a set of borrowing limits $\{\tilde{A}^k(s)\}_{k=1}^K$, a pricing kernel $Q(s'|s)$, sets of value functions $\{v^k(a, s)\}_{k=1}^K$, and decision rules $\{c^k(s), a^k(s)\}_{k=1}^K$ such that

- The state-by-state borrowing constraints satisfy the recursion
 $$\tilde{A}^k(s) = y^k(s) + \sum_{s'} Q(s'|s)\tilde{A}^k(s')$$

- For all i, given a^k_0, $\tilde{A}^k(s)$, and the pricing kernel, the value functions and decision rules solve the consumers’ problems;

- For all realizations of $\{s_t\}_{t=0}^\infty$, the consumption and asset portfolios $\{\{c^k_t, \tilde{a}^k_{t+1}(s')\}_{s'}\}_t$ satisfy $\sum_t c^k_t = \sum_t y^k(s_t)$ and $\sum_t \tilde{a}^k_{t+1}(s') = 0$ for all t and s'.

- The initial financial wealth vector \tilde{a}_0 satisfies $\sum_{k=1}^K a^k_0 = 0$.

The third condition asserts that there are zero net aggregate claims in all Markov states.

The fourth condition asserts that the economy is closed and starts from a situation in which there are zero net aggregate claims.

74.3. Recursive Formulation
74.4 State Variable Degeneracy

Please see Ljungqvist and Sargent [LS18] for a description of timing protocol for trades consistent with an Arrow-Debreu vision in which

- at time 0 there are complete markets in a complete menu of history s^t-contingent claims on consumption at all dates that all trades occur at time zero
- all trades occur once and for all at time 0

If an allocation and pricing kernel Q in a recursive competitive equilibrium are to be consistent with the equilibrium allocation and price system that prevail in a corresponding complete markets economy with such history-contingent commodities and all trades occurring at time 0, we must impose that $a^k_0 = 0$ for $k = 1, \ldots, K$.

That is what assures that at time 0 the present value of each agent’s consumption equals the present value of his endowment stream, the single budget constraint in arrangement with all trades occurring at time 0.

Starting the system with $a^k_0 = 0$ for all i has a striking implication that we can call state variable degeneracy.

Here is what we mean by state variable degeneracy:

Although two state variables a, s appear in the value function $v^k(a, s)$, within a recursive competitive equilibrium starting from $a^k_0 = 0 \forall i$ at initial Markov state s_0, two outcomes prevail:

- $a^k_0 = 0$ for all i whenever the Markov state s_t returns to s_0.
- Financial wealth a is an exact function of the Markov state s.

The first finding asserts that each household recurrently visits the zero financial wealth state with which it began life.

The second finding asserts that within a competitive equilibrium the exogenous Markov state is all we require to track an individual.

Financial wealth turns out to be redundant because it is an exact function of the Markov state for each individual.

This outcome depends critically on there being complete markets in Arrow securities.

For example, it does not prevail in the incomplete markets setting of this lecture The Aiyagari Model

74.5 Markov Asset Prices

Let’s start with a brief summary of formulas for computing asset prices in a Markov setting.

The setup assumes the following infrastructure

- Markov states: $s \in S = [\bar{s}_1, \ldots, \bar{s}_n]$ governed by an n-state Markov chain with transition probability
 \[P_{ij} = \Pr \{ s_{t+1} = \bar{s}_j \mid s_t = \bar{s}_i \} \]

- A collection $h = 1, \ldots, H$ of $n \times 1$ vectors of H assets that pay off $d^h(s)$ in state s

- An $n \times n$ matrix pricing kernel Q for one-period Arrow securities, where $Q_{ij} =$ price at time t in state $s_t = \bar{s}_i$ of one unit of consumption when $s_{t+1} = \bar{s}_j$ at time $t + 1$:
 \[Q_{ij} = \text{Price} \{ s_{t+1} = \bar{s}_j \mid s_t = \bar{s}_i \} \]

- The price of risk-free one-period bond in state i is $R_{t}^{-1} = \sum_j Q_{i,j}$

- The gross rate of return on a one-period risk-free bond Markov state \bar{s}_i is $R_t = (\sum_j Q_{i,j})^{-1}$

Chapter 74. Competitive Equilibria with Arrow Securities
74.5.1 Exogenous Pricing Kernel

At this point, we’ll take the pricing kernel Q as exogenous, i.e., determined outside the model. Two examples would be

- $Q = \beta P$ where $\beta \in (0, 1)$
- $Q = SP$ where S is an $n \times n$ matrix of stochastic discount factors

We’ll write down implications of Markov asset pricing in a nutshell for two types of assets

- the price in Markov state s at time t of a cum dividend stock that entitles the owner at the beginning of time t to the time t dividend and the option to sell the asset at time $t + 1$. The price evidently satisfies $p^b(\tilde{s}_t) = d^b(\tilde{s}_t) + \sum_j Q_{ij}p^h(\tilde{s}_j)$, which implies that the vector p^h satisfies $p^h = d^b + Qp^h$ which implies the formula

$$p^h = (I - Q)^{-1}d^b$$

- the price in Markov state s at time t of an ex dividend stock that entitles the owner at the end of time t to the time $t + 1$ dividend and the option to sell the stock at time $t + 1$. The price is

$$p^h = (I - Q)^{-1}Qd^b$$

Below, we describe an equilibrium model with trading of one-period Arrow securities in which the pricing kernel is endogenous.

In constructing our model, we’ll repeatedly encounter formulas that remind us of our asset pricing formulas.

74.5.2 Multi-Step-Forward Transition Probabilities and Pricing Kernels

The (i, j) component of the k-step ahead transition probability P^k is

$$P_{i,j}^k(s_{t+k} = \tilde{s}_j|s_t = \tilde{s}_i) = P_{i,j}^k$$

The (i, j) component of the ℓ-step ahead pricing kernel Q^ℓ is

$$Q_{i,j}^\ell(s_{t+\ell} = \tilde{s}_j|s_t = \tilde{s}_i) = Q_{i,j}^\ell$$

We’ll use these objects to state a useful property in asset pricing theory.

74.5.3 Laws of Iterated Expectations and Iterated Values

A law of iterated values has a mathematical structure that parallels a law of iterated expectations. We can describe its structure readily in the Markov setting of this lecture. Recall the following recursion satisfied by j step ahead transition probabilities for our finite state Markov chain:

$$P_j(s_{t+j}|s_t) = \sum_{s_{t+1}} P_{j-1}(s_{t+j}|s_{t+1})P(s_{t+1}|s_t)$$

We can use this recursion to verify the law of iterated expectations applied to computing the conditional expectation of a
random variable $d(s_{t+j})$ conditioned on s_t via the following string of equalities

\[
E \left[Ed(s_{t+j}) | s_{t+1} \right] | s_t = \sum_{s_{t+1}} \left[\sum_{s_{t+j}} d(s_{t+j}) P_{j-1}(s_{t+j} | s_{t+1}) \right] P(s_{t+1} | s_t) \\
= \sum_{s_{t+j}} d(s_{t+j}) \left[\sum_{s_{t+1}} P_{j-1}(s_{t+j} | s_{t+1}) P(s_{t+1} | s_t) \right] \\
= \sum_{s_{t+j}} d(s_{t+j}) P_j(s_{t+j} | s_t) \\
= Ed(s_{t+j}) | s_t
\]

The pricing kernel for j step ahead Arrow securities satisfies the recursion

\[
Q_j(s_{t+j} | s_t) = \sum_{s_{t+1}} Q_{j-1}(s_{t+1} | s_{t+j}) Q(s_{t+1} | s_t)
\]

The time t value in Markov state s_t of a time $t + j$ payout $d(s_{t+j})$ is

\[
V(d(s_{t+j}) | s_t) = \sum_{s_{t+j}} d(s_{t+j}) Q_j(s_{t+j} | s_t)
\]

The law of iterated values states

\[
V \left[V(d(s_{t+j}) | s_{t+1}) \right] | s_t = V(d(s_{t+j}) | s_t)
\]

We verify it by pursuing the following a string of inequalities that are counterparts to those we used to verify the law of iterated expectations:

\[
V \left[V(d(s_{t+j}) | s_{t+1}) \right] | s_t = \sum_{s_{t+1}} \left[\sum_{s_{t+j}} d(s_{t+j}) Q_{j-1}(s_{t+j} | s_{t+1}) \right] Q(s_{t+1} | s_t) \\
= \sum_{s_{t+j}} d(s_{t+j}) \left[\sum_{s_{t+1}} Q_{j-1}(s_{t+j} | s_{t+1}) Q(s_{t+1} | s_t) \right] \\
= \sum_{s_{t+j}} d(s_{t+j}) Q_j(s_{t+j} | s_t) \\
= EV(d(s_{t+j}) | s_t)
\]

74.6 General Equilibrium

Now we are ready to do some fun calculations.

We find it interesting to think in terms of analytical **inputs** into and **outputs** from our general equilibrium theorizing.

74.6.1 Inputs

- Markov states: $s \in S = [\bar{s}_1, \ldots, \bar{s}_n]$ governed by an n-state Markov chain with transition probability

 \[
P_{ij} = \Pr \left\{ s_{t+1} = \bar{s}_j \mid s_t = \bar{s}_i \right\}
\]

- A collection of $K \times 1$ vectors of individual k endowments: $y^k(s), k = 1, \ldots, K$

- An $n \times 1$ vector of aggregate endowment: $y(s) \equiv \sum_{k=1}^{K} y^k(s)$
• A collection of $K \times 1$ vectors of individual k consumptions: $c^k(s), k = 1, \ldots, K$

• A collection of restrictions on feasible consumption allocations for $s \in S$:

$$c(s) = \sum_{k=1}^{K} c^k(s) \leq y(s)$$

• Preferences: a common utility functional across agents $E_0 \sum_{t=0}^{\infty} \beta^t u(t^k_t)$ with CRRA one-period utility function $u(c)$ and discount factor $\beta \in (0, 1)$

The one-period utility function is

$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$

so that

$$u'(c) = c^{-\gamma}$$

74.6.2 Outputs

• An $n \times n$ matrix pricing kernel Q for one-period Arrow securities, where Q_{ij} = price at time t in state $s_t = \bar{s}_i$ of one unit of consumption when $s_{t+1} = \bar{s}_j$ at time $t + 1$

• pure exchange so that $c(s) = y(s)$

• A $K \times 1$ vector distribution of wealth vector $\alpha, \alpha_k \geq 0, \sum_{k=1}^{K} \alpha_k = 1$

• A collection of $n \times 1$ vectors of individual k consumptions: $c^k(s), k = 1, \ldots, K$

74.6.3 Matrix Q to Represent Pricing Kernel

For any agent $k \in [1, \ldots, K]$, at the equilibrium allocation, the one-period Arrow securities pricing kernel satisfies

$$Q_{ij} = \beta \left(\frac{c^k(\bar{s}_j)}{c^k(\bar{s}_i)} \right)^{-\gamma} P_{ij}$$

where Q is an $n \times n$ matrix

This follows from agent k’s first-order necessary conditions.

But with the CRRA preferences that we have assumed, individual consumptions vary proportionately with aggregate consumption and therefore with the aggregate endowment.

• This is a consequence of our preference specification implying that Engle curves affine in wealth and therefore satisfy conditions for Gorman aggregation

Thus,

$$c^k(s) = \alpha_k c(s) = \alpha_k y(s)$$

for an arbitrary distribution of wealth in the form of an $K \times 1$ vector α that satisfies

$$\alpha_k \in (0, 1), \sum_{k=1}^{K} \alpha_k = 1$$
This means that we can compute the pricing kernel from

\[Q_{ij} = \beta \left(\frac{y_j}{y_i} \right)^{-\gamma} P_{ij} \]

(74.1)

Note that \(Q_{ij} \) is independent of vector \(\alpha \).

Key finding: We can compute competitive equilibrium prices prior to computing a distribution of wealth.

74.6.4 Values

Having computed an equilibrium pricing kernel \(Q \), we can compute several values that are required to pose or represent the solution of an individual household’s optimum problem.

We denote an \(K \times 1 \) vector of state-dependent values of agents’ endowments in Markov state \(s \) as

\[
A(s) = \begin{bmatrix} A^1(s) \\ \vdots \\ A^K(s) \end{bmatrix}, \quad s \in [\bar{s}_1, \ldots, \bar{s}_n]
\]

and an \(n \times 1 \) vector of continuation endowment values for each individual \(k \) as

\[
A^k = \begin{bmatrix} A^k(\bar{s}_1) \\ \vdots \\ A^k(\bar{s}_n) \end{bmatrix}, \quad k \in [1, \ldots, K]
\]

\(A^k \) of consumer \(k \) satisfies

\[
A^k = (I - Q)^{-1} [y^k]
\]

where

\[
y^k = \begin{bmatrix} y^k(\bar{s}_1) \\ \vdots \\ y^k(\bar{s}_n) \end{bmatrix} \equiv \begin{bmatrix} y^k_1 \\ \vdots \\ y^k_n \end{bmatrix}
\]

In a competitive equilibrium of an infinite horizon economy with sequential trading of one-period Arrow securities, \(A^k(s) \) serves as a state-by-state vector of debt limits on the quantities of one-period Arrow securities paying off in state \(s \) at time \(t + 1 \) that individual \(k \) can issue at time \(t \).

These are often called natural debt limits.

Evidently, they equal the maximum amount that it is feasible for individual \(k \) to repay even if he consumes zero goods forevermore.

Remark: If we have an Inada condition at zero consumption or just impose that consumption be nonnegative, then in a finite horizon economy with sequential trading of one-period Arrow securities there is no need to impose natural debt limits. See the section below on a Finite Horizon Economy.

74.6.5 Continuation Wealth

Continuation wealth plays an important role in Bellmanizing a competitive equilibrium with sequential trading of a complete set of one-period Arrow securities.

We denote an \(K \times 1 \) vector of state-dependent continuation wealths in Markov state \(s \) as

\[
\psi(s) = \begin{bmatrix} \psi^1(s) \\ \vdots \\ \psi^K(s) \end{bmatrix}, \quad s \in [\bar{s}_1, \ldots, \bar{s}_n]
\]
and an $n \times 1$ vector of continuation wealths for each individual k as

$$
\psi^k = \begin{bmatrix}
\psi^k(s_1) \\
\vdots \\
\psi^k(s_n)
\end{bmatrix}, \quad k \in [1, \ldots, K]
$$

Continuation wealth ψ^k of consumer k satisfies

$$
\psi^k = [I - Q]^{-1} [\alpha_k y - y^k] \tag{74.2}
$$

where

$$
y^k = \begin{bmatrix}
y^k(s_1) \\
\vdots \\
y^k(s_n)
\end{bmatrix}, \quad y = \begin{bmatrix}
y(s_1) \\
\vdots \\
y(s_n)
\end{bmatrix}
$$

Note that $\sum_{k=1}^K \psi^k = 0_{n \times 1}$.

Remark: At the initial state $s_0 \in [\bar{s}_1, \ldots, \bar{s}_n]$, the continuation wealth $\psi^k(s_0) = 0$ for all agents $k = 1, \ldots, K$. This indicates that the economy begins with all agents being debt-free and financial-asset-free at time 0, state s_0.

Remark: Note that all agents’ continuation wealths recurrently return to zero when the Markov state returns to whatever value s_0 it had at time 0.

74.6.6 Optimal Portfolios

A nifty feature of the model is that an optimal portfolio of a type k agent equals the continuation wealth that we just computed.

Thus, agent k’s state-by-state purchases of Arrow securities next period depend only on next period’s Markov state and equal

$$
a_k(s) = \psi^k(s), \quad s \in [\bar{s}_1, \ldots, \bar{s}_n] \tag{74.3}
$$

74.6.7 Equilibrium Wealth Distribution α

With the initial state being a particular state $s_0 \in [\bar{s}_1, \ldots, \bar{s}_n]$, we must have

$$
\psi^k(s_0) = 0, \quad k = 1, \ldots, K
$$

which means the equilibrium distribution of wealth satisfies

$$
\alpha_k = \frac{V_z y^k}{V_z y}, \tag{74.4}
$$

where $V = [I - Q]^{-1}$ and z is the row index corresponding to the initial state s_0.

Since $\sum_{k=1}^K V_z y^k = V_z y$, $\sum_{k=1}^K \alpha_k = 1$.

In summary, here is the logical flow of an algorithm to compute a competitive equilibrium:

- compute Q from the aggregate allocation and formula (74.1)
- compute the distribution of wealth α from the formula (74.4)
- Using α assign each consumer k the share α_k of the aggregate endowment at each state
- return to the α-dependent formula (74.2) and compute continuation wealths
• via formula (74.3) equate agent k’s portfolio to its continuation wealth state by state

We can also add formulas for optimal value functions in a competitive equilibrium with trades in a complete set of one-period state-contingent Arrow securities.

Call the optimal value functions J^k for consumer k.

For the infinite horizon economy now under study, the formula is

$$J^k = (I - \beta P)^{-1} u(\alpha_k y), \quad u(e) = \frac{e^{1-\gamma}}{1-\gamma}$$

where it is understood that $u(\alpha_k y)$ is a vector.

74.7 Python Code

We are ready to dive into some Python code.

As usual, we start with Python imports.

```python
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

np.set_printoptions(suppress=True)
```

First, we create a Python class to compute the objects that comprise a competitive equilibrium with sequential trading of one-period Arrow securities.

In addition to handle infinite-horizon economies, the code is set up to handle finite-horizon economies indexed by horizon T.

We’ll study some finite horizon economies after we look at some infinite-horizon economies.

```python
class RecurCompetitive:
    """
    A class that represents a recursive competitive economy
    with one-period Arrow securities.
    """
    def __init__(self,
        s,  # state vector
        P,  # transition matrix
        ys,  # endowments ys = [y1, y2, .., yI]
        γ=0.5,  # risk aversion
        β=0.98,  # discount rate
        T=None):  # time horizon, none if infinite
        # preference parameters
        self.γ = γ
        self.β = β

        # variables dependent on state
        self.s = s
        self.P = P
        self.ys = ys
```

(continues on next page)
self.y = np.sum(ys, 1)

dimensions
self.n, self.K = ys.shape

compute pricing kernel
self.Q = self.pricing_kernel()

compute price of risk-free one-period bond
self.PRF = self.price_risk_free_bond()

compute risk-free rate
self.R = self.risk_free_rate()

V = [I - Q]^{-1} (infinite case)
if T is None:
 self.T = None
 self.V = np.empty((1, n, n))
 self.V[0] = np.linalg.inv(np.eye(n) - self.Q)
V = [I + Q + Q^2 + ... + Q^T] (finite case)
else:
 self.T = T
 self.V = np.empty((T+1, n, n))
 self.V[0] = np.eye(n)

 Qt = np.eye(n)
 for t in range(1, T+1):
 Qt = Qt.dot(self.Q)

natural debt limit
self.A = self.V[-1] @ ys

def u(self, c):
 "The CRRA utility"
 return c ** (1 - self.y) / (1 - self.y)

def u_prime(self, c):
 "The first derivative of CRRA utility"
 return c ** (-self.y)

def pricing_kernel(self):
 "Compute the pricing kernel matrix Q"
 c = self.y
 n = self.n
 Q = np.empty((n, n))

 for i in range(n):
 for j in range(n):
 ratio = self.u_prime(c[j]) / self.u_prime(c[i])
 Q[i, j] = self.β * ratio * P[i, j]
def wealth_distribution(self, s0_idx):
 """Solve for wealth distribution \(\alpha \)"

 # set initial state
 self.s0_idx = s0_idx

 # simplify notations
 n = self.n
 Q = self.Q
 y, ys = self.y, self ys

 # row of \(V \) corresponding to \(s_0 \)
 Vs0 = self.V[:1, s0_idx, :]
 a = Vs0 @ self.ys / (Vs0 @ self.y)

 self.a = a
 return a

def continuation_wealths(self):
 """Given \(\alpha \), compute the continuation wealths \(\psi \)"

 diff = np.empty((n, K))
 for k in range(K):
 diff[:, k] = self.a[k] * self.y - self.ys[:, k]

 \(\psi = V \) @ diff
 self.\psi = \psi

 return \(\psi \)

def price_risk_free_bond(self):
 """Give \(Q \), compute price of one-period risk free bond"

 PRF = np.sum(self.Q, 0)
 self.PRF = PRF

 return PRF

def risk_free_rate(self):
 """Given \(Q \), compute one-period gross risk-free interest rate \(R \)"

 R = np.sum(self.Q, 0)
 R = np.reciprocal(R)
 self.R = R

 return R

def value_functions(self):
 """Given \(\alpha \), compute the optimal value functions \(J \) in equilibrium"

 n, T = self.n, self.T

(continues on next page)
β = self.β
P = self.P

compute (I - βP)^(-1) in infinite case
if T is None:
 P_seq = np.empty((1, n, n))
 P_seq[0] = np.linalg.inv(np.eye(n) - β * P)
and (I + βP + ... + β^T P^T) in finite case
else:
 P_seq = np.empty((T+1, n, n))
 P_seq[0] = np.eye(n)
 Pt = np.eye(n)
 for t in range(1, T+1):
 Pt = Pt.dot(P)
 P_seq[t] = P_seq[t-1] + Pt * β ** t

compute the matrix [u(α_1 y), ..., u(α_K, y)]
flow = np.empty((n, K))
for k in range(K):
 flow[:, k] = self.u(self.α[k] * self.y)

J = P_seq @ flow
self.J = J

return J

74.7.1 Example 1

Please read the preceding class for default parameter values and the following Python code for the fundamentals of the economy.

Here goes.

dimensions
K, n = 2, 2

states
s = np.array([0, 1])

transition
P = np.array([[.5, .5], [.5, .5]])

endowments
ys = np.empty((n, K))
ys[:, 0] = 1 - s # y1
ys[:, 1] = s # y2

ex1 = RecurCompetitive(s, P, ys)

endowments
ex1.ys
array(
 [[1., 0.],
 [0., 1.]]
)

pricing kernel
ex1.Q

array(
 [[0.49, 0.49],
 [0.49, 0.49]]
)

Risk free rate R
ex1.R

array([1.02040816, 1.02040816])

natural debt limit, \(A = [A_1, A_2, \ldots, A_I] \)
ex1.A

array(
 [[25.5, 24.5],
 [24.5, 25.5]]
)

when the initial state is state 1
print(f'\(\alpha = \{ex1.wealth_distribution(s0_idx=0)\} \)')
print(f'\(\psi = \{ex1.continuation_wealths()\} \)')
print(f'\(J = \{ex1.value_functionss()\} \)')

\[
\alpha = [0.51, 0.49] \\
\psi =
 [[[-0.0], \\
 [1.0 -1.0]]] \\
J =
 [[\[71.41428429, 70.\] \\
 [\[71.41428429, 70.\]]]]
\]

when the initial state is state 2
print(f'\(\alpha = \{ex1.wealth_distribution(s0_idx=1)\} \)')
print(f'\(\psi = \{ex1.continuation_wealths()\} \)')
print(f'\(J = \{ex1.value_functionss()\} \)')

\[
\alpha = [0.49, 0.51] \\
\psi =
 [[[-1.0], \\
 [0.0 -0.0]]] \\
J =
 [[\[70.\, 71.41428429\] \\
 [\[70.\, 71.41428429\]]]]
\]
74.7.2 Example 2

```python
# dimensions
K, n = 2, 2

# states
s = np.array([1, 2])

# transition
P = np.array([[[.5, .5], [.5, .5]]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = 1.5  # y1
ys[:, 1] = s    # y2

ex2 = RecurCompetitive(s, P, ys)

# endowments
print("ys = 
", ex2.ys)

# pricing kernal
print ("Q = 
", ex2.Q)

# Risk free rate R
print("R = ", ex2.R)

ys =
[[1.5 1.]
 [1.5 2.]]

Q =
[[0.49 0.41412558]
 [0.57977582 0.49]]

R = [0.93477529 1.10604104]

# pricing kernal
ex2.Q

array([[0.49 , 0.41412558],
       [0.57977582, 0.49 ]])

# Risk free rate R
ex2.R

array([0.93477529, 1.10604104])

# natural debt limit, A = [A1, A2, ..., AI]
ex2.A
```

74.7. Python Code
array([[69.30941886, 66.91255848],
 [81.73318641, 79.98879094]]

when the initial state is state 1
print(f'α = {ex2.wealth_distribution(s0_idx=0)}')
print(f'ψ = {ex2.continuation_wealths()}')
print(f'J = {ex2.value_functionss()}')

α = [0.50879763 0.49120237]
ψ =
[[0. 0.]
 [0.55057195 -0.55057195]]
J =
[[122.907875 120.76397493]
 [123.32114686 121.17003803]]

when the initial state is state 1
print(f'α = {ex2.wealth_distribution(s0_idx=1)}')
print(f'ψ = {ex2.continuation_wealths()}')
print(f'J = {ex2.value_functionss()}')

α = [0.50539319 0.49460681]
ψ =
[[-0.46375886 0.46375886]
 [0. -0.]]
J =
[[122.49598809 121.18174895]
 [122.907875 121.58921679]]

74.7.3 Example 3

dimensions
K, n = 2, 2

states
s = np.array([1, 2])

transition
λ = 0.9
P = np.array([[1-λ, λ], [0, 1]])

endowments
ys = np.empty((n, K))
ys[:, 0] = [1, 0] # y1
ys[:, 1] = [0, 1] # y2

ex3 = RecurCompetitive(s, P, ys)

endowments

(continues on next page)
print("ys = ", ex3.ys)

pricing kernel
print ("Q = ", ex3.Q)

Risk free rate R
print("R = ", ex3.R)

ys = [[1. 0.]
[0. 1.]]
Q = [[0.098 0.882]
[0. 0.98]]
R = [10.20408163 0.53705693]

pricing kernel
ex3.Q

array([[0.098, 0.882],
[0. , 0.98]])

natural debt limit, A = [A1, A2, ..., AI]
ex3.A

array([[1.10864745, 48.89135255],
[0. , 50.]])

Note that the natural debt limit for agent 1 in state 2 is 0.

when the initial state is state 1
print(f'α = \n(\n{ex3.wealth_distribution(s0_idx=0)})
')
print(f'ψ = \n{ex3.continuation_wealths()}
')
print(f'J = \n{ex3.value_functionss()}
')

α = [0.02217295 0.97782705]
ψ =
[[[0. -0.]
 [1.10864745 -1.10864745]]]
J =
[[[14.89058394 98.88513796]
 [14.89058394 98.88513796]]]

when the initial state is state 1
print(f'α = \n(\n{ex3.wealth_distribution(s0_idx=1)})
')
print(f'ψ = \n{ex3.continuation_wealths()}
')
print(f'J = \n{ex3.value_functionss()}
')

α = [0. 1.]
ψ =
[[[-1.10864745 1.10864745]
 [0. 0.]]]
J =
[[[0. 100.]
[0. 100.]]]}

For the specification of the Markov chain in example 3, let’s take a look at how the equilibrium allocation changes as a function of transition probability λ.

$$\lambda_{\text{seq}} = \text{np.linspace}(0, 1, 100)$$

```python
# prepare containers
as0_seq = np.empty((len(\lambda_{\text{seq}}), 2))
as1_seq = np.empty((len(\lambda_{\text{seq}}), 2))

for i, \lambda in enumerate(\lambda_{\text{seq}}):
P = np.array([[1-\lambda, \lambda], [0, 1]])
ex3 = RecurCompetitive(s, P, ys)

    # initial state s0 = 1
    a = ex3.wealth_distribution(s0_idx=0)
as0_seq[i, :] = a

    # initial state s0 = 2
    a = ex3.wealth_distribution(s0_idx=1)
as1_seq[i, :] = a
```

```python
/tmp/ipykernel_15260/3666444994.py:126: RuntimeWarning: divide by zero encountered in reciprocal
R = np.reciprocal(R)
```

```python
fig, axs = plt.subplots(1, 2, figsize=(12, 4))

for i, as_seq in enumerate([as0_seq, as1_seq]):
    for j in range(2):
        axs[i].plot(\lambda_{\text{seq}}, as_seq[:, j], label=f'α({j+1})')
as[i].set_xlabel(\lambda')
axs[i].set_title(f'initial state s0 = {s[i]}')
axs[i].legend()

plt.show()
```
#dimensions
K, n = 2, 3

#states
s = np.array([1, 2, 3])

#transition
λ = .9
μ = .9
δ = .05
P = np.array([[1-λ, λ, 0], [μ/2, μ, μ/2], [(1-δ)/2, (1-δ)/2, δ]])

#endowments
ys = np.empty((n, K))
ys[:, 0] = [.25, .75, .2] # y1
ys[:, 1] = [1.25, .25, .2] # y2

ex4 = RecurCompetitive(s, P, ys)

#endowments
print("ys = \n", ex4.ys)

#pricing kernel
print ("Q = \n", ex4.Q)

#Risk free rate R
print("R = ", ex4.R)

#natural debt limit, A = [A1, A2, ..., AI]
print("A = \n", ex4.A)

print('')
for i in range(1, 4):
when the initial state is state i
print(f"when the initial state is state (i"")
print(f'α = (ex4.wealth_distribution(s0_idx=i-1))'
print(f'ψ = \n(ex4.continuation_wealths())'
print(f'J = \n(ex4.value_functionss())\n
ys =
[[0.25 1.25]
[0.75 0.25]
[0.2 0.2]]
Q =
[[0.098 1.08022498 0.]
[0.36007499 0.882 0.69728222]
[0.24038317 0.29440805 0.049]]
R = [1.43172499 0.44313607 1.33997564]
A =
[[-1.4141307 -0.45854174]
[-1.4122483 -1.54005386]
[-0.58434331 -0.3823659]]

when the initial state is state 1
α = [0.75514045 0.24485955]
ψ =
[[0. 0.]
[-0.81715447 0.81715447]
[-0.14565791 0.14565791]]
J =
[[-2.65741909 -1.51322919]
[-5.13103133 -2.92179221]
[-2.65649938 -1.51270548]]

when the initial state is state 2
α = [0.47835493 0.52164507]
ψ =
[[0.5183286 -0.5183286]
 [0. -0.]
 [0.12191319 -0.12191319]]
J =
[[-2.11505328 -2.08684777]
[-4.08381377 -4.26460049]
[-2.11432128 -2.20792037]]

when the initial state is state 3
α = [0.60446648 0.39553352]
ψ =
[[0.28216299 -0.28216299]
 [-0.37231938 0.37231938]
 [-0. -0.]]
J =
[[-2.37756442 -1.92325926]
[-4.59067883 -3.71349163]
[-2.37674158 -1.92259365]]
74.8 Finite Horizon

The Python class `RecurCompetitive` provided above also can be used to compute competitive equilibrium allocations and Arrow securities prices for finite horizon economies.

The setting is a finite-horizon version of the one above except that time now runs for \(T + 1 \) periods \(t \in T = \{0, 1, \ldots, T \} \). Consequently, we want \(T + 1 \) counterparts to objects described above, with one important exception: we won't need **borrowing limits**.

- borrowing limits aren’t required for a finite horizon economy in which a one-period utility function \(u(c) \) satisfies an Inada condition that sets the marginal utility of consumption at zero consumption to zero.
- Nonnegativity of consumption choices at all \(t \in T \) automatically limits borrowing.

74.8.1 Continuation Wealths

We denote a \(K \times 1 \) vector of state-dependent continuation wealths in Markov state \(s \) at time \(t \) as

\[
\psi_t(s) = \begin{bmatrix}
\psi^1_t(s) \\
\vdots \\
\psi^K_t(s)
\end{bmatrix}, \quad s \in [\bar{s}_1, \ldots, \bar{s}_n]
\]

and an \(n \times 1 \) vector of continuation wealths for each individual \(k \) as

\[
\psi^k_t = \begin{bmatrix}
\psi^k_t(\bar{s}_1) \\
\vdots \\
\psi^k_t(\bar{s}_n)
\end{bmatrix}, \quad k \in [1, \ldots, K]
\]

Continuation wealths \(\psi^k \) of consumer \(k \) satisfy

\[
\begin{align*}
\psi^k_T &= [\alpha_k y - y^k] \\
\psi^k_{T-1} &= [I + Q] [\alpha_k y - y^k] \\
& \vdots \\
\psi^k_0 &= [I + Q + Q^2 + \cdots + Q^T] [\alpha_k y - y^k]
\end{align*}
\]

(74.5)

where

\[
y^k = \begin{bmatrix}
y^k(\bar{s}_1) \\
\vdots \\
y^k(\bar{s}_n)
\end{bmatrix}, \quad y = \begin{bmatrix}
y(\bar{s}_1) \\
\vdots \\
y(\bar{s}_n)
\end{bmatrix}
\]

Note that \(\sum_{k=1}^K \psi^k_t = 0_{n \times 1} \) for all \(t \in T \).

Remark: At the initial state \(s_0 \in [\bar{s}_1, \ldots, \bar{s}_n] \), for all agents \(k = 1, \ldots, K \), continuation wealth \(\psi^k_0(s_0) = 0 \). This indicates that the economy begins with all agents being debt-free and financial-asset-free at time 0, state \(s_0 \).

Remark: Note that all agents’ continuation wealths return to zero when the Markov state returns to whatever value \(s_0 \) it had at time 0. This will recur if the Markov chain makes the initial state \(s_0 \) recurrent.

With the initial state being a particular state \(s_0 \in [\bar{s}_1, \ldots, \bar{s}_n] \), we must have

\[
\psi^k_0(s_0) = 0, \quad k = 1, \ldots, K
\]

which means the equilibrium distribution of wealth satisfies

\[
\alpha_k = \frac{V_z y^k}{V_z y}
\]

(74.6)
where now in our finite-horizon economy

\[V = [I + Q + Q^2 + \cdots + Q^T] \]

(74.7)

and \(z \) is the row index corresponding to the initial state \(s_0 \).

Since \(\sum_{k=1}^{K} V'_y^k = V'_y \), \(\sum_{k=1}^{K} \alpha_k = 1 \).

In summary, here is the logical flow of an algorithm to compute a competitive equilibrium with Arrow securities in our finite-horizon Markov economy:

- compute \(Q \) from the aggregate allocation and formula (74.1)
- compute the distribution of wealth \(\alpha \) from formulas (74.6) and (74.7)
- using \(\alpha \), assign each consumer \(k \) the share \(\alpha_k \) of the aggregate endowment at each state
- return to the \(\alpha \)-dependent formula (74.5) for continuation wealths and compute continuation wealths
- equate agent \(k \)'s portfolio to its continuation wealth state by state

While for the infinite horizon economy, the formula for value functions is

\[J^k = (I - \beta P)^{-1} u(\alpha_k y), \quad u(c) = \frac{c^{1-\gamma}}{1-\gamma} \]

for the finite horizon economy the formula is

\[J^k_0 = (I + \beta P + \cdots + \beta^T P^T) u(\alpha_k y), \]

where it is understood that \(u(\alpha_k y) \) is a vector.

74.8.2 Finite Horizon Example

Below we revisit the economy defined in example 1, but set the time horizon to be \(T = 10 \).

```python
# dimensions
K, n = 2, 2

# states
s = np.array([0, 1])

# transition
P = np.array([[.5, .5], [.5, .5]])

# endowments
ys = np.empty((n, K))
ys[:, 0] = 1 - s  # y1
ys[:, 1] = s      # y2

ex1_finite = RecurCompetitive(s, P, ys, T=10)

# (I + Q + Q^2 + \cdots + Q^T)
ex1_finite.V[-1]

array([[5.48171623, 4.48171623],
        [4.48171623, 5.48171623]])
```
endowments
ex1_finite.ys

array([[1., 0.],
 [0., 1.]])

pricing kernel
ex1_finite.Q

array([[0.49, 0.49],
 [0.49, 0.49]])

Risk free rate R
ex1_finite.R

array([1.02040816, 1.02040816])

In the finite time horizon case, \(\psi \) and \(J \) are returned as sequences.

Components are ordered from \(t = T \) to \(t = 0 \).

when the initial state is state 2
print(f'\(\alpha \) = \
 \{ex1_finite.wealth_distribution(s0_idx=0)\}')
print(f'\(\psi \) = \
 \{ex1_finite.continuation_wealths()\}
 \n')
print(f'\(J \) = \
 \{ex1_finite.value_functions()\}')

\(\alpha = [0.55018351 \ 0.44981649] \)
\(\psi = \)
\[
[[-0.44981649 \ 0.44981649]
 [0.55018351 -0.55018351]]

[[-0.40063665 \ 0.40063665]
 [0.59936335 -0.59936335]]

[[-0.35244041 \ 0.35244041]
 [0.64755959 -0.64755959]]

[[-0.30520809 \ 0.30520809]
 [0.69479191 -0.69479191]]

[[-0.25892042 \ 0.25892042]
 [0.74107958 -0.74107958]]

[[-0.21355851 \ 0.21355851]
 [0.78644149 -0.78644149]]

[[-0.16910383 \ 0.16910383]
 [0.83089617 -0.83089617]]

[[-0.12553824 \ 0.12553824]
 [0.87446176 -0.87446176]]

(continues on next page)
\[
\begin{bmatrix}
-0.08284397 & 0.08284397 \\
0.91715603 & -0.91715603
\end{bmatrix}
\]
\[
\begin{bmatrix}
-0.04100358 & 0.04100358 \\
0.95899642 & -0.95899642
\end{bmatrix}
\]
\[
\begin{bmatrix}
0. & 0. \\
1. & -1.
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.48348712 & 1.3413672 \\
1.48348712 & 1.3413672
\end{bmatrix}
\]
\[
\begin{bmatrix}
2.9373045 & 2.6590706 \\
2.9373045 & 2.6590706
\end{bmatrix}
\]
\[
\begin{bmatrix}
4.3620453 & 3.94415611 \\
4.3620453 & 3.94415611
\end{bmatrix}
\]
\[
\begin{bmatrix}
5.75829174 & 5.20664019 \\
5.75829174 & 5.20664019
\end{bmatrix}
\]
\[
\begin{bmatrix}
7.12661302 & 6.44387459 \\
7.12661302 & 6.44387459
\end{bmatrix}
\]
\[
\begin{bmatrix}
8.46756788 & 7.6563643 \\
8.46756788 & 7.6563643
\end{bmatrix}
\]
\[
\begin{bmatrix}
9.78170364 & 8.8460421 \\
9.78170364 & 8.8460421
\end{bmatrix}
\]
\[
\begin{bmatrix}
10.06955669 & 10.0097933 \\
10.06955669 & 10.0097933
\end{bmatrix}
\]
\[
\begin{bmatrix}
11.06955669 & 11.15026494 \\
11.06955669 & 11.15026494
\end{bmatrix}
\]
\[
\begin{bmatrix}
12.33165268 & 12.26862684 \\
12.33165268 & 12.26862684
\end{bmatrix}
\]
\[
\begin{bmatrix}
13.56850674 & 13.3646215 \\
13.56850674 & 13.3646215
\end{bmatrix}
\]

when the initial state is state 2
print(f'\(\alpha = \{\text{ex1_finite.wealth_distribution(s0_idx=1)}\}')
print(f'\(\psi = \{\text{ex1_finite.continuation_wealths()}\})
print(f'\(J = \{\text{ex1_finite.value_functionss()}\}')

\[
\begin{bmatrix}
0.44981649 & 0.55018351 \\
-0.55018351 & 0.55018351
\end{bmatrix}
\]
\[
\begin{bmatrix}
0.44981649 & -0.44981649 \\
0.59936335 & 0.59936335
\end{bmatrix}
\]
\[
\begin{bmatrix}
0.40063665 & -0.40063665
\end{bmatrix}
\]
\[
\begin{bmatrix}
-0.64755959 & 0.64755959 \\
0.35244041 & -0.35244041
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.69479191 & 0.69479191 \\
0.30520809 & -0.30520809
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.74107958 & 0.74107958 \\
0.25892042 & -0.25892042
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.78644149 & 0.78644149 \\
0.21355851 & -0.21355851
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.83089617 & 0.83089617 \\
0.16910383 & -0.16910383
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.8746176 & 0.8746176 \\
0.12553824 & -0.12553824
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.91715603 & 0.91715603 \\
0.08284397 & -0.08284397
\end{bmatrix}
\]

\[
\begin{bmatrix}
-0.95899642 & 0.95899642 \\
0.04100358 & -0.04100358
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1. & 1. & \\
-0. & -0. &
\end{bmatrix}
\]

\[
J =
\begin{bmatrix}
1.3413672 & 1.48348712 \\
1.3413672 & 1.48348712
\end{bmatrix}
\]

\[
\begin{bmatrix}
2.65590706 & 2.9373045 \\
2.65590706 & 2.9373045
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.94415611 & 4.36204553 \\
3.94415611 & 4.36204553
\end{bmatrix}
\]

\[
\begin{bmatrix}
5.20664019 & 5.75829174 \\
5.20664019 & 5.75829174
\end{bmatrix}
\]

\[
\begin{bmatrix}
6.44387459 & 7.12661302 \\
6.44387459 & 7.12661302
\end{bmatrix}
\]

\[
\begin{bmatrix}
7.6563643 & 8.46756788 \\
7.6563643 & 8.46756788
\end{bmatrix}
\]

\[
\begin{bmatrix}
8.84460421 & 9.78170364 \\
8.84460421 & 9.78170364
\end{bmatrix}
\]

\[
\begin{bmatrix}
10.00907933 & 11.06955669 \\
10.00907933 & 11.06955669
\end{bmatrix}
\]

\[
\begin{bmatrix}
11.15026494 & 12.33165268 \\
11.15026494 & 12.33165268
\end{bmatrix}
\]
We can check the results with finite horizon converges to the ones with infinite horizon as $T \to \infty$.

```
ex1_large = RecurCompetitive(s, P, ys, T=10000)
ex1_large.wealth_distribution(s0_idx=1)

array([0.49, 0.51])
```

```
ex1.V, ex1_large.V[-1]

(array([[25.5, 24.5],
         [24.5, 25.5]]),
 array([[25.5, 24.5],
         [24.5, 25.5]]))
```

```
ex1_large.continuation_wealths()
ex1.ψ, ex1_large.ψ[-1]

(array([[[-1., 1.],
         [ 0.,  0.]]]),
 array([[[-1., 1.],
         [ 0.,  0.]]])
```

```
ex1_large.value_functionss()
ex1.J, ex1_large.J[-1]

(array([[70., 71.41428429],
         [70., 71.41428429]]),
 array([[70., 71.41428429],
         [70., 71.41428429]]))
```
75.1 Overview

This lecture describes a version of a model of Harrison and Kreps [HK78].

The model determines the price of a dividend-yielding asset that is traded by two types of self-interested investors. The model features

- heterogeneous beliefs
- incomplete markets
- short sales constraints, and possibly ...
- (leverage) limits on an investor’s ability to borrow in order to finance purchases of a risky asset

Let’s start with some standard imports:

```python
import numpy as np
import quantecon as qe
import scipy.linalg as la
```
75.1.1 References

Prior to reading the following, you might like to review our lectures on

- Markov chains
- Asset pricing with finite state space

75.1.2 Bubbles

Economists differ in how they define a bubble.

The Harrison-Kreps model illustrates the following notion of a bubble that attracts many economists:

\[
\text{A component of an asset price can be interpreted as a bubble when all investors agree that the current price of the asset exceeds what they believe the asset's underlying dividend stream justifies.}
\]

75.2 Structure of the Model

The model simplifies things by ignoring alterations in the distribution of wealth among investors who have hard-wired different beliefs about the fundamentals that determine asset payouts.

There is a fixed number \(A \) of shares of an asset.

Each share entitles its owner to a stream of dividends \(\{d_t\} \) governed by a Markov chain defined on a state space \(S \in \{0, 1\} \).

The dividend obeys

\[
d_t = \begin{cases}
0 & \text{if } s_t = 0 \\
1 & \text{if } s_t = 1
\end{cases}
\]

An owner of a share at the end of time \(t \) and the beginning of time \(t + 1 \) is entitled to the dividend paid at time \(t + 1 \). Thus, the stock is traded ex dividend.

An owner of a share at the beginning of time \(t + 1 \) is also entitled to sell the share to another investor during time \(t + 1 \). Two types \(h = a, b \) of investors differ only in their beliefs about a Markov transition matrix \(P \) with typical element

\[
P(i, j) = P\{s_{t+1} = j \mid s_t = i\}
\]

Investors of type \(a \) believe the transition matrix

\[
P_a = \begin{bmatrix} 1/2 & 1/3 \\ 1/3 & 1/4 \end{bmatrix}
\]

Investors of type \(b \) think the transition matrix is

\[
P_b = \begin{bmatrix} 2/3 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}
\]

Thus, in state 0, a type \(a \) investor is more optimistic about next period's dividend than is investor \(b \). But in state 1, a type \(a \) investor is more pessimistic about next period's dividend than is investor \(b \).

The stationary (i.e., invariant) distributions of these two matrices can be calculated as follows:
The stationary distribution of P_a is approximately $\pi_a = [0.57, 0.43]$.
The stationary distribution of P_b is approximately $\pi_b = [0.43, 0.57]$.
Thus, a type a investor is more pessimistic on average.

75.2.1 Ownership Rights

An owner of the asset at the end of time t is entitled to the dividend at time $t+1$ and also has the right to sell the asset at time $t+1$.

Both types of investors are risk-neutral and both have the same fixed discount factor $\beta \in (0, 1)$.

In our numerical example, we’ll set $\beta = 0.75$, just as Harrison and Kreps [HK78] did.

We’ll eventually study the consequences of two alternative assumptions about the number of shares A relative to the resources that our two types of investors can invest in the stock.

1. Both types of investors have enough resources (either wealth or the capacity to borrow) so that they can purchase the entire available stock of the asset\(^1\).

2. No single type of investor has sufficient resources to purchase the entire stock.

Case 1 is the case studied in Harrison and Kreps.

In case 2, both types of investors always hold at least some of the asset.

75.2.2 Short Sales Prohibited

No short sales are allowed.

This matters because it limits how pessimists can express their opinions.

- They can express themselves by selling their shares.
- They cannot express themselves more loudly by artificially “manufacturing shares” – that is, they cannot borrow shares from more optimistic investors and then immediately sell them.

\(^1\) By assuming that both types of agents always have “deep enough pockets” to purchase all of the asset, the model takes wealth dynamics off the table. The Harrison-Kreps model generates high trading volume when the state changes either from 0 to 1 or from 1 to 0.
75.2.3 Optimism and Pessimism

The above specifications of the perceived transition matrices P_a and P_b, taken directly from Harrison and Kreps, build in stochastically alternating temporary optimism and pessimism.

Remember that state 1 is the high dividend state.

- In state 0, a type a agent is more optimistic about next period's dividend than a type b agent.
- In state 1, a type b agent is more optimistic about next period's dividend than a type a agent.

However, the stationary distributions $\pi_a = [0.57 \ 0.43]$ and $\pi_b = [0.43 \ 0.57]$ tell us that a type b person is more optimistic about the dividend process in the long run than is a type a person.

75.2.4 Information

Investors know a price function mapping the state s_t at t into the equilibrium price $p(s_t)$ that prevails in that state.

This price function is endogenous and to be determined below.

When investors choose whether to purchase or sell the asset at t, they also know s_t.

75.3 Solving the Model

Now let's turn to solving the model.

We'll determine equilibrium prices under a particular specification of beliefs and constraints on trading selected from one of the specifications described above.

We shall compare equilibrium price functions under the following alternative assumptions about beliefs:

1. There is only one type of agent, either a or b.
2. There are two types of agents differentiated only by their beliefs. Each type of agent has sufficient resources to purchase all of the asset (Harrison and Kreps's setting).
3. There are two types of agents with different beliefs, but because of limited wealth and/or limited leverage, both types of investors hold the asset each period.

75.3.1 Summary Table

The following table gives a summary of the findings obtained in the remainder of the lecture (in an exercise you will be asked to recreate the table and also reinterpret parts of it).

The table reports implications of Harrison and Kreps's specifications of P_a, P_b, β.

<table>
<thead>
<tr>
<th>s_t</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_a</td>
<td>1.33</td>
<td>1.22</td>
</tr>
<tr>
<td>p_b</td>
<td>1.45</td>
<td>1.91</td>
</tr>
<tr>
<td>p_0</td>
<td>1.85</td>
<td>2.08</td>
</tr>
<tr>
<td>p_p</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p_a</td>
<td>1.85</td>
<td>1.69</td>
</tr>
<tr>
<td>p_b</td>
<td>1.69</td>
<td>2.08</td>
</tr>
</tbody>
</table>

Here
• p_a is the equilibrium price function under homogeneous beliefs P_a
• p_b is the equilibrium price function under homogeneous beliefs P_b
• p_o is the equilibrium price function under heterogeneous beliefs with optimistic marginal investors
• p_p is the equilibrium price function under heterogeneous beliefs with pessimistic marginal investors
• \hat{p}_a is the amount type a investors are willing to pay for the asset
• \hat{p}_b is the amount type b investors are willing to pay for the asset

We'll explain these values and how they are calculated one row at a time.

The row corresponding to p_o applies when both types of investor have enough resources to purchase the entire stock of the asset and strict short sales constraints prevail so that temporarily optimistic investors always price the asset.

The row corresponding to p_p would apply if neither type of investor has enough resources to purchase the entire stock of the asset and both types must hold the asset.

The row corresponding to p_p would also apply if both types have enough resources to buy the entire stock of the asset but short sales are also possible so that temporarily pessimistic investors price the asset.

75.3.2 Single Belief Prices

We'll start by pricing the asset under homogeneous beliefs.

(This is the case treated in the lecture on asset pricing with finite Markov states)

Suppose that there is only one type of investor, either of type a or b, and that this investor always “prices the asset”.

Let $p_h = \begin{bmatrix} p_h(0) \\ p_h(1) \end{bmatrix}$ be the equilibrium price vector when all investors are of type h.

The price today equals the expected discounted value of tomorrow’s dividend and tomorrow’s price of the asset:

$$
\begin{align*}
p_h(s) &= \beta (P_h(s, 0)(0 + p_h(0)) + P_h(s, 1)(1 + p_h(1))) , \quad s = 0, 1
\end{align*}
$$

These equations imply that the equilibrium price vector is

$$
\begin{bmatrix} p_h(0) \\ p_h(1) \end{bmatrix} = \beta[I - \beta P_h]^{-1}P_h \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

The first two rows of the table report $p_a(s)$ and $p_b(s)$.

Here’s a function that can be used to compute these values

```python
def price_single_beliefs(transition, dividend_payoff, β=.75):
    # First compute inverse piece
    imbq_inv = la.inv(np.eye(transition.shape[0]) - β * transition)

    # Next compute prices
    prices = β * imbq_inv @ transition @ dividend_payoff

    return prices
```
Single Belief Prices as Benchmarks

These equilibrium prices under homogeneous beliefs are important benchmarks for the subsequent analysis.

- $p_h(s)$ tells what a type h investor thinks is the “fundamental value” of the asset.
- Here “fundamental value” means the expected discounted present value of future dividends.

We will compare these fundamental values of the asset with equilibrium values when traders have different beliefs.

75.3.3 Pricing under Heterogeneous Beliefs

There are several cases to consider.

The first is when both types of agents have sufficient wealth to purchase all of the asset themselves.

In this case, the marginal investor who prices the asset is the more optimistic type so that the equilibrium price \bar{p} satisfies Harrison and Kreps's key equation:

$$\bar{p}(s) = \beta \max \{ P_a(s, 0)\bar{p}(0) + P_a(s, 1)(1 + \bar{p}(1)), P_b(s, 0)\bar{p}(0) + P_b(s, 1)(1 + \bar{p}(1)) \} \quad (75.3)$$

for $s = 0, 1$.

In the above equation, the \max on the right side is over the two prospective values of next period's payout from owning the asset.

The marginal investor who prices the asset in state s is of type a if

$$P_a(s, 0)\bar{p}(0) + P_a(s, 1)(1 + \bar{p}(1)) > P_b(s, 0)\bar{p}(0) + P_b(s, 1)(1 + \bar{p}(1))$$

The marginal investor is of type b if

$$P_a(s, 1)\bar{p}(0) + P_a(s, 1)(1 + \bar{p}(1)) < P_b(s, 1)\bar{p}(0) + P_b(s, 1)(1 + \bar{p}(1))$$

Thus the marginal investor is the (temporarily) optimistic type.

Equation (75.3) is a functional equation that, like a Bellman equation, can be solved by

- starting with a guess for the price vector \bar{p} and
- iterating to convergence on the operator that maps a guess \bar{p}^i into an updated guess \bar{p}^{i+1} defined by the right side of (75.3), namely

$$\bar{p}^{i+1}(s) = \beta \max \{ P_a(s, 0)\bar{p}^i(0) + P_a(s, 1)(1 + \bar{p}^i(1)), P_b(s, 0)\bar{p}^i(0) + P_b(s, 1)(1 + \bar{p}^i(1)) \} \quad (75.4)$$

for $s = 0, 1$.

The third row of the table labeled p_o reports equilibrium prices that solve the functional equation when $\beta = .75$.

Here the type that is optimistic about s_{t+1} prices the asset in state s_t.

It is instructive to compare these prices with the equilibrium prices for the homogeneous belief economies that solve under beliefs P_a and P_b reported in the rows labeled p_a and p_b, respectively.

Equilibrium prices p_o in the heterogeneous beliefs economy evidently exceed what any prospective investor regards as the fundamental value of the asset in each possible state.

Nevertheless, the economy recurrently visits a state that makes each investor want to purchase the asset for more than he believes its future dividends are worth.

An investor is willing to pay more than what he believes is warranted by fundamental value of the prospective dividend stream because he expects to have the option later to sell the asset to another investor who will value the asset more highly than he will then.
• Investors of type a are willing to pay the following price for the asset
\[\hat{p}_a(s) = \begin{cases} \hat{p}(0) & \text{if } s_t = 0 \\ \beta(P_a(1, 0)\hat{p}(0) + P_a(1, 1)(1 + \hat{p}(1))) & \text{if } s_t = 1 \end{cases} \]

• Investors of type b are willing to pay the following price for the asset
\[\hat{p}_b(s) = \begin{cases} \beta(P_b(0, 0)\hat{p}(0) + P_b(0, 1)(1 + \hat{p}(1))) & \text{if } s_t = 0 \\ \hat{p}(1) & \text{if } s_t = 1 \end{cases} \]

Evidently, $\hat{p}_a(1) < \hat{p}(1)$ and $\hat{p}_b(0) < \hat{p}(0)$.

Investors of type a want to sell the asset in state 1 while investors of type b want to sell it in state 0.

• The asset changes hands whenever the state changes from 0 to 1 or from 1 to 0.

• The valuations $\hat{p}_a(s)$ and $\hat{p}_b(s)$ are displayed in the fourth and fifth rows of the table.

• Even pessimistic investors who don’t buy the asset think that it is worth more than they think future dividends are worth.

Here’s code to solve for \hat{p}, \hat{p}_a and \hat{p}_b using the iterative method described above

```python
def price_optimistic_beliefs(transitions, dividend_payoff, $\beta=.75$, max_iter=50000, tol=1e-16):
    """Function to Solve Optimistic Beliefs """
    # We will guess an initial price vector of [0, 0]
    p_new = np.array([[0], [0]])
    p_old = np.array([[10.], [10.]])

    # We know this is a contraction mapping, so we can iterate to conv
    for i in range(max_iter):
        p_old = p_new
        p_new = $\beta * \text{np.max([q @ p_old}$
        + q @ dividend_payoff for q in transitions],
        1)

        # If we succeed in converging, break out of for loop
        if np.max(np.sqrt((p_new - p_old)**2)) < tol:
            break

        ptwiddle = $\beta * \text{np.min([q @ p_old}$
        + q @ dividend_payoff for q in transitions],
        1)

    phat_a = np.array([p_new[0], ptwiddle[1]])
    phat_b = np.array([ptwiddle[0], p_new[1]])

    return p_new, phat_a, phat_b
```

75.3. Solving the Model
75.3.4 Insufficient Funds

Outcomes differ when the more optimistic type of investor has insufficient wealth — or insufficient ability to borrow enough — to hold the entire stock of the asset.

In this case, the asset price must adjust to attract pessimistic investors.

Instead of equation (75.3), the equilibrium price satisfies

\[\bar{p}(s) = \beta \min \{ P_a(s, 1)\bar{p}(0) + P_a(s, 1)(1 + \bar{p}(1)), P_b(s, 1)\bar{p}(0) + P_b(s, 1)(1 + \bar{p}(1)) \} \]

(75.5)

and the marginal investor who prices the asset is always the one that values it less highly than does the other type.

Now the marginal investor is always the (temporarily) pessimistic type.

Notice from the sixth row of that the pessimistic price \(p_o \) is lower than the homogeneous belief prices \(p_a \) and \(p_b \) in both states.

When pessimistic investors price the asset according to (75.5), optimistic investors think that the asset is underpriced.

If they could, optimistic investors would willingly borrow at a one-period risk-free gross interest rate \(\beta^{-1} \) to purchase more of the asset.

Implicit constraints on leverage prohibit them from doing so.

When optimistic investors price the asset as in equation (75.3), pessimistic investors think that the asset is overpriced and would like to sell the asset short.

Constraints on short sales prevent that.

Here’s code to solve for \(\bar{p} \) using iteration

```python
def price_pessimistic_beliefs(transitions, dividend_payoff, \beta=.75, 
                           max_iter=50000, tol=1e-16):
    
    
    
    
    """
    Function to Solve Pessimistic Beliefs
    """
    # We will guess an initial price vector of [0, 0]
    p_new = np.array([[0], [0]])
    p_old = np.array([[10.], [10.]])

    # We know this is a contraction mapping, so we can iterate to conv
    for i in range(max_iter):
        p_old = p_new
        p_new = \beta * np.min([q @ p_old
                                + q @ dividend_payoff for q in transitions],
                           1)

    # If we succeed in converging, break out of for loop
    if np.max(np.sqrt((p_new - p_old)**2)) < tol:
        break

    return p_new
```

1306 Chapter 75. Heterogeneous Beliefs and Bubbles
75.3.5 Further Interpretation

[Sch14] interprets the Harrison-Kreps model as a model of a bubble — a situation in which an asset price exceeds what every investor thinks is merited by his or her beliefs about the value of the asset’s underlying dividend stream.

Scheinkman stresses these features of the Harrison-Kreps model:

- High volume occurs when the Harrison-Kreps pricing formula (75.3) prevails.
- Type \(a \) investors sell the entire stock of the asset to type \(b \) investors every time the state switches from \(s_t = 0 \) to \(s_t = 1 \).
- Type \(b \) investors sell the asset to type \(a \) investors every time the state switches from \(s_t = 1 \) to \(s_t = 0 \).

Scheinkman takes this as a strength of the model because he observes high volume during *famous bubbles*.

- If the supply of the asset is increased sufficiently either physically (more “houses” are built) or artificially (ways are invented to short sell “houses”), bubbles end when the asset supply has grown enough to outstrip optimistic investors’ resources for purchasing the asset.
- If optimistic investors finance their purchases by borrowing, tightening leverage constraints can extinguish a bubble.

Scheinkman extracts insights about the effects of financial regulations on bubbles.

He emphasizes how limiting short sales and limiting leverage have opposite effects.

75.4 Exercises

Exercise 75.4.1

This exercise invites you to recreate the summary table using the functions we have built above.

<table>
<thead>
<tr>
<th>(s_t)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_a)</td>
<td>1.33</td>
<td>1.22</td>
</tr>
<tr>
<td>(p_b)</td>
<td>1.45</td>
<td>1.91</td>
</tr>
<tr>
<td>(p_o)</td>
<td>1.85</td>
<td>2.08</td>
</tr>
<tr>
<td>(p_p)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\hat{p}_a)</td>
<td>1.85</td>
<td>1.69</td>
</tr>
<tr>
<td>(\hat{p}_b)</td>
<td>1.69</td>
<td>2.08</td>
</tr>
</tbody>
</table>

You will want first to define the transition matrices and dividend payoff vector.

In addition, below we’ll add an interpretation of the row corresponding to \(p_o \) by inventing two additional types of agents, one of whom is **permanently optimistic**, the other who is **permanently pessimistic**.

We construct subjective transition probability matrices for our permanently optimistic and permanently pessimistic investors as follows.

The permanently optimistic investors (i.e., the investor with the most optimistic beliefs in each state) believes the transition matrix

\[
P_o = \begin{bmatrix} \frac{1}{4} & \frac{1}{3} \\ \frac{1}{4} & \frac{2}{3} \end{bmatrix}
\]

The permanently pessimistic investor believes the transition matrix

\[
P_p = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}
\]
We’ll use these transition matrices when we present our solution of exercise 1 below.

Solution to Exercise 75.4.1

First, we will obtain equilibrium price vectors with homogeneous beliefs, including when all investors are optimistic or pessimistic.

\[
\begin{align*}
q_a &= \text{np.array}([[1/2, 1/2], [2/3, 1/3]]) \quad \# \text{Type a transition matrix} \\
q_b &= \text{np.array}([[2/3, 1/3], [1/4, 3/4]]) \quad \# \text{Type b transition matrix} \\
q_{opt} &= \text{np.array}([[1/2, 1/2], [1/4, 3/4]]) \quad \# \text{Optimistic investor transition matrix} \\
q_{pess} &= \text{np.array}([[2/3, 1/3], [2/3, 1/3]]) \quad \# \text{Pessimistic investor transition matrix} \\
\end{align*}
\]

\[
\text{dividendreturn} = \text{np.array}([0, 1])
\]

\[
\text{transitions} = [q_a, q_b, q_{opt}, q_{pess}]
\]

\[
\text{labels} = ['p_a', 'p_b', 'p_optimistic', 'p_pessimistic']
\]

\[
\text{for} \quad \text{transition, label in} \quad \text{zip(transitions, labels)}:
\]

\[
\begin{align*}
\text{print(label)} \\
\text{print('=' * 20)} \\
\text{s0, s1} &= \text{np.round(price_single_beliefs(transition, dividendreturn), 2)} \\
\text{print('State 0: \ (s0)')} \\
\text{print('State 1: \ (s1)')} \\
\text{print('=' * 20)}
\end{align*}
\]

\[
\begin{align*}
p_a \\
\end{align*}
\]

\[
\begin{align*}
\text{----------------------} \\
\text{State 0: \ [1.33]} \\
\text{State 1: \ [1.22]} \\
\end{align*}
\]

\[
\begin{align*}
p_b \\
\end{align*}
\]

\[
\begin{align*}
\text{----------------------} \\
\text{State 0: \ [1.45]} \\
\text{State 1: \ [1.91]} \\
\end{align*}
\]

\[
\begin{align*}
p_{optimistic} \\
\end{align*}
\]

\[
\begin{align*}
\text{----------------------} \\
\text{State 0: \ [1.85]} \\
\text{State 1: \ [2.08]} \\
\end{align*}
\]

\[
\begin{align*}
p_{pessimistic} \\
\end{align*}
\]

\[
\begin{align*}
\text{----------------------} \\
\text{State 0: \ [1.]} \\
\text{State 1: \ [1.]} \\
\end{align*}
\]

We will use the price_optimistic_beliefs function to find the price under heterogeneous beliefs.

\[
\text{opt_beliefs} = \text{price_optimistic_beliefs([qa, qb], dividendreturn)}
\]

\[
\text{labels} = ['p_{optimistic}', 'p_{hat_a}', 'p_{hat_b}']
\]

\[
\text{for} \quad p, \ \text{label in} \quad \text{zip(opt_beliefs, labels)}:
\]

\[
\text{print(label)}
\]

(continues on next page)
```python
print("=*20")
s0, s1 = np.round(p, 2)
print(f"State 0: /s0/")
print(f"State 1: /s1/")
print("=*20")
```

```
p_optimistic
====================
State 0: [1.85]
State 1: [2.08]
-------------------
p_hat_a
====================
State 0: [1.85]
State 1: [1.69]
-------------------
p_hat_b
====================
State 0: [1.69]
State 1: [2.08]
-------------------
```

Notice that the equilibrium price with heterogeneous beliefs is equal to the price under single beliefs with **permanently optimistic** investors - this is due to the marginal investor in the heterogeneous beliefs equilibrium always being the type who is temporarily optimistic.
Part XII

Data and Empirics
76.1 Overview

In an earlier lecture on pandas, we looked at working with simple data sets. Econometricians often need to work with more complex data sets, such as panels. Common tasks include

- Importing data, cleaning it and reshaping it across several axes.
- Selecting a time series or cross-section from a panel.
- Grouping and summarizing data.

pandas (derived from ‘panel’ and ‘data’) contains powerful and easy-to-use tools for solving exactly these kinds of problems.

In what follows, we will use a panel data set of real minimum wages from the OECD to create:

- summary statistics over multiple dimensions of our data
- a time series of the average minimum wage of countries in the dataset
- kernel density estimates of wages by continent

We will begin by reading in our long format panel data from a CSV file and reshaping the resulting DataFrame with pivot_table to build a MultiIndex.

Additional detail will be added to our DataFrame using pandas’ merge function, and data will be summarized with the groupby function.
76.2 Slicing and Reshaping Data

We will read in a dataset from the OECD of real minimum wages in 32 countries and assign it to `realwage`. The dataset can be accessed with the following link:

```
url1 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_static/lecture_specific/pandas_panel/realwage.csv'
```

```python
import pandas as pd

# Display 6 columns for viewing purposes
pd.set_option('display.max_columns', 6)

# Reduce decimal points to 2
pd.options.display.float_format = '{:,.2f}'.format

realwage = pd.read_csv(url1)
```

Let's have a look at what we've got to work with

```
realwage.head()  # Show first 5 rows
```

<table>
<thead>
<tr>
<th>Unnamed: 0</th>
<th>Time</th>
<th>Country</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2006-01-01</td>
<td>Ireland</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
<tr>
<td>1</td>
<td>2007-01-01</td>
<td>Ireland</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
<tr>
<td>2</td>
<td>2008-01-01</td>
<td>Ireland</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
<tr>
<td>3</td>
<td>2009-01-01</td>
<td>Ireland</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
<tr>
<td>4</td>
<td>2010-01-01</td>
<td>Ireland</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pay period</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17,132.44</td>
</tr>
<tr>
<td>1</td>
<td>18,100.92</td>
</tr>
<tr>
<td>2</td>
<td>17,747.41</td>
</tr>
<tr>
<td>3</td>
<td>18,580.14</td>
</tr>
<tr>
<td>4</td>
<td>18,755.83</td>
</tr>
</tbody>
</table>

The data is currently in long format, which is difficult to analyze when there are several dimensions to the data.

We will use `pivot_table` to create a wide format panel, with a MultiIndex to handle higher dimensional data. `pivot_table` arguments should specify the data (values), the index, and the columns we want in our resulting dataframe.

By passing a list in columns, we can create a MultiIndex in our column axis

```python
realwage = realwage.pivot_table(values='value',
                                index='Time',
                                columns=['Country', 'Series', 'Pay period'])
realwage.head()
```

<table>
<thead>
<tr>
<th>Country</th>
<th>Australia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>In 2015 constant prices at 2015 USD PPPs</td>
</tr>
<tr>
<td>Pay period</td>
<td>Annual Hourly</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
To more easily filter our time series data, later on, we will convert the index into a `DateTimeIndex`.

```python
type(realwage.index)
```

```
pandas.core.indexes.datetimes.DatetimeIndex
```

The columns contain multiple levels of indexing, known as a `MultiIndex`, with levels being ordered hierarchically (Country > Series > Pay period).

A `MultiIndex` is the simplest and most flexible way to manage panel data in pandas.

```python
type(realwage.columns)
```

```
pandas.core.indexes.multi.MultiIndex
```
Like before, we can select the country (the top level of our MultiIndex)

```python
realwage['United States'].head()
```

Stacking and unstacking levels of the MultiIndex will be used throughout this lecture to reshape our dataframe into a format we need.

`.stack()` rotates the lowest level of the column MultiIndex to the row index (.unstack() works in the opposite direction - try it out)
We can also pass in an argument to select the level we would like to stack

```python
realwage.stack(level='Country').head()
```
Using a DatetimeIndex makes it easy to select a particular time period.

Selecting one year and stacking the two lower levels of the MultiIndex creates a cross-section of our panel data

\[
\text{realwage.loc['2015'].stack(level=(1, 2)).transpose().head()}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>Australia</th>
<th>Belgium</th>
<th>Brazil</th>
<th>...</th>
<th>Turkey</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-01-01</td>
<td>12.06</td>
<td>9.70</td>
<td>0.87</td>
<td>...</td>
<td>2.27</td>
<td>9.81</td>
</tr>
<tr>
<td>2007-01-01</td>
<td>12.46</td>
<td>9.82</td>
<td>0.92</td>
<td>...</td>
<td>2.26</td>
<td>10.07</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>12.24</td>
<td>9.87</td>
<td>0.96</td>
<td>...</td>
<td>2.22</td>
<td>10.04</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>12.40</td>
<td>10.21</td>
<td>1.03</td>
<td>...</td>
<td>2.28</td>
<td>10.15</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>12.34</td>
<td>10.05</td>
<td>1.08</td>
<td>...</td>
<td>2.30</td>
<td>9.96</td>
</tr>
</tbody>
</table>

For the rest of lecture, we will work with a dataframe of the hourly real minimum wages across countries and time, measured in 2015 US dollars.

To create our filtered dataframe (\text{realwage_f}), we can use the xs method to select values at lower levels in the multiindex, while keeping the higher levels (countries in this case)

\[
\text{realwage_f = realwage.xs(('Hourly', 'In 2015 constant prices at 2015 USD exchange...rates'), level=('Pay period', 'Series'), axis=1)}
\]

\[
\text{realwage_f.head()}
\]

<table>
<thead>
<tr>
<th>Country</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>2006-01-01</td>
<td>6.05</td>
</tr>
<tr>
<td>2007-01-01</td>
<td>6.24</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>6.78</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>7.58</td>
</tr>
</tbody>
</table>
76.3 Merging Dataframes and Filling NaNs

Similar to relational databases like SQL, pandas has built in methods to merge datasets together.

Using country information from WorldData.info, we’ll add the continent of each country to realwage_f with the merge function.

The dataset can be accessed with the following link:

url2 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_static/lecture_specific/pandas_panel/countries.csv'

```python
glob = pd.read_csv(url2, sep=';')
glob.head()
```

<table>
<thead>
<tr>
<th>Country (en)</th>
<th>Country (de)</th>
<th>Country (local)</th>
<th>...</th>
<th>Deathrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Afghanistan</td>
<td>Afganistan/Afqanestan</td>
<td>...</td>
<td>13.70</td>
</tr>
<tr>
<td>Egypt</td>
<td>Ägypten</td>
<td>Misr</td>
<td>...</td>
<td>4.70</td>
</tr>
<tr>
<td>Åland Islands</td>
<td>Ålandinseln</td>
<td>Åland</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>Albanien</td>
<td>Shqipëria</td>
<td>...</td>
<td>6.70</td>
</tr>
<tr>
<td>Algeria</td>
<td>Algerien</td>
<td>Al-Jaza’ir/Algérie</td>
<td>...</td>
<td>4.30</td>
</tr>
</tbody>
</table>

Life expectancy

<table>
<thead>
<tr>
<th>Life expectancy</th>
<th>Url</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.30</td>
<td>https://www.laenderdaten.info/Asien/Afghanistan...</td>
</tr>
<tr>
<td>72.70</td>
<td>https://www.laenderdaten.info/Afrika/Aegypten/...</td>
</tr>
<tr>
<td>0.00</td>
<td>https://www.laenderdaten.info/Europa/Aland/ind...</td>
</tr>
<tr>
<td>78.30</td>
<td>https://www.laenderdaten.info/Europa/Albanien/...</td>
</tr>
<tr>
<td>76.80</td>
<td>https://www.laenderdaten.info/Afrika/Algerien/...</td>
</tr>
</tbody>
</table>

First, we’ll select just the country and continent variables from `worlddata` and rename the column to ‘Country’

```python
worlddata = worlddata[['Country (en)', 'Continent']]
worlddata = worlddata.rename(columns={'Country (en)': 'Country'})
worlddata.head()
```

<table>
<thead>
<tr>
<th>Country</th>
<th>Continent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Asia</td>
</tr>
<tr>
<td>Egypt</td>
<td>Africa</td>
</tr>
<tr>
<td>Åland Islands</td>
<td>Europe</td>
</tr>
<tr>
<td>Albania</td>
<td>Europe</td>
</tr>
<tr>
<td>Algeria</td>
<td>Africa</td>
</tr>
</tbody>
</table>

We want to merge our new dataframe, `worlddata`, with `realwage_f`.

The pandas `merge` function allows dataframes to be joined together by rows.
Our dataframes will be merged using country names, requiring us to use the transpose of `realwage_f` so that rows correspond to country names in both dataframes.

```python
realwage_f.transpose().head()
```

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>12.06</td>
<td>12.46</td>
<td>12.24</td>
<td>...</td>
<td>12.67</td>
<td>12.83</td>
</tr>
<tr>
<td>Belgium</td>
<td>9.70</td>
<td>9.82</td>
<td>9.87</td>
<td>...</td>
<td>10.01</td>
<td>9.95</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.87</td>
<td>0.92</td>
<td>0.96</td>
<td>...</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>Canada</td>
<td>6.89</td>
<td>6.96</td>
<td>7.24</td>
<td>...</td>
<td>8.22</td>
<td>8.35</td>
</tr>
<tr>
<td>Chile</td>
<td>1.42</td>
<td>1.45</td>
<td>1.44</td>
<td>...</td>
<td>1.76</td>
<td>1.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>2016-01-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>12.98</td>
</tr>
<tr>
<td>Belgium</td>
<td>9.76</td>
</tr>
<tr>
<td>Brazil</td>
<td>1.24</td>
</tr>
<tr>
<td>Canada</td>
<td>8.48</td>
</tr>
<tr>
<td>Chile</td>
<td>1.91</td>
</tr>
</tbody>
</table>

[5 rows x 11 columns]

We can use either left, right, inner, or outer join to merge our datasets:

- **left join** includes only countries from the left dataset
- **right join** includes only countries from the right dataset
- **outer join** includes countries that are in either the left and right datasets
- **inner join** includes only countries common to both the left and right datasets

By default, `merge` will use an inner join.

Here we will pass `how='left'` to keep all countries in `realwage_f`, but discard countries in `worlddata` that do not have a corresponding data entry `realwage_f`.

This is illustrated by the red shading in the following diagram.

We will also need to specify where the country name is located in each dataframe, which will be the `key` that is used to merge the dataframes 'on'.

Our 'left' dataframe (`realwage_f.transpose()`) contains countries in the index, so we set `left_index=True`.

Our 'right' dataframe (`worlddata`) contains countries in the 'Country' column, so we set `right_on='Country'`.

```python
merged = pd.merge(realwage_f.transpose(), worlddata, how='left', left_index=True, right_on='Country')
merged.head()
```

<table>
<thead>
<tr>
<th>2006-01-01 00:00:00</th>
<th>2007-01-01 00:00:00</th>
<th>2008-01-01 00:00:00</th>
<th>2014-01-01</th>
<th>2015-01-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.00</td>
<td>12.06</td>
<td>12.46</td>
<td>12.24</td>
<td>...</td>
</tr>
<tr>
<td>23.00</td>
<td>9.70</td>
<td>9.82</td>
<td>9.87</td>
<td>...</td>
</tr>
<tr>
<td>32.00</td>
<td>0.87</td>
<td>0.92</td>
<td>0.96</td>
<td>...</td>
</tr>
<tr>
<td>100.00</td>
<td>6.89</td>
<td>6.96</td>
<td>7.24</td>
<td>...</td>
</tr>
<tr>
<td>38.00</td>
<td>1.42</td>
<td>1.45</td>
<td>1.44</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2016-01-01 00:00:00</th>
<th>Country</th>
<th>Continent</th>
</tr>
</thead>
</table>

(continues on next page)
Countries that appeared in real\textsubscript{wage_f} but not in world\textsubscript{data} will have NaN in the Continent column.

To check whether this has occurred, we can use .isnull() on the continent column and filter the merged dataframe

\begin{verbatim}
merged[merged['Continent'].isnull()]
\end{verbatim}

\begin{verbatim}
2006-01-01 00:00:00 2007-01-01 00:00:00 2008-01-01 00:00:00 ... \\
NaN 3.42 3.74 3.87 ... \\
NaN 0.23 0.45 0.39 ... \\
NaN 1.50 1.64 1.71 ... \\
2016-01-01 00:00:00 Country Continent \\
NaN 5.28 Korea NaN \\
NaN 0.55 Russian Federation NaN \\
NaN 2.08 Slovak Republic NaN
\end{verbatim}

[3 rows x 13 columns]

We have three missing values!
One option to deal with NaN values is to create a dictionary containing these countries and their respective continents.

`.map()` will match countries in `merged['Country']` with their continent from the dictionary.

Notice how countries not in our dictionary are mapped with NaN

```python
missing_continents = {'Korea': 'Asia',
                     'Russian Federation': 'Europe',
                     'Slovak Republic': 'Europe'}

merged['Country'].map(missing_continents)
```

```
    17.00   NaN
    23.00   NaN
    32.00   NaN
   100.00  NaN
    38.00   NaN
   108.00  NaN
     41.00  NaN
   225.00  NaN
    53.00   NaN
    58.00   NaN
    45.00   NaN
    68.00   NaN
   233.00  NaN
    86.00   NaN
    88.00   NaN
    91.00   NaN
NaN    Asia
   117.00  NaN
   122.00  NaN
   123.00  NaN
   138.00  NaN
   153.00  NaN
   151.00  NaN
   174.00  NaN
   175.00  NaN
NaN   Europe
NaN   Europe
   198.00  NaN
   200.00  NaN
   227.00  NaN
   241.00  NaN
   240.00  NaN
Name: Country, dtype: object
```

We don’t want to overwrite the entire series with this mapping.

`.fillna()` only fills in NaN values in `merged['Continent']` with the mapping, while leaving other values in the column unchanged.

```python
merged['Continent'] = merged['Continent'].fillna(merged['Country'].map(missing_continents))

# Check for whether continents were correctly mapped
merged[merged['Country'] == 'Korea']
```
We will also combine the Americas into a single continent - this will make our visualization nicer later on.

To do this, we will use .replace() and loop through a list of the continent values we want to replace

```python
replace = ['Central America', 'North America', 'South America']
for country in replace:
    merged['Continent'].replace(to_replace=country,
                                 value='America',
                                 inplace=True)
```

Now that we have all the data we want in a single DataFrame, we will reshape it back into panel form with a Multi-Index.

We should also ensure to sort the index using .sort_index() so that we can efficiently filter our dataframe later on.

By default, levels will be sorted top-down

```python
merged = merged.set_index(['Continent', 'Country']).sort_index()
merged.head()
```

While merging, we lost our DatetimeIndex, as we merged columns that were not in datetime format

```python
merged.columns
```

Index([2006-01-01 00:00:00, 2007-01-01 00:00:00, 2008-01-01 00:00:00, 2009-01-01 00:00:00, 2010-01-01 00:00:00, 2011-01-01 00:00:00, 2012-01-01 00:00:00, 2013-01-01 00:00:00, 2014-01-01 00:00:00, 2015-01-01 00:00:00, 2016-01-01 00:00:00], dtype='object')
Now that we have set the merged columns as the index, we can recreate a `DatetimeIndex` using `.to_datetime()`

```python
defmerged.columns = pd.to_datetime(merged.columns)
merged.columns = merged.columns.rename('Time')
```

```
               '2014-01-01', '2015-01-01', '2016-01-01'],
dtype='datetime64[ns]', name='Time', freq=None)
```

The `DatetimeIndex` tends to work more smoothly in the row axis, so we will go ahead and transpose `merged`

```python
merged = merged.transpose()
```

```
Country Brazil Canada Chile ... Slovenia Spain United Kingdom
Time 0.87 6.89 1.42 ... 3.92 3.99 9.81
2007-01-01 0.92 6.96 1.45 ... 3.88 4.10 10.07
2008-01-01 0.96 7.24 1.44 ... 3.96 4.14 10.04
2009-01-01 1.03 7.67 1.52 ... 4.08 4.32 10.15
2010-01-01 1.08 7.94 1.56 ... 4.81 4.30 9.96
[5 rows x 32 columns]
```

76.4 Grouping and Summarizing Data

Grouping and summarizing data can be particularly useful for understanding large panel datasets.

A simple way to summarize data is to call an aggregation method on the dataframe, such as `.mean()` or `.max()`.

For example, we can calculate the average real minimum wage for each country over the period 2006 to 2016 (the default is to aggregate over rows)

```python
merged.mean().head(10)
```

```
Country Brazil 1.09
           Canada 7.82
           Chile 1.62
           Colombia 1.07
           Costa Rica 2.53
           Mexico 0.53
           United States 7.15
           Israel 5.95
           Japan 6.18
           Korea 4.22
```

dtype: float64

Using this series, we can plot the average real minimum wage over the past decade for each country in our data set
```python
# Quantitative Economics with Python

%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)  # set default figure size
import matplotlib
matplotlib.style.use('seaborn')

merged.mean().sort_values(ascending=False).plot(kind='bar', title="Average real minimum wage 2006 - 2016")

# Set country labels
country_labels = merged.mean().sort_values(ascending=False).index.get_level_values('Country').tolist()
plt.xticks(range(0, len(country_labels)), country_labels)
plt.xlabel('Country')
plt.show()

Passing in `axis=1` to `.mean()` will aggregate over columns (giving the average minimum wage for all countries over time)

76.4. Grouping and Summarizing Data
Quantitative Economics with Python

merged.mean(axis=1).head()

<table>
<thead>
<tr>
<th>Time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-01-01</td>
<td>4.69</td>
</tr>
<tr>
<td>2007-01-01</td>
<td>4.84</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>4.90</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>5.08</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>5.11</td>
</tr>
</tbody>
</table>

```
dtype: float64
```

We can plot this time series as a line graph

```python
merged.mean(axis=1).plot()
plt.title('Average real minimum wage 2006 - 2016')
plt.ylabel('2015 USD')
plt.xlabel('Year')
plt.show()
```

![Graph showing the average real minimum wage 2006-2016](image)

We can also specify a level of the `MultiIndex` (in the column axis) to aggregate over

```
merged.groupby(level='Continent', axis=1).mean().head()
```

<table>
<thead>
<tr>
<th>Continent</th>
<th>America</th>
<th>Asia</th>
<th>Australia</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006-01-01</td>
<td>2.80</td>
<td>4.29</td>
<td>10.25</td>
<td>4.80</td>
</tr>
</tbody>
</table>

(continues on next page)
We can plot the average minimum wages in each continent as a time series

```python
merged.groupby(level='Continent', axis=1).mean().plot()
plt.title('Average real minimum wage')
plt.ylabel('2015 USD')
plt.xlabel('Year')
plt.show()
```

We will drop Australia as a continent for plotting purposes

```python
merged = merged.drop('Australia', level='Continent', axis=1)
merged.groupby(level='Continent', axis=1).mean().plot()
plt.title('Average real minimum wage')
plt.ylabel('2015 USD')
plt.xlabel('Year')
plt.show()
```
describe() is useful for quickly retrieving a number of common summary statistics

```
merged.stack().describe()
```

<table>
<thead>
<tr>
<th>Continent</th>
<th>America</th>
<th>Asia</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>69.00</td>
<td>44.00</td>
<td>200.00</td>
</tr>
<tr>
<td>mean</td>
<td>3.19</td>
<td>4.70</td>
<td>5.15</td>
</tr>
<tr>
<td>std</td>
<td>3.02</td>
<td>1.56</td>
<td>3.82</td>
</tr>
<tr>
<td>min</td>
<td>0.52</td>
<td>2.22</td>
<td>0.23</td>
</tr>
<tr>
<td>25%</td>
<td>1.03</td>
<td>3.37</td>
<td>2.02</td>
</tr>
<tr>
<td>50%</td>
<td>1.44</td>
<td>5.48</td>
<td>3.54</td>
</tr>
<tr>
<td>75%</td>
<td>6.96</td>
<td>5.95</td>
<td>9.70</td>
</tr>
<tr>
<td>max</td>
<td>8.48</td>
<td>6.65</td>
<td>12.39</td>
</tr>
</tbody>
</table>

This is a simplified way to use groupby.

Using `groupby` generally follows a ‘split-apply-combine’ process:

- **split:** data is grouped based on one or more keys
- **apply:** a function is called on each group independently
- **combine:** the results of the function calls are combined into a new data structure

The `groupby` method achieves the first step of this process, creating a new `DataFrameGroupBy` object with data split into groups.

Let’s split `merged` by continent again, this time using the `groupby` function, and name the resulting object `grouped`
```python
grouped = merged.groupby(level='Continent', axis=1)
grouped
```

Calling an aggregation method on the object applies the function to each group, the results of which are combined in a new data structure.

For example, we can return the number of countries in our dataset for each continent using `.size()`.

In this case, our new data structure is a `Series`.

```python
grouped.size()
```

<table>
<thead>
<tr>
<th>Continent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td>7</td>
</tr>
<tr>
<td>Asia</td>
<td>4</td>
</tr>
<tr>
<td>Europe</td>
<td>19</td>
</tr>
<tr>
<td>dtype:</td>
<td>int64</td>
</tr>
</tbody>
</table>

Calling `.get_group()` to return just the countries in a single group, we can create a kernel density estimate of the distribution of real minimum wages in 2016 for each continent.

```python
grouped.groups.keys() will return the keys from the groupby object
```

```python
import seaborn as sns
continents = grouped.groups.keys()

for continent in continents:
 sns.kdeplot(grouped.get_group(continent).loc['2015'].unstack(), label=continent,
 shade=True)

plt.title('Real minimum wages in 2015')
plt.xlabel('US dollars')
plt.legend()
plt.show()
```
This lecture has provided an introduction to some of pandas’ more advanced features, including multiindices, merging, grouping and plotting.

Other tools that may be useful in panel data analysis include xarray, a python package that extends pandas to N-dimensional data structures.

### 76.6 Exercises

**Exercise 76.6.1**

In these exercises, you’ll work with a dataset of employment rates in Europe by age and sex from Eurostat.

The dataset can be accessed with the following link:

```python
url3 = 'https://raw.githubusercontent.com/QuantEcon/lecture-python/master/source/_static/lecture_specific/pandas_panel/employ.csv'
```

Reading in the CSV file returns a panel dataset in long format. Use `.pivot_table()` to construct a wide format dataframe with a MultiIndex in the columns.

Start off by exploring the dataframe and the variables available in the MultiIndex levels.
Write a program that quickly returns all values in the MultiIndex.

**Solution to Exercise 76.6.1**

```python
employ = pd.read_csv(url3)
employ = employ.pivot_table(values='Value',
 index=['DATE'],
 columns=['UNIT', 'AGE', 'SEX', 'INDIC_EM', 'GEO'])
employ.index = pd.to_datetime(employ.index) # ensure that dates are datetime format
employ.head()
```

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Percentage of total population</th>
<th>... \</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>From 15 to 24 years</td>
<td>...</td>
</tr>
<tr>
<td>SEX</td>
<td>Females</td>
<td>...</td>
</tr>
<tr>
<td>INDIC_EM</td>
<td>Active population</td>
<td>...</td>
</tr>
<tr>
<td>GEO</td>
<td>Austria Belgium Bulgaria</td>
<td>...</td>
</tr>
<tr>
<td>DATE</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>2007-01-01</td>
<td>56.00 31.60 26.00</td>
<td>...</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>56.20 30.80 26.10</td>
<td>...</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>56.20 29.90 24.80</td>
<td>...</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>54.00 29.80 26.60</td>
<td>...</td>
</tr>
<tr>
<td>2011-01-01</td>
<td>54.80 29.80 24.80</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT</th>
<th>Thousand persons \</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>From 55 to 64 years</td>
</tr>
<tr>
<td>SEX</td>
<td>Total</td>
</tr>
<tr>
<td>INDIC_EM</td>
<td>Total employment (resident population concept - LFS)</td>
</tr>
<tr>
<td>GEO</td>
<td>Switzerland Turkey</td>
</tr>
<tr>
<td>DATE</td>
<td></td>
</tr>
<tr>
<td>2007-01-01</td>
<td>NaN 1,282.00</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>NaN 1,354.00</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>NaN 1,449.00</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>640.00 1,583.00</td>
</tr>
<tr>
<td>2011-01-01</td>
<td>661.00 1,760.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT</th>
<th>AGE</th>
<th>SEX</th>
<th>INDIC_EM</th>
<th>GEO</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2007-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,131.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,204.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,193.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2010-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,186.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2011-01-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,164.00</td>
</tr>
</tbody>
</table>

This is a large dataset so it is useful to explore the levels and variables available

```python
employ.columns.names
```

FrozenList(['UNIT', 'AGE', 'SEX', 'INDIC_EM', 'GEO'])
Variables within levels can be quickly retrieved with a loop

```python
for name in employ.columns.names:
 print(name, employ.columns.get_level_values(name).unique())
```

UNIT Index(['Percentage of total population', 'Thousand persons'], dtype='object',
name='UNIT')
AGE Index(['From 15 to 24 years', 'From 25 to 54 years', 'From 55 to 64 years'],
dtype='object', name='AGE')
SEX Index(['Females', 'Males', 'Total'], dtype='object', name='SEX')
INDIC_EM Index(['Active population', 'Total employment (resident population
concept - LFS)'], dtype='object', name='INDIC_EM')
GEO Index(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic',
'Denmark', 'Estonia', 'Euro area (17 countries)',
'European Union (15 countries)', 'European Union (27 countries)',
'European Union (28 countries)', 'Finland',
'Former Yugoslav Republic of Macedonia, the', 'France',
'France (metropolitan)',
'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg',
'Malta', 'Netherlands', 'Norway', 'Portugal', 'Romania',
'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Turkey',
'United Kingdom'],
dtype='object', name='GEO')

Exercise 76.6.2
Filter the above dataframe to only include employment as a percentage of ‘active population’.
Create a grouped boxplot using seaborn of employment rates in 2015 by age group and sex.

Hint: GEO includes both areas and countries.

Solution to Exercise 76.6.2
To easily filter by country, swap GEO to the top level and sort the MultiIndex

```python
employ.columns = employ.columns.swaplevel(0,-1)
employ = employ.sort_index(axis=1)
```

We need to get rid of a few items in GEO which are not countries.
A fast way to get rid of the EU areas is to use a list comprehension to find the level values in GEO that begin with ‘Euro’

```python
geo_list = employ.columns.get_level_values('GEO').unique().tolist()
countries = [x for x in geo_list if not x.startswith('Euro')]
employ = employ[countries]
employ.columns.get_level_values('GEO').unique()
```
Index(['Austria', 'Belgium', 'Bulgaria', 'Croatia', 'Cyprus', 'Czech Republic',
'Denmark', 'Estonia', 'Finland',
'Former Yugoslav Republic of Macedonia, the', 'France',
'France (metropolitan)',
'Germany (until 1990 former territory of the FRG)', 'Greece', 'Hungary',
'Iceland', 'Ireland', 'Italy', 'Latvia', 'Lithuania', 'Luxembourg',
'Malta', 'Netherlands', 'Norway', 'Poland', 'Portugal', 'Romania',
'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Turkey',
'United Kingdom'],
dtype='object', name='GEO')

Select only percentage employed in the active population from the dataframe

```python
employ_f = employ.xs(('Percentage of total population', 'Active population'),
 level=('UNIT', 'INDIC_EM'),
 axis=1)
employ_f.head()
```

<table>
<thead>
<tr>
<th>GEO</th>
<th>Austria</th>
<th>...</th>
<th>United Kingdom</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>From 15 to 24 years</td>
<td>...</td>
<td>From 55 to 64 years</td>
</tr>
<tr>
<td>SEX</td>
<td>Females</td>
<td>Males</td>
<td>Total</td>
</tr>
<tr>
<td>DATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-01-01</td>
<td>56.00</td>
<td>62.90</td>
<td>59.40</td>
</tr>
<tr>
<td>2008-01-01</td>
<td>56.20</td>
<td>62.90</td>
<td>59.50</td>
</tr>
<tr>
<td>2009-01-01</td>
<td>54.00</td>
<td>62.60</td>
<td>58.30</td>
</tr>
<tr>
<td>2010-01-01</td>
<td>54.00</td>
<td>62.60</td>
<td>58.30</td>
</tr>
<tr>
<td>2011-01-01</td>
<td>54.80</td>
<td>63.60</td>
<td>59.20</td>
</tr>
</tbody>
</table>

Drop the 'Total' value before creating the grouped boxplot

```python
box = employ_f.drop('Total', level='SEX', axis=1)
```
Employment in Europe (2015)

Percentage of population (%)

- Females
- Males

From 15 to 24 years
From 25 to 54 years
From 55 to 64 years
In addition to what's in Anaconda, this lecture will need the following libraries:

```bash
!pip install linearmodels
```

### 77.1 Overview

Linear regression is a standard tool for analyzing the relationship between two or more variables. In this lecture, we’ll use the Python package `statsmodels` to estimate, interpret, and visualize linear regression models. Along the way, we’ll discuss a variety of topics, including

- simple and multivariate linear regression
- visualization
- endogeneity and omitted variable bias
- two-stage least squares

As an example, we will replicate results from Acemoglu, Johnson and Robinson’s seminal paper [AJR01].

- You can download a copy [here](#).

In the paper, the authors emphasize the importance of institutions in economic development.

The main contribution is the use of settler mortality rates as a source of *exogenous* variation in institutional differences. Such variation is needed to determine whether it is institutions that give rise to greater economic growth, rather than the other way around.
Let’s start with some imports:

```python
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.iolib.summary2
from linearmodels.iv import IV2SLS
```

### 77.1.1 Prerequisites

This lecture assumes you are familiar with basic econometrics.

For an introductory text covering these topics, see, for example, [Woo15].

### 77.2 Simple Linear Regression

[AJR01] wish to determine whether or not differences in institutions can help to explain observed economic outcomes.

How do we measure institutional differences and economic outcomes?

In this paper,

- economic outcomes are proxied by log GDP per capita in 1995, adjusted for exchange rates.
- institutional differences are proxied by an index of protection against expropriation on average over 1985-95, constructed by the Political Risk Services Group.

These variables and other data used in the paper are available for download on Daron Acemoglu’s webpage.

We will use pandas’ `.read_stata()` function to read in data contained in the `.dta` files to dataframes

```python
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable1.dta?raw=true')
df1.head()
```

Let’s use a scatterplot to see whether any obvious relationship exists between GDP per capita and the protection against expropriation index
The plot shows a fairly strong positive relationship between protection against expropriation and log GDP per capita. Specifically, if higher protection against expropriation is a measure of institutional quality, then better institutions appear to be positively correlated with better economic outcomes (higher GDP per capita).

Given the plot, choosing a linear model to describe this relationship seems like a reasonable assumption.

We can write our model as

$$\log gdp95_i = \beta_0 + \beta_1 avexpr_i + u_i$$

where:

- $\beta_0$ is the intercept of the linear trend line on the y-axis
- $\beta_1$ is the slope of the linear trend line, representing the marginal effect of protection against risk on log GDP per capita
- $u_i$ is a random error term (deviations of observations from the linear trend due to factors not included in the model)

Visually, this linear model involves choosing a straight line that best fits the data, as in the following plot (Figure 2 in [AJR01])

---

77.2. Simple Linear Regression
# Dropping NA's is required to use numpy's polyfit
df1_subset = df1.dropna(subset=['logpgp95', 'avexpr'])

# Use only 'base sample' for plotting purposes
df1_subset = df1_subset[df1_subset['baseco'] == 1]

X = df1_subset['avexpr']
y = df1_subset['logpgp95']
labels = df1_subset['shortnam']

# Replace markers with country labels
fig, ax = plt.subplots()
ax.scatter(X, y, marker='')

for i, label in enumerate(labels):
    ax.annotate(label, (X.iloc[i], y.iloc[i]))

# Fit a linear trend line
ax.plot(np.unique(X),
        np.poly1d(np.polyfit(X, y, 1))(np.unique(X)),
        color='black')

ax.set_xlim([3.3, 10.5])
ax.set_ylim([4, 10.5])
ax.set_xlabel('Average Expropriation Risk 1985-95')
ax.set_ylabel('Log GDP per capita, PPP, 1995')
ax.set_title('Figure 2: OLS relationship between expropriation risk and income')
plt.show()
The most common technique to estimate the parameters ($\beta$’s) of the linear model is Ordinary Least Squares (OLS).

As the name implies, an OLS model is solved by finding the parameters that minimize the sum of squared residuals, i.e.

$$\min \sum_{i=1}^{N} \hat{u}_i^2$$

where $\hat{u}_i$ is the difference between the observation and the predicted value of the dependent variable.

To estimate the constant term $\beta_0$, we need to add a column of 1’s to our dataset (consider the equation if $\beta_0$ was replaced with $\beta_0 x_i$ and $x_i = 1$)

```python
df1['const'] = 1
```

Now we can construct our model in `statsmodels` using the OLS function.

We will use `pandas` dataframes with `statsmodels`, however standard arrays can also be used as arguments

```python
reg1 = sm.OLS(endog=df1['logpgp95'], exog=df1[['const', 'avexpr']], exog omission='drop')
type(reg1)
```

So far we have simply constructed our model.

We need to use `.fit()` to obtain parameter estimates $\hat{\beta}_0$ and $\hat{\beta}_1$
Quantitative Economics with Python

```python
results = reg1.fit()
type(results)
```

```
statsmodels.regression.linear_model.RegressionResultsWrapper
```

We now have the fitted regression model stored in `results`.

To view the OLS regression results, we can call the `.summary()` method.

Note that an observation was mistakenly dropped from the results in the original paper (see the note located in `maketable2.do` from Acemoglu’s webpage), and thus the coefficients differ slightly.

```python
print(results.summary())
```

```
OLS Regression Results

Dep. Variable: logpgp95 R-squared: 0.611
Model: OLS Adj. R-squared: 0.608
Method: Least Squares F-statistic: 171.4
Date: Sun, 11 Dec 2022 Prob (F-statistic): 4.16e-24
Time: 07:07:03 Log-Likelihood: -119.71
No. Observations: 111 AIC: 243.4
Df Residuals: 109 BIC: 248.8
Df Model: 1
Covariance Type: nonrobust

==
coef std err t P>|t| [0.025 0.975]
--
const 4.6261 0.301 15.391 0.000 4.030 5.222
avexpr 0.5319 0.041 13.093 0.000 0.451 0.612
==

Omnibus: 9.251 Durbin-Watson: 1.689
Prob(Omnibus): 0.010 Jarque-Bera (JB): 9.170
Skew: -0.680 Prob(JB): 0.0102
Kurtosis: 3.362 Cond. No. 33.2

==
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.
```

From our results, we see that

- The intercept $\hat{\beta}_0 = 4.63$.
- The slope $\hat{\beta}_1 = 0.53$.
- The positive $\hat{\beta}_1$ parameter estimate implies that institutional quality has a positive effect on economic outcomes, as we saw in the figure.
- The p-value of 0.000 for $\hat{\beta}_1$ implies that the effect of institutions on GDP is statistically significant (using $p < 0.05$ as a rejection rule).
- The R-squared value of 0.611 indicates that around 61% of variation in log GDP per capita is explained by protection against expropriation.
Using our parameter estimates, we can now write our estimated relationship as

\[
\hat{\log p_{g_{95}}} = 4.63 + 0.53 \text{avexpr}_{i}
\]

This equation describes the line that best fits our data, as shown in Figure 2.

We can use this equation to predict the level of log GDP per capita for a value of the index of expropriation protection.

For example, for a country with an index value of 7.07 (the average for the dataset), we find that their predicted level of log GDP per capita in 1995 is 8.38.

An easier (and more accurate) way to obtain this result is to use `.predict()` and set `constant = 1` and `avexpr_{i} = mean_expr`

```
mean_expr = np.mean(df1_subset['avexpr'])
mean_expr
```

```
6.515625
```

```
predicted_logpdp95 = 4.63 + 0.53 * 7.07
predicted_logpdp95
```

```
8.3771
```

We can obtain an array of predicted \(\log p_{g_{95}}\) for every value of \(avexpr_{i}\) in our dataset by calling `.predict()` on our results.

Plotting the predicted values against \(avexpr_{i}\) shows that the predicted values lie along the linear line that we fitted above.

The observed values of \(\log p_{g_{95}}\) are also plotted for comparison purposes.

```
Drop missing observations from whole sample
df1_plot = df1.dropna(subset=['logpgp95', 'avexpr'])

Plot predicted values
fix, ax = plt.subplots()
ax.scatter(df1_plot['avexpr'], results.predict(), alpha=0.5,
 label='predicted')

Plot observed values
ax.scatter(df1_plot['avexpr'], df1_plot['logpgp95'], alpha=0.5,
 label='observed')
ax.legend()
ax.set_title('OLS predicted values')
ax.set_xlabel('avexpr')
ax.set_ylabel('logpgp95')
plt.show()
```
77.3 Extending the Linear Regression Model

So far we have only accounted for institutions affecting economic performance - almost certainly there are numerous other factors affecting GDP that are not included in our model.

Leaving out variables that affect \( \log p_{p95} \) will result in omitted variable bias, yielding biased and inconsistent parameter estimates.

We can extend our bivariate regression model to a multivariate regression model by adding in other factors that may affect \( \log p_{p95} \).

[AJR01] consider other factors such as:

- the effect of climate on economic outcomes; latitude is used to proxy this
- differences that affect both economic performance and institutions, eg. cultural, historical, etc.; controlled for with the use of continent dummies

Let's estimate some of the extended models considered in the paper (Table 2) using data from `maketable2.dta`

```python

Add constant term to dataset
df2['const'] = 1
```

(continues on next page)
# Create lists of variables to be used in each regression
X1 = ['const', 'avexpr']
X2 = ['const', 'avexpr', 'lat_abst']
X3 = ['const', 'avexpr', 'lat_abst', 'asia', 'africa', 'other']

# Estimate an OLS regression for each set of variables
reg1 = sm.OLS(df2['logpgp95'], df2[X1], missing='drop').fit()
reg2 = sm.OLS(df2['logpgp95'], df2[X2], missing='drop').fit()
reg3 = sm.OLS(df2['logpgp95'], df2[X3], missing='drop').fit()

Now that we have fitted our model, we will use `summary_col` to display the results in a single table (model numbers correspond to those in the paper)

```python
info_dict={'R-squared' : lambda x: f"{x.rsquared:.2f}"},
 'No. observations' : lambda x: f"{int(x.nobs):d}"}

results_table = summary_col(results=[reg1,reg2,reg3],
 float_format='%0.2f',
 stars = True,
 model_names=['Model 1', 'Model 3', 'Model 4'],
 info_dict=info_dict,
 regressor_order=['const', 'avexpr', 'lat_abst', 'asia', 'africa'])

results_table.add_title('Table 2 - OLS Regressions')

print(results_table)
```

Table 2 - OLS Regressions

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>4.63***</td>
<td>4.87***</td>
<td>5.85***</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.33)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>avexpr</td>
<td>0.53***</td>
<td>0.46***</td>
<td>0.39***</td>
</tr>
<tr>
<td></td>
<td>(0.04)</td>
<td>(0.06)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>lat_abst</td>
<td>0.87*</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.45)</td>
<td></td>
</tr>
<tr>
<td>asia</td>
<td>-0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>africa</td>
<td>-0.92***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.61</td>
<td>0.62</td>
<td>0.72</td>
</tr>
<tr>
<td>R-squared Adj.</td>
<td>0.61</td>
<td>0.62</td>
<td>0.70</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.61</td>
<td>0.62</td>
<td>0.72</td>
</tr>
<tr>
<td>No. observations</td>
<td>111</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.
77.4 Endogeneity

As [AJR01] discuss, the OLS models likely suffer from **endogeneity** issues, resulting in biased and inconsistent model estimates.

Namely, there is likely a two-way relationship between institutions and economic outcomes:

- richer countries may be able to afford or prefer better institutions
- variables that affect income may also be correlated with institutional differences
- the construction of the index may be biased; analysts may be biased towards seeing countries with higher income having better institutions

To deal with endogeneity, we can use **two-stage least squares (2SLS) regression**, which is an extension of OLS regression.

This method requires replacing the endogenous variable $avexpr_i$ with a variable that is:

1. correlated with $avexpr_i$
2. not correlated with the error term (i.e. it should not directly affect the dependent variable, otherwise it would be correlated with $u_i$ due to omitted variable bias)

The new set of regressors is called an **instrument**, which aims to remove endogeneity in our proxy of institutional differences.

The main contribution of [AJR01] is the use of settler mortality rates to instrument for institutional differences.

They hypothesize that higher mortality rates of colonizers led to the establishment of institutions that were more extractive in nature (less protection against expropriation), and these institutions still persist today.

Using a scatterplot (Figure 3 in [AJR01]), we can see protection against expropriation is negatively correlated with settler mortality rates, coinciding with the authors’ hypothesis and satisfying the first condition of a valid instrument.

```python
Dropping NA's is required to use numpy's polyfit
df1_subset2 = df1.dropna(subset=['logem4', 'avexpr'])

X = df1_subset2['logem4']
y = df1_subset2['avexpr']
labels = df1_subset2['shortnam']

Replace markers with country labels
fig, ax = plt.subplots()
ax.scatter(X, y, marker='')

for i, label in enumerate(labels):
 ax.annotate(label, (X.iloc[i], y.iloc[i]))

Fit a linear trend line
ax.plot(np.unique(X),
 np.poly1d(np.polyfit(X, y, 1))(np.unique(X)),
 color='black')

ax.set_xlim([1.8, 8.4])
```

(continues on next page)
The second condition may not be satisfied if settler mortality rates in the 17th to 19th centuries have a direct effect on current GDP (in addition to their indirect effect through institutions).

For example, settler mortality rates may be related to the current disease environment in a country, which could affect current economic performance. [AJR01] argue this is unlikely because:

- The majority of settler deaths were due to malaria and yellow fever and had a limited effect on local people.
- The disease burden on local people in Africa or India, for example, did not appear to be higher than average, supported by relatively high population densities in these areas before colonization.

As we appear to have a valid instrument, we can use 2SLS regression to obtain consistent and unbiased parameter estimates.

**First stage**

The first stage involves regressing the endogenous variable \( \text{avexpr}_i \) on the instrument.

The instrument is the set of all exogenous variables in our model (and not just the variable we have replaced).

Using model 1 as an example, our instrument is simply a constant and settler mortality rates \( \log em4 \).
Therefore, we will estimate the first-stage regression as

\[ avexpr_i = \delta_0 + \delta_1 \log em4_i + v_i \]

The data we need to estimate this equation is located in `maketable4.dta` (only complete data, indicated by `baseco = 1`, is used for estimation).

```python
Import and select the data
df4 = df4[df4['baseco'] == 1]

Add a constant variable
df4['const'] = 1

Fit the first stage regression and print summary
results_fs = sm.OLS(df4['avexpr'],
 [df4[['const', 'logem4']],
 missing='drop').fit()
print(results_fs.summary())
```

```
OLS Regression Results
==
Dep. Variable: avexpr R-squared: 0.270
Model: OLS Adj. R-squared: 0.258
Method: Least Squares F-statistic: 22.95
Date: Sun, 11 Dec 2022 Prob (F-statistic): 1.08e-05
Time: 07:07:05 Log-Likelihood: -104.83
No. Observations: 64 AIC: 213.7
Df Residuals: 62 BIC: 218.0
Df Model: 1
Covariance Type: nonrobust
==
coef std err t P>|t| [0.025 0.975]
----- ------- ------ ------- -------- --------------
const 9.3414 0.611 15.296 0.000 8.121 10.562
logem4 -0.6068 0.127 -4.790 0.000 -0.860 -0.354

Omnibus: 0.035 Durbin-Watson: 2.003
Prob(Omnibus): 0.983 Jarque-Bera (JB): 0.172
Skew: 0.045 Prob(JB): 0.918
Kurtosis: 2.763 Cond. No. 19.4
```

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Second stage
We need to retrieve the predicted values of `avexpr` using `.predict()`. We then replace the endogenous variable `avexpr` with the predicted values \( \hat{avexpr} \) in the original linear model. Our second stage regression is thus

\[ \log p_{g95_i} = \beta_0 + \beta_1 \hat{avexpr}_i + u_i \]
df4['predicted_avexpr'] = results_fs.predict()

results_ss = sm.OLS(df4['logpgp95'],
                   df4[['const', 'predicted_avexpr']]).fit()
print(results_ss.summary())

The second-stage regression results give us an unbiased and consistent estimate of the effect of institutions on economic outcomes.

The result suggests a stronger positive relationship than what the OLS results indicated.

Note that while our parameter estimates are correct, our standard errors are not and for this reason, computing 2SLS ‘manually’ (in stages with OLS) is not recommended.

We can correctly estimate a 2SLS regression in one step using the linearmodels package, an extension of statsmodels.

Note that when using IV2SLS, the exogenous and instrument variables are split up in the function arguments (whereas before the instrument included exogenous variables)

```python
iv = IV2SLS(dependent=df4['logpgp95'],
 exog=df4['const'],
 endog=df4['avexpr'],
 instruments=df4['logem4']).fit(cov_type='unadjusted')

print(iv.summary)
```
IV-2SLS Estimation Summary

Dep. Variable: logpgp95 R-squared: 0.1870
Estimator: IV-2SLS Adj. R-squared: 0.1739
No. Observations: 64 F-statistic: 37.568
Date: Sun, Dec 11 2022 P-value (F-stat) 0.0000
Time: 07:07:05 Distribution: chi2(1)
Cov. Estimator: unadjusted

Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Std. Err.</th>
<th>T-stat</th>
<th>P-value</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>const</td>
<td>1.9097</td>
<td>1.0106</td>
<td>1.8897</td>
<td>0.0588</td>
<td>-0.0710</td>
</tr>
<tr>
<td>avexpr</td>
<td>0.9443</td>
<td>0.1541</td>
<td>6.1293</td>
<td>0.0000</td>
<td>0.6423</td>
</tr>
</tbody>
</table>

Endogenous: avexpr
Instruments: logem4
Unadjusted Covariance (Homoskedastic)
Debiased: False

Given that we now have consistent and unbiased estimates, we can infer from the model we have estimated that institutional differences (stemming from institutions set up during colonization) can help to explain differences in income levels across countries today.

[AJR01] use a marginal effect of 0.94 to calculate that the difference in the index between Chile and Nigeria (ie. institutional quality) implies up to a 7-fold difference in income, emphasizing the significance of institutions in economic development.

### 77.5 Summary

We have demonstrated basic OLS and 2SLS regression in `statsmodels` and `linearmodels`. If you are familiar with R, you may want to use the formula interface to `statsmodels`, or consider using `r2py` to call R from within Python.

### 77.6 Exercises

#### Exercise 77.6.1

In the lecture, we think the original model suffers from endogeneity bias due to the likely effect income has on institutional development.

Although endogeneity is often best identified by thinking about the data and model, we can formally test for endogeneity using the **Hausman test**.

We want to test for correlation between the endogenous variable, $avexpr_i$, and the errors, $u_i$.

$$
H_0 : Cov(avexpr_i, u_i) = 0 \quad (no \ endogeneity) \\
H_1 : Cov(avexpr_i, u_i) \neq 0 \quad (endogeneity)
$$

This test is running in two stages.
First, we regress $avexpr_i$ on the instrument, $logem4_i$

$$avexpr_i = \pi_0 + \pi_1 logem4_i + \nu_i$$

Second, we retrieve the residuals $\hat{\nu}_i$ and include them in the original equation

$$logpgp95_i = \beta_0 + \beta_1 avexpr_i + \alpha \hat{\nu}_i + u_i$$

If $\alpha$ is statistically significant (with a p-value < 0.05), then we reject the null hypothesis and conclude that $avexpr_i$ is endogenous.

Using the above information, estimate a Hausman test and interpret your results.

**Solution to Exercise 77.6.1**

```python
Load in data

Add a constant term
df4['const'] = 1

Estimate the first stage regression
reg1 = sm.OLS(endog=df4['avexpr'],
 exog=df4[['const', 'logem4']],
 missing='drop').fit()

Retrieve the residuals
df4['resid'] = reg1.resid

Estimate the second stage residuals
reg2 = sm.OLS(endog=df4['logpgp95'],
 exog=df4[['const', 'avexpr', 'resid']],
 missing='drop').fit()

print(reg2.summary())
```

---

### OLS Regression Results

<table>
<thead>
<tr>
<th>Dep. Variable:</th>
<th>logpgp95</th>
<th>R-squared:</th>
<th>0.689</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>OLS</td>
<td>Adj. R-squared:</td>
<td>0.679</td>
</tr>
<tr>
<td>Method:</td>
<td>Least Squares</td>
<td>F-statistic:</td>
<td>74.05</td>
</tr>
<tr>
<td>Date:</td>
<td>Sun, 11 Dec 2022</td>
<td>Prob (F-statistic):</td>
<td>1.07e-17</td>
</tr>
<tr>
<td>Time:</td>
<td>07:07:05</td>
<td>Log-Likelihood:</td>
<td>-62.031</td>
</tr>
<tr>
<td>No. Observations:</td>
<td>70</td>
<td>AIC:</td>
<td>130.1</td>
</tr>
<tr>
<td>Df Residuals:</td>
<td>67</td>
<td>BIC:</td>
<td>136.8</td>
</tr>
<tr>
<td>Df Model:</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covariance Type:</td>
<td>nonrobust</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| coef     | std err | t     | P>|t|   | [0.025] | [0.975] |
|----------|---------|-------|-------|---------|---------|
| const    | 2.4782  | 0.547 | 4.530 | 0.000   | 1.386   | 3.570   |
| avexpr   | 0.8564  | 0.082 | 10.406| 0.000   | 0.692   | 1.021   |
| resid    | -0.4951 | 0.099 | -5.017| 0.000   | -0.692  | -0.298  |

(continues on next page)
The output shows that the coefficient on the residuals is statistically significant, indicating $avexpr_i$ is endogenous.

**Exercise 77.6.2**

The OLS parameter $\beta$ can also be estimated using matrix algebra and `numpy` (you may need to review the `numpy` lecture to complete this exercise).

The linear equation we want to estimate is (written in matrix form)

$$y = X\beta + u$$

To solve for the unknown parameter $\beta$, we want to minimize the sum of squared residuals

$$\min_{\hat{\beta}} \hat{u}'\hat{u}$$

Rearranging the first equation and substituting into the second equation, we can write

$$\min_{\beta} (Y - X\hat{\beta})'(Y - X\hat{\beta})$$

Solving this optimization problem gives the solution for the $\hat{\beta}$ coefficients

$$\hat{\beta} = (X'X)^{-1}X'y$$

Using the above information, compute $\hat{\beta}$ from model 1 using `numpy` - your results should be the same as those in the `statsmodels` output from earlier in the lecture.

**Solution to Exercise 77.6.2**

```
Load in data
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable1.dta?raw=true')
df1 = df1.dropna(subset=['logpgp95', 'avexpr'])

Add a constant term
df1['const'] = 1

Define the X and y variables
y = np.asarray(df1['logpgp95'])
X = np.asarray(df1[['const', 'avexpr']])
```

(continues on next page)
\[ \hat{\beta} = \text{np.linalg.solve}(X^T @ X, X^T @ y) \]

# Print out the results from the 2 x 1 vector \( \hat{\beta} \)
print(f'\hat{\beta}_0 = {\hat{\beta}[0]:.2f}')
print(f'\hat{\beta}_1 = {\hat{\beta}[1]:.2f}')

\[
\begin{align*}
\hat{\beta}_0 &= 4.6 \\
\hat{\beta}_1 &= 0.53
\end{align*}
\]

It is also possible to use \texttt{np.linalg.inv}(X^T @ X) @ X^T @ y to solve for \( \beta \), however \texttt{.solve()} is preferred as it involves fewer computations.
In a previous lecture, we estimated the relationship between dependent and explanatory variables using linear regression. But what if a linear relationship is not an appropriate assumption for our model? One widely used alternative is maximum likelihood estimation, which involves specifying a class of distributions, indexed by unknown parameters, and then using the data to pin down these parameter values.

The benefit relative to linear regression is that it allows more flexibility in the probabilistic relationships between variables.

Here we illustrate maximum likelihood by replicating Daniel Treisman’s (2016) paper, Russia’s Billionaires, which connects the number of billionaires in a country to its economic characteristics.

The paper concludes that Russia has a higher number of billionaires than economic factors such as market size and tax rate predict.

We’ll require the following imports:

```python
#matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5) # set default figure size
import numpy as np
from numpy import exp
```

(continues on next page)
78.1 Prerequisites

We assume familiarity with basic probability and multivariate calculus.

78.2 Set Up and Assumptions

Let’s consider the steps we need to go through in maximum likelihood estimation and how they pertain to this study.

78.2.1 Flow of Ideas

The first step with maximum likelihood estimation is to choose the probability distribution believed to be generating the data.

More precisely, we need to make an assumption as to which parametric class of distributions is generating the data.

- e.g., the class of all normal distributions, or the class of all gamma distributions.

Each such class is a family of distributions indexed by a finite number of parameters.

- e.g., the class of normal distributions is a family of distributions indexed by its mean \( \mu \in (-\infty, \infty) \) and standard deviation \( \sigma \in (0, \infty) \).

We’ll let the data pick out a particular element of the class by pinning down the parameters.

The parameter estimates so produced will be called \textbf{maximum likelihood estimates}.

78.2.2 Counting Billionaires

Treisman \[\text{Tre16}\] is interested in estimating the number of billionaires in different countries.

The number of billionaires is integer-valued.

Hence we consider distributions that take values only in the nonnegative integers.

(This is one reason least squares regression is not the best tool for the present problem, since the dependent variable in linear regression is not restricted to integer values)

One integer distribution is the \textbf{Poisson distribution}, the probability mass function (pmf) of which is

\[
f(y) = \frac{\mu^y}{y!} e^{-\mu}, \quad y = 0, 1, 2, \ldots, \infty\]

We can plot the Poisson distribution over \( y \) for different values of \( \mu \) as follows
Notice that the Poisson distribution begins to resemble a normal distribution as the mean of $y$ increases.

Let's have a look at the distribution of the data we'll be working with in this lecture.

Treisman's main source of data is Forbes' annual rankings of billionaires and their estimated net worth.

The dataset mle/fp.dta can be downloaded from here or its AER page.
pd.options.display.max_columns = 10

# Load in data and view
df = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/mle/fp.dta?raw=true')

df.head()

<table>
<thead>
<tr>
<th>country</th>
<th>ccode</th>
<th>year</th>
<th>cyear</th>
<th>numbil</th>
<th>...</th>
<th>topint08</th>
<th>rintr</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>2.0</td>
<td>1990.0</td>
<td>21990.0</td>
<td>NaN</td>
<td></td>
<td>39.799999</td>
<td>4.988405</td>
</tr>
<tr>
<td>United States</td>
<td>2.0</td>
<td>1991.0</td>
<td>21991.0</td>
<td>NaN</td>
<td></td>
<td>39.799999</td>
<td>4.988405</td>
</tr>
<tr>
<td>United States</td>
<td>2.0</td>
<td>1992.0</td>
<td>21992.0</td>
<td>NaN</td>
<td></td>
<td>39.799999</td>
<td>4.988405</td>
</tr>
<tr>
<td>United States</td>
<td>2.0</td>
<td>1993.0</td>
<td>21993.0</td>
<td>NaN</td>
<td></td>
<td>39.799999</td>
<td>4.988405</td>
</tr>
<tr>
<td>United States</td>
<td>2.0</td>
<td>1994.0</td>
<td>21994.0</td>
<td>NaN</td>
<td></td>
<td>39.799999</td>
<td>4.988405</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>noyrs</th>
<th>roflaw</th>
<th>nrrents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.0</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>20.0</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>20.0</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>20.0</td>
<td>NaN</td>
</tr>
</tbody>
</table>

[5 rows x 36 columns]

Using a histogram, we can view the distribution of the number of billionaires per country, numbil0, in 2008 (the United States is dropped for plotting purposes)

numbil0_2008 = df[(df['year'] == 2008) & (df['country'] != 'United States')].loc[:, 'numbil0']

plt.subplots(figsize=(12, 8))
plt.hist(numbil0_2008, bins=30)
plt.xlim(left=0)
plt.grid()
plt.xlabel('Number of billionaires in 2008')
plt.ylabel('Count')
plt.show()
From the histogram, it appears that the Poisson assumption is not unreasonable (albeit with a very low $\mu$ and some outliers).

### 78.3 Conditional Distributions

In Treisman’s paper, the dependent variable — the number of billionaires $y_i$ in country $i$ — is modeled as a function of GDP per capita, population size, and years membership in GATT and WTO.

Hence, the distribution of $y_i$ needs to be conditioned on the vector of explanatory variables $x_i$.

The standard formulation — the so-called poisson regression model — is as follows:

$$ f(y_i \mid x_i) = \frac{\mu_i^{y_i} e^{-\mu_i}}{y_i!}; \quad y_i = 0, 1, 2, \ldots, \infty. \quad (78.1) $$

where $\mu_i = \exp(x_i^T \beta) = \exp(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik})$

To illustrate the idea that the distribution of $y_i$ depends on $x_i$, let’s run a simple simulation.

We use our poisson_pmf function from above and arbitrary values for $\beta$ and $x_i$.
fig, ax = plt.subplots(figsize=(12, 8))

for X in datasets:
    μ = np.exp(X @ β)
    distribution = []
    for y_i in y_values:
        distribution.append(1 / poisson_pmf(y_i, μ))
    ax.plot(y_values, distribution,
            label=f'μ_{i}=\{μ:.1}\',
            marker='o',
            markersize=8,
            alpha=0.5)

ax.grid()
ax.legend()
ax.set_xlabel('y | x_i')
ax.set_ylabel(r'$f(y | x_i; \beta)$')
ax.axis(xmin=0, ymin=0)
plt.show()

We can see that the distribution of $y_i$ is conditional on $x_i$ ($\mu_i$ is no longer constant).
78.4 Maximum Likelihood Estimation

In our model for number of billionaires, the conditional distribution contains 4 \( k = 4 \) parameters that we need to estimate.

We will label our entire parameter vector as \( \beta \) where

\[
\beta = \begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix}
\]

To estimate the model using MLE, we want to maximize the likelihood that our estimate \( \hat{\beta} \) is the true parameter \( \beta \).

Intuitively, we want to find the \( \hat{\beta} \) that best fits our data.

First, we need to construct the likelihood function \( \mathcal{L}(\beta) \), which is similar to a joint probability density function.

Assume we have some data \( y_i = \{ y_1, y_2 \} \) and \( y_i \sim f(y_i) \).

If \( y_1 \) and \( y_2 \) are independent, the joint pmf of these data is \( f(y_1, y_2) = f(y_1) \cdot f(y_2) \).

If \( y_i \) follows a Poisson distribution with \( \lambda = 7 \), we can visualize the joint pmf like so

```python
def plot_joint_poisson(μ=7, y_n=20):
 yi_values = np.arange(0, y_n, 1)

 # Create coordinate points of X and Y
 X, Y = np.meshgrid(yi_values, yi_values)

 # Multiply distributions together
 Z = poisson_pmf(X, μ) * poisson_pmf(Y, μ)

 fig = plt.figure(figsize=(12, 8))
 ax = fig.add_subplot(111, projection='3d')
 ax.scatter(X, Y, Z.T, color='black', alpha=0.5, linewidths=1)
 ax.set_xlabel('\y_1\$
 ax.set_ylabel('\y_2\$
 ax.set_zlabel('\$f(y_1, y_2)$\$
 plt.show()

plot_joint_poisson(μ=7, y_n=20)
```
Similarly, the joint pmf of our data (which is distributed as a conditional Poisson distribution) can be written as

\[
f(y_1, y_2, \ldots, y_n \mid x_1, x_2, \ldots, x_n; \beta) = \prod_{i=1}^{n} \frac{\mu_i^{y_i}}{y_i!} e^{-\mu_i}
\]

\(y_i\) is conditional on both the values of \(x_i\) and the parameters \(\beta\).

The likelihood function is the same as the joint pmf, but treats the parameter \(\beta\) as a random variable and takes the observations \((y_i, x_i)\) as given

\[
\mathcal{L}(\beta \mid y_1, y_2, \ldots, y_n ; x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} \frac{\mu_i^{y_i}}{y_i!} e^{-\mu_i}
\]

\[
= f(y_1, y_2, \ldots, y_n \mid x_1, x_2, \ldots, x_n; \beta)
\]

Now that we have our likelihood function, we want to find the \(\hat{\beta}\) that yields the maximum likelihood value

\[
\max_{\beta} \mathcal{L}(\beta)
\]

In doing so it is generally easier to maximize the log-likelihood (consider differentiating \(f(x) = x \exp(x)\) vs. \(f(x) = \log(x) + x\)).
Given that taking a logarithm is a monotone increasing transformation, a maximizer of the likelihood function will also be a maximizer of the log-likelihood function.

In our case the log-likelihood is

$$\log \mathcal{L}(\beta) = \log \left( f(y_1; \beta) \cdot f(y_2; \beta) \cdot \ldots \cdot f(y_n; \beta) \right)$$

$$= \sum_{i=1}^{n} \log f(y_i; \beta)$$

$$= \sum_{i=1}^{n} \log \left( \frac{\mu y_i}{y_i! e^{-\mu_i}} \right)$$

$$= \sum_{i=1}^{n} y_i \log \mu_i - \sum_{i=1}^{n} \mu_i - \sum_{i=1}^{n} \log y_i!$$

The MLE of the Poisson to the Poisson for \( \hat{\beta} \) can be obtained by solving

$$\max_{\beta} \left( \sum_{i=1}^{n} y_i \log \mu_i - \sum_{i=1}^{n} \mu_i - \sum_{i=1}^{n} \log y_i! \right)$$

However, no analytical solution exists to the above problem – to find the MLE we need to use numerical methods.

### 78.5 MLE with Numerical Methods

Many distributions do not have nice, analytical solutions and therefore require numerical methods to solve for parameter estimates.

One such numerical method is the Newton-Raphson algorithm.

Our goal is to find the maximum likelihood estimate \( \hat{\beta} \).

At \( \hat{\beta} \), the first derivative of the log-likelihood function will be equal to 0.

Let’s illustrate this by supposing

$$\log \mathcal{L}(\beta) = -(\beta - 10)^2 - 10$$

```python
beta = np.linspace(1, 20)
logL = -(beta - 10)**2 - 10
dlogL = -2 * beta + 20

fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(12, 8))
ax1.plot(beta, logL, lw=2)
ax2.plot(beta, dlogL, lw=2)
ax1.set_ylabel(r'$\log \mathcal{L}(\beta)$', rotation=0, labelpad=35, fontsize=15)
ax2.set_ylabel(r'$\frac{d \log \mathcal{L}(\beta)}{d \beta}$', rotation=0, labelpad=35, fontsize=19)
ax2.set_xlabel(r'β', fontsize=15)
```

(continues on next page)
The plot shows that the maximum likelihood value (the top plot) occurs when $\frac{d \log \mathcal{L}(\beta)}{d \beta} = 0$ (the bottom plot). Therefore, the likelihood is maximized when $\beta = 10$.

We can also ensure that this value is a maximum (as opposed to a minimum) by checking that the second derivative (slope of the bottom plot) is negative.

The Newton-Raphson algorithm finds a point where the first derivative is 0.

To use the algorithm, we take an initial guess at the maximum value, $\beta_0$ (the OLS parameter estimates might be a reasonable guess), then

1. Use the updating rule to iterate the algorithm

$$\beta_{(k+1)} = \beta_{(k)} - H^{-1}(\beta_{(k)})G(\beta_{(k)})$$

where:

$$G(\beta_{(k)}) = \frac{d \log \mathcal{L}(\beta_{(k)})}{d \beta_{(k)}}$$

$$H(\beta_{(k)}) = \frac{d^2 \log \mathcal{L}(\beta_{(k)})}{d \beta_{(k)}d \beta'_{(k)}}$$

2. Check whether $\beta_{(k+1)} - \beta_{(k)} < tol$

   • If true, then stop iterating and set $\hat{\beta} = \beta_{(k+1)}$
• If false, then update $\beta_{(k+1)}$

As can be seen from the updating equation, $\beta_{(k+1)} = \beta_{(k)}$ only when $G(\beta_{(k)}) = 0$ ie. where the first derivative is equal to 0.

(In practice, we stop iterating when the difference is below a small tolerance threshold)

Let’s have a go at implementing the Newton-Raphson algorithm.

First, we’ll create a class called `PoissonRegression` so we can easily recompute the values of the log likelihood, gradient and Hessian for every iteration.

```python
class PoissonRegression:
 def __init__(self, y, X, β):
 self.X = X
 self.n, self.k = X.shape # Reshape y as a n_by_1 column vector
 self.y = y.reshape(self.n, 1) # Reshape β as a k_by_1 column vector
 self.β = β.reshape(self.k, 1)

 def μ(self):
 return np.exp(self.X @ self.β)

 def logL(self):
 y = self.y
 μ = self.μ()
 return np.sum(y * np.log(μ) - μ - np.log(factorial(y)))

 def G(self):
 y = self.y
 μ = self.μ()
 return X.T @ (y - μ)

 def H(self):
 X = self.X
 μ = self.μ()
 return -(X.T @ (μ * X))
```

Our function `newton_raphson` will take a `PoissonRegression` object that has an initial guess of the parameter vector $\beta_0$.

The algorithm will update the parameter vector according to the updating rule, and recalculate the gradient and Hessian matrices at the new parameter estimates.

Iteration will end when either:

• The difference between the parameter and the updated parameter is below a tolerance level.
• The maximum number of iterations has been achieved (meaning convergence is not achieved).

So we can get an idea of what’s going on while the algorithm is running, an option `display=True` is added to print out values at each iteration.

```python
def newton_raphson(model, tol=1e-3, max_iter=1000, display=True):
 i = 0
 error = 100 # Initial error value
```

(continues on next page)
Let's try out our algorithm with a small dataset of 5 observations and 3 variables in $X$.

```python
X = np.array([[1, 2, 5],
 [1, 1, 3],
 [1, 4, 2],
 [1, 5, 2],
 [1, 3, 1]])

y = np.array([1, 0, 1, 1, 0])

Take a guess at initial βs
init_\beta = np.array([0.1, 0.1, 0.1])

Create an object with Poisson model values
poi = PoissonRegression(y, X, \beta=init_\beta)

Use newton_raphson to find the MLE
\beta_hat = newton_raphson(poi, display=True)
```

(continues on next page)
As this was a simple model with few observations, the algorithm achieved convergence in only 6 iterations. You can see that with each iteration, the log-likelihood value increased. Remember, our objective was to maximize the log-likelihood function, which the algorithm has worked to achieve. Also, note that the increase in \( \log \mathcal{L}(\beta) \) becomes smaller with each iteration. This is because the gradient is approaching 0 as we reach the maximum, and therefore the numerator in our updating equation is becoming smaller.

The gradient vector should be close to 0 at \( \hat{\beta} \)

\[
G() = \begin{bmatrix}
[-3.95169231e-07] \\
[-1.00114806e-06] \\
[-7.73114574e-07]
\end{bmatrix}
\]

The iterative process can be visualized in the following diagram, where the maximum is found at \( \beta = 10 \)

```python
logL = lambda x: -(x - 10) ** 2 - 10
def find_tangent(β, a=0.01):
y1 = logL(β)
y2 = logL(β + a)
x = np.array([[β, 1], [β + a, 1]])
m, c = np.linalg.lstsq(x, np.array([y1, y2]), rcond=None)[0]
return m, c

β = np.linspace(2, 18)
fig, ax = plt.subplots(figsize=(12, 8))
ax.plot(β, logL(β), lw=2, c='black')

for β in [7, 8.5, 9.5, 10]:
 β_line = np.linspace(β - 2, β + 2)
m, c = find_tangent(β)
y = m * β_line + c
ax.plot(β_line, y, '-', c='purple', alpha=0.8)
ax.text(β + 2.05, y[-1], f'$G(\{β\}) = \left\{ \text{abs}(m) \right\}$', fontsize=12)
ax.vlines(β, -24, logL(β), linestyles='--', alpha=0.5)
ax.hlines(logL(β), 6, β, linestyles='--', alpha=0.5)

ax.set(ylim=(-24, -4), xlim=(6, 13))
ax.set_xlabel(r'β', fontsize=15)
ax.set_ylabel(r'$\log \mathcal{L}(\beta)$', rotation=0, labelpad=25, fontsize=15)
ax.grid(alpha=0.3)
plt.show()
```
Note that our implementation of the Newton-Raphson algorithm is rather basic — for more robust implementations see, for example, `scipy.optimize`.

### 78.6 Maximum Likelihood Estimation with `statsmodels`

Now that we know what’s going on under the hood, we can apply MLE to an interesting application.

We’ll use the Poisson regression model in `statsmodels` to obtain a richer output with standard errors, test values, and more.

`statsmodels` uses the same algorithm as above to find the maximum likelihood estimates.

Before we begin, let’s re-estimate our simple model with `statsmodels` to confirm we obtain the same coefficients and log-likelihood value.

```python
X = np.array([[1, 2, 5],
 [1, 1, 3],
 [1, 4, 2],
 [1, 5, 2],
 [1, 3, 1]])

y = np.array([1, 0, 1, 1, 0])

stats_poisson = Poisson(y, X).fit()
print(stats_poisson.summary())
```

Optimization terminated successfully.
Current function value: 0.675671
Iterations 7

(continues on next page)
Now let’s replicate results from Daniel Treisman’s paper, *Russia’s Billionaires*, mentioned earlier in the lecture.

Treisman starts by estimating equation (78.1), where:

- \( y_i \) is number of billionaires \( i \)
- \( x_{i1} \) is log GDP per capita \( i \)
- \( x_{i2} \) is log population \( i \)
- \( x_{i3} \) is years in GATT \( i \) – years membership in GATT and WTO (to proxy access to international markets)

The paper only considers the year 2008 for estimation.

We will set up our variables for estimation like so (you should have the data assigned to `df` from earlier in the lecture)

```python
Keep only year 2008
df = df[df['year'] == 2008]

Add a constant
df['const'] = 1

Variable sets
reg1 = ['const', 'lngdppc', 'lnpop', 'gattwto08']
reg2 = ['const', 'lngdppc', 'lnpop',
 'gattwto08', 'lnmcap08', 'rintr', 'topint08']
reg3 = ['const', 'lngdppc', 'lnpop', 'gattwto08', 'lnmcap08',
 'rintr', 'topint08', 'nrrents', 'roflaw']
```

Then we can use the `Poisson` function from `statsmodels` to fit the model.

We’ll use robust standard errors as in the author’s paper

```python
Specify model
poisson_reg = sm.Poisson(df[['numbil0']], df[reg1],
 missing='drop').fit(cov_type='HC0')
print(poisson_reg.summary())
```

(continues on next page)
Success! The algorithm was able to achieve convergence in 9 iterations.

Our output indicates that GDP per capita, population, and years of membership in the General Agreement on Tariffs and Trade (GATT) are positively related to the number of billionaires a country has, as expected.

Let's also estimate the author's more full-featured models and display them in a single table

```python
regs = [reg1, reg2, reg3]
reg_names = ['Model 1', 'Model 2', 'Model 3']
info_dict = {'Pseudo R-squared': lambda x: f'{x.prsquared:.2f}' if isinstance(x.prsquared, float) else str(x.prsquared),
 'No. observations': lambda x: f'{int(x.nobs):d}'}
regressor_order = ['const',
 'lngdppc',
 'lnpop',
 'gattwto08',
 'lnmcap08',
 'rintr',
 'topint08',
 'nrrents',
 'roflaw']
results = []
for reg in regs:
 result = sm.Poisson(df[['numbil0']], df[reg], missing='drop').fit(cov_type='HC0',
 maxiter=100, disp=0)
 results.append(result)
results_table = summary_col(results=results,
 float_format='%.3f',
 stars=True,
 model_names=reg_names,
 info_dict=info_dict,
 regressor_order=regressor_order)
results_table.add_title('Table 1 - Explaining the Number of Billionaires in 2008')
print(results_table)
```
### Table 1 - Explaining the Number of Billionaires in 2008

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>const</strong></td>
<td>-29.050***</td>
<td>-19.444***</td>
<td>-20.858***</td>
</tr>
<tr>
<td></td>
<td>(2.578)</td>
<td>(4.820)</td>
<td>(4.255)</td>
</tr>
<tr>
<td><strong>lngdppc</strong></td>
<td>1.084***</td>
<td>0.717***</td>
<td>0.737***</td>
</tr>
<tr>
<td></td>
<td>(0.138)</td>
<td>(0.244)</td>
<td>(0.233)</td>
</tr>
<tr>
<td><strong>lnpop</strong></td>
<td>1.171***</td>
<td>0.806***</td>
<td>0.929***</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.213)</td>
<td>(0.195)</td>
</tr>
<tr>
<td><strong>gattwto08</strong></td>
<td>0.006</td>
<td>0.007</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td><strong>lnmcap08</strong></td>
<td>0.399**</td>
<td>0.286*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.172)</td>
<td>(0.167)</td>
<td></td>
</tr>
<tr>
<td><strong>rintr</strong></td>
<td>-0.010</td>
<td>-0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.010)</td>
<td></td>
</tr>
<tr>
<td><strong>topint08</strong></td>
<td>-0.051***</td>
<td>-0.058***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td><strong>nrrents</strong></td>
<td>-0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>roflaw</strong></td>
<td>0.203</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.372)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Pseudo R-squared</strong></td>
<td>0.86</td>
<td>0.90</td>
<td>0.90</td>
</tr>
<tr>
<td><strong>No. observations</strong></td>
<td>197</td>
<td>131</td>
<td>131</td>
</tr>
</tbody>
</table>

Standard errors in parentheses.	
* p<.1, ** p<.05, ***p<.01	

The output suggests that the frequency of billionaires is positively correlated with GDP per capita, population size, stock market capitalization, and negatively correlated with top marginal income tax rate.

To analyze our results by country, we can plot the difference between the predicted and actual values, then sort from highest to lowest and plot the first 15

```python
data = ['const', 'lngdppc', 'lnpop', 'gattwto08', 'lnmcap08', 'rintr',
 'topint08', 'nrrents', 'roflaw', 'numbil0', 'country']
results_df = df[data].dropna()

Use last model (model 3)
results_df['prediction'] = results[-1].predict()

Calculate difference
results_df['difference'] = results_df['numbil0'] - results_df['prediction']

Sort in descending order
results_df.sort_values('difference', ascending=False, inplace=True)

Plot the first 15 data points
results_df[:15].plot('country', 'difference', kind='bar',
 figsize=(12,8), legend=False)
plt.ylabel('Number of billionaires above predicted level')
plt.xlabel('Country')
plt.show()
```
As we can see, Russia has by far the highest number of billionaires in excess of what is predicted by the model (around 50 more than expected).

Treisman uses this empirical result to discuss possible reasons for Russia’s excess of billionaires, including the origination of wealth in Russia, the political climate, and the history of privatization in the years after the USSR.

### 78.7 Summary

In this lecture, we used Maximum Likelihood Estimation to estimate the parameters of a Poisson model.

statsmodels contains other built-in likelihood models such as Probit and Logit.

For further flexibility, statsmodels provides a way to specify the distribution manually using the GenericLikelihoodModel class - an example notebook can be found here.
78.8 Exercises

Exercise 78.8.1

Suppose we wanted to estimate the probability of an event \( y_i \) occurring, given some observations.

We could use a probit regression model, where the pmf of \( y_i \) is

\[
f(y_i; \beta) = \mu_i^{y_i}(1 - \mu_i)^{1-y_i}, \quad y_i = 0, 1
\]

where \( \mu_i = \Phi(x_i'\beta) \)

\( \Phi \) represents the cumulative normal distribution and constrains the predicted \( y_i \) to be between 0 and 1 (as required for a probability).

\( \beta \) is a vector of coefficients.

Following the example in the lecture, write a class to represent the Probit model.

To begin, find the log-likelihood function and derive the gradient and Hessian.

The \texttt{scipy} module \texttt{stats.norm} contains the functions needed to compute the cmf and pmf of the normal distribution.

Solution to Exercise 78.8.1

The log-likelihood can be written as

\[
\log L = \sum_{i=1}^{n} [y_i \log \Phi(x_i'\beta) + (1 - y_i) \log(1 - \Phi(x_i'\beta))]
\]

Using the fundamental theorem of calculus, the derivative of a cumulative probability distribution is its marginal distribution

\[
\frac{\partial}{\partial s} \Phi(s) = \phi(s)
\]

where \( \phi \) is the marginal normal distribution.

The gradient vector of the Probit model is

\[
\frac{\partial \log L}{\partial \beta} = \sum_{i=1}^{n} \left[ y_i \frac{\phi(x_i'\beta)}{\Phi(x_i'\beta)} - (1 - y_i) \frac{1}{1 - \Phi(x_i'\beta)} \right] x_i
\]

The Hessian of the Probit model is

\[
\frac{\partial^2 \log L}{\partial \beta \partial \beta'} = -\sum_{i=1}^{n} \phi(x_i'\beta) \left[ \frac{\phi(x_i'\beta) + x_i'\beta \phi(x_i'\beta)}{[\Phi(x_i'\beta)]^2} + (1 - y_i) \frac{\phi(x_i'\beta) - x_i'\beta(1 - \Phi(x_i'\beta))}{[1 - \Phi(x_i'\beta)]^2} \right] x_i x_i'
\]

Using these results, we can write a class for the Probit model as follows

```python
class ProbitRegression:
 def __init__(self, y, X, beta):
 self.X, self.y, self.beta = X, y, beta
 self.n, self.k = X.shape

 def mu(self):
 return norm.cdf(self.X @ self.beta)
```

(continues on next page)
def ϕ(self):
    return norm.pdf(self.X @ self.β.T)

def logL(self):
    μ = self.μ()
    return np.sum(y * np.log(μ) + (1 - y) * np.log(1 - μ))

def G(self):
    μ = self.μ()
    ϕ = self.ϕ()
    return np.sum((X.T @ y * ϕ / μ - X.T @ (1 - y) * ϕ / (1 - μ)), axis=1)

def H(self):
    X = self.X
    β = self.β
    μ = self.μ()
    ϕ = self.ϕ()
    a = (ϕ + (X @ β.T) * μ) / μ**2
    b = (ϕ - (X @ β.T) * (1 - μ)) / (1 - μ)**2
    return -(ϕ * (y * a + (1 - y) * b) * X.T) @ X

Exercise 78.8.2

Use the following dataset and initial values of β to estimate the MLE with the Newton-Raphson algorithm developed earlier in the lecture

\[
\begin{bmatrix}
1 & 2 & 4 \\
1 & 1 & 1 \\
1 & 4 & 3 \\
1 & 5 & 6 \\
1 & 3 & 5
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix}
\begin{bmatrix}
0.1 \\
0.1 \\
0.1
\end{bmatrix}
\]

Verify your results with statsmodels - you can import the Probit function with the following import statement

```python
from statsmodels.discrete.discrete_model import Probit
```

Note that the simple Newton-Raphson algorithm developed in this lecture is very sensitive to initial values, and therefore you may fail to achieve convergence with different starting values.

Solution to Exercise 78.8.2

Here is one solution

```python
X = np.array([[1, 2, 4],
 [1, 1, 1],
 [1, 4, 3],
 [1, 5, 6],
 [1, 3, 5]])

y = np.array([[1, 0, 1, 1, 0]])
```
# Take a guess at initial βs
β = np.array([0.1, 0.1, 0.1])

# Create instance of Probit regression class
prob = ProbitRegression(y, X, β)

# Run Newton-Raphson algorithm
newton_raphson(prob)

Iteration_k   Log-likelihood   θ

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.3796884</td>
<td>['-1.34', '0.775', '-0.157']</td>
</tr>
<tr>
<td>1</td>
<td>-2.3687526</td>
<td>['-1.53', '0.775', '-0.0981']</td>
</tr>
<tr>
<td>2</td>
<td>-2.3687294</td>
<td>['-1.55', '0.778', '-0.0971']</td>
</tr>
<tr>
<td>3</td>
<td>-2.3687294</td>
<td>['-1.55', '0.778', '-0.0971']</td>
</tr>
</tbody>
</table>

Number of iterations: 4

β_hat = [-1.54625858, 0.77778952, -0.09709757]

array([-1.54625858, 0.77778952, -0.09709757])

# Use statsmodels to verify results
print(Probit(y, X).fit().summary())

Optimization terminated successfully.
Current function value: 0.473746
Iterations 6

Probit Regression Results
==============================================================================
Model: Probit   Df Residuals: 2
Method: MLE   Df Model: 2
Date: Sun, 11 Dec 2022   Pseudo R-squ.: 0.2961
Time: 05:26:12   Log-Likelihood: -2.3687
converged: True   LL-Null: -3.3651
Covariance Type: nonrobust   LLR p-value: 0.3692
==============================================================================
               coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
const        -1.5463     1.866      -0.829      0.407     -5.204      2.111
x1           0.7778     0.788       0.986      0.324     -0.768      2.323
x2          -0.0971     0.590      -0.165      0.869     -1.254      1.060

78.8. Exercises
Part XIII

Auctions
FIRST-PRICE AND SECOND-PRICE AUCTIONS

This lecture is designed to set the stage for a subsequent lecture about Multiple Good Allocation Mechanisms. In that lecture, a planner or auctioneer simultaneously allocates several goods to a set of people. In the present lecture, a single good is allocated to one person within a set of people.

Here we’ll learn about and simulate two classic auctions:

- a First-Price Sealed-Bid Auction (FPSB)
- a Second-Price Sealed-Bid Auction (SPSB) created by William Vickrey [Vic61]

We’ll also learn about and apply a

- Revenue Equivalent Theorem

We recommend watching this video about second price auctions by Anders Munk-Nielsen:

[https://youtu.be/qwWk_Bqtxe8](https://youtu.be/qwWk_Bqtxe8)

and

[https://youtu.be/eYTGQCGpmXI](https://youtu.be/eYTGQCGpmXI)

Anders Munk-Nielsen put his code on GitHub.

Much of our Python code below is based on his.

79.1 First-Price Sealed-Bid Auction (FPSB)

**Protocols:**

- A single good is auctioned.
- Prospective buyers simultaneously submit sealed bids.
- Each bidder knows only his/her own bid.
- The good is allocated to the person who submits the highest bid.
- The winning bidder pays price she has bid.

**Detailed Setting:**

There are \( n > 2 \) prospective buyers named \( i = 1, 2, \ldots, n \).

Buyer \( i \) attaches value \( v_i \) to the good being sold.
Buyer \( i \) wants to maximize the expected value of her surplus defined as \( v_i - p \), where \( p \) is the price that she pays, conditional on her winning the auction.

Evidently,

- If \( i \) bids exactly \( v_i \), she pays what she thinks it is worth and gathers no surplus value.
- Buyer \( i \) will never want to bid more than \( v_i \).
- If buyer \( i \) bids \( b < v_i \) and wins the auction, then she gathers surplus value \( b - v_i > 0 \).
- If buyer \( i \) bids \( b < v_i \) and someone else bids more than \( b \), buyer \( i \) loses the auction and gets no surplus value.
- To proceed, buyer \( i \) wants to know the probability that she wins the auction as a function of her bid \( v_i \)
  - this requires that she know a probability distribution of bids \( v_j \) made by prospective buyers \( j \neq i \)
- Given her idea about that probability distribution, buyer \( i \) wants to set a bid that maximizes the mathematical expectation of her surplus value.

Bids are sealed, so no bidder knows bids submitted by other prospective buyers.

This means that bidders are in effect participating in a game in which players do not know payoffs of other players.

This is a Bayesian game, a Nash equilibrium of which is called a Bayesian Nash equilibrium.

To complete the specification of the situation, we’ll assume that prospective buyers’ valuations are independently and identically distributed according to a probability distribution that is known by all bidders.

Bidder optimally chooses to bid less than \( v_i \).

### 79.1.1 Characterization of FPSB Auction

A FPSB auction has a unique symmetric Bayesian Nash Equilibrium.

The optimal bid of buyer \( i \) is

\[
E[y_i|y_i < v_i]
\]

where \( v_i \) is the valuation of bidder \( i \) and \( y_i \) is the maximum valuation of all other bidders:

\[
y_i = \max_{j \neq i} v_j
\]

A proof for this assertion is available at the Wikipedia page about Vickrey auctions

### 79.2 Second-Price Sealed-Bid Auction (SPSB)

**Protocols:** In a second-price sealed-bid (SPSB) auction, the winner pays the second-highest bid.

### 79.3 Characterization of SPSB Auction

In a SPSB auction bidders optimally choose to bid their values.

Formally, a dominant strategy profile in a SPSB auction with a single, indivisible item has each bidder bidding its value.

A proof is provided at the Wikipedia page about Vickrey auctions
79.4 Uniform Distribution of Private Values

We assume valuation \( v_i \) of bidder \( i \) is distributed \( v_i \overset{i.i.d.}\sim U(0, 1) \).

Under this assumption, we can analytically compute probability distributions of prices bid in both FPSB and SPSB.

We’ll simulate outcomes and, by using a law of large numbers, verify that the simulated outcomes agree with analytical ones.

We can use our simulation to illustrate a Revenue Equivalence Theorem that asserts that on average first-price and second-price sealed bid auctions provide a seller the same revenue.

To read about the revenue equivalence theorem, see this Wikipedia page

79.5 Setup

There are \( n \) bidders.

Each bidder knows that there are \( n - 1 \) other bidders.

79.6 First price sealed bid auction

An optimal bid for bidder \( i \) in a FPSB is described by equations (79.1) and (79.2).

When bids are i.i.d. draws from a uniform distribution, the CDF of \( y_i \) is

\[
\tilde{F}_{n-1}(y) = P(y_i \leq y) = P(\max_{j \neq i} v_j \leq y) = \prod_{j \neq i} P(v_j \leq y) = y^{n-1}
\]

and the PDF of \( y_i \) is \( \tilde{f}_{n-1}(y) = (n-1)y^{n-2} \).

Then bidder \( i \)’s optimal bid in a FPSB auction is:

\[
E(y_i | y_i < v_i) = \frac{\int_{0}^{v_i} y_i \tilde{F}_{n-1}(y_i) dy_i}{\int_{0}^{\infty} \tilde{F}_{n-1}(y_i) dy_i}
= \frac{\int_{0}^{v_i} (n-1)y_i^{n-1} dy_i}{\int_{0}^{\infty} (n-1)y_i^{n-2} dy_i}
= \frac{n-1}{n} \left. \frac{y_i}{y_i} \right|_0^{v_i}
= \frac{n-1}{n} v_i
\]
79.7 Second Price Sealed Bid Auction

In a SPSB, it is optimal for bidder $i$ to bid $v_i$.

79.8 Python Code

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as stats
import scipy.interpolate as interp

for plots
plt.rcParams.update({'text.usetex': True, 'font.size': 14})

colors = plt.rcParams['axes.prop_cycle'].by_key()['color']

ensure the notebook generate the same randomess
np.random.seed(1337)

We repeat an auction with 5 bidders for 100,000 times.
The valuations of each bidder is distributed $U(0, 1)$.

```python
N = 5
R = 100_000

v = np.random.uniform(0,1,(N,R))

# BNE in first-price sealed bid

b_star = lambda vi,N :((N - 1) / N) * vi

b = b_star(v,N)

We compute and sort bid price distributions that emerge under both FPSB and SPSB.

```python
idx = np.argsort(v, axis=0) # Biders' values are sorted in ascending order in each auction.

v = np.take_along_axis(v, idx, axis=0) # same as np.sort(v, axis=0), except now we retain the idx

b = np.take_along_axis(b, idx, axis=0)

ii = np.repeat(np.arange(1,N+1)[::-1], R, axis=1) # the id for the bidders is created.

ii = np.take_along_axis(ii, idx, axis=0) # the id is sorted according to bid price as well.

winning_player = ii[-1,:] # In FPSB and SPSB, winners are those with highest values.

winner_pays_fpsb = b[-1,:]] # highest bid

winner_pays_spsb = v[-2,:] # 2nd-highest valuation
```
Let’s now plot the winning bids $b_{(n)}$ (i.e. the payment) against valuations, $v_{(n)}$ for both FPSB and SPSB.

Note that

- FPSB: There is a unique bid corresponding to each valuation
- SPSB: Because it equals the valuation of a second-highest bidder, what a winner pays varies even holding fixed the winner’s valuation. So here there is a frequency distribution of payments for each valuation.

```python
We intend to compute average payments of different groups of bidders
binned = stats.binned_statistic(v[-1, :], v[-2, :], statistic='mean', bins=20)
xx = binned.bin_edges
xx = [(xx[ii] + xx[ii+1]) / 2 for ii in range(len(xx) - 1)]
yy = binned.statistic

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(xx, yy, label='SPSB average payment')
ax.plot(v[-1, :], b[-1, :], '--', alpha=0.8, label='FPSB analytic')
ax.plot(v[-1, :], v[-2, :], 'o', alpha=0.05, markersize=0.1, label='SPSB: actual bids')

ax.legend(loc='best')
ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Bid, b_i')
sns.despine()
```

![Graph showing the relationship between valuation and bid for FPSB and SPSB](image.png)
79.9 Revenue Equivalence Theorem

We now compare FPSB and a SPSB auctions from the point of view of the revenues that a seller can expect to acquire.

**Expected Revenue FPSB:**

The winner with valuation \( y \) pays \( \frac{n-1}{n} \times y \), where \( n \) is the number of bidders.

Above we computed that the CDF is \( F_n(y) = y^n \) and the PDF is \( f_n = n y^{n-1} \).

Consequently, expected revenue is

\[
R = \int_0^1 \frac{n-1}{n} \times n v_i^{n-1} dv_i = \frac{n-1}{n+1}
\]

**Expected Revenue SPSB:**

The expected revenue equals \( n \times \) expected payment of a bidder.

Computing this we get

\[
TR = n E_v \left[ E_y[y_i | y_i < v_i] P(y_i < v_i) + 0 \times P(y_i > v_i) \right]
= n E_v \left[ E_y[y_i | y_i < v_i] F_{n-1}(v_i) \right]
= n E_v \left[ \frac{n-1}{n} \times v_i \times v_i^{n-1} \right]
= (n - 1) E_v [v_i^n]
= \frac{n-1}{n+1}
\]

Thus, while probability distributions of winning bids typically differ across the two types of auction, we deduce that expected payments are identical in FPSB and SPSB.
Summary of FPSB and SPSB results with uniform distribution on $[0, 1]$

<table>
<thead>
<tr>
<th>Auction: Sealed-Bid</th>
<th>First-Price</th>
<th>Second-Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winner</td>
<td>Agent with highest bid</td>
<td>Agent with highest bid</td>
</tr>
<tr>
<td>Winner pays</td>
<td>Winner's bid</td>
<td>Second-highest bid</td>
</tr>
<tr>
<td>Loser pays</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dominant strategy</td>
<td>No dominant strategy</td>
<td>Bidding truthfully is dominant strategy</td>
</tr>
<tr>
<td>Bayesian Nash equilibrium</td>
<td>Bidder $i$ bids $\frac{n-1}{n}v_i$</td>
<td>Bidder $i$ truthfully bids $v_i$</td>
</tr>
<tr>
<td>Auctioneer’s revenue</td>
<td>$\frac{n-1}{n+1}$</td>
<td>$\frac{n-1}{n+1}$</td>
</tr>
</tbody>
</table>

Detour: Computing a Bayesian Nash Equilibrium for FPSB

The Revenue Equivalence Theorem lets us an optimal bidding strategy for a FPSB auction from outcomes of a SPSB auction.

Let $b(v_i)$ be the optimal bid in a FPSB auction.

The revenue equivalence theorem tells us that a bidder agent with value $v_i$ on average receives the same payment in the two types of auction.

Consequently,

$$b(v_i)P(y_i < v_i) + 0 \cdot P(y_i \geq v_i) = E_{y_i}[y_i|y_i < v_i]P(y_i < v_i) + 0 \cdot P(y_i \geq v_i)$$

It follows that an optimal bidding strategy in a FPSB auction is $b(v_i) = E_{y_i}[y_i|y_i < v_i]$. 
**79.10 Calculation of Bid Price in FPSB**

In equations (79.1) and (79.1), we displayed formulas for optimal bids in a symmetric Bayesian Nash Equilibrium of a FPSB auction.

\[ E[y_i | y_i < v_i] \]

where

- \( v_i = \) value of bidder \( i \)
- \( y_i = \) maximum value of all bidders except \( i \), i.e., \( y_i = \max_{j \neq i} v_j \)

Above, we computed an optimal bid price in a FPSB auction analytically for a case in which private values are uniformly distributed.

For most probability distributions of private values, analytical solutions aren’t easy to compute.

Instead, we can compute bid prices in FPSB auctions numerically as functions of the distribution of private values.

```python
def evaluate_largest(v_hat, array, order=1):
 """A method to estimate the largest (or certain-order largest) value of the other bidders, conditional on player 1 wins the auction.
 Parameters:

 v_hat : float, the value of player 1. The biggest value in the auction that player 1 wins.
 array: 2 dimensional array of bidders' values in shape of (N,R), where N: number of players, R: number of auctions
 order: int. The order of largest number among bidders who lose. e.g. the order for largest number beside winner is 1. the order for second-largest number beside winner is 2.
 """
 N,R = array.shape
 array_residual = array[1:, :].copy() # drop the first row because we assume first row is the winner's bid
 index = (array_residual < v_hat).all(axis=0)
 array_conditional = array_residual[:, index].copy()
 array_conditional = np.sort(array_conditional, axis=0)
 return array_conditional[-order, :].mean()
```

We can check the accuracy of our evaluate_largest method by comparing it with an analytical solution.

We find that despite small discrepancy, the evaluate_largest method functions well.

Furthermore, if we take a very large number of auctions, say 1 million, the discrepancy disappears.

```python
v_grid = np.linspace(0.3, 1, 8)
bid_analytical = b_star(v_grid, N)
bid_simulated = [evaluate_largest(ii, v) for ii in v_grid]
```

(continues on next page)
Quantitative Economics with Python

(continued from previous page)

```python
fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(v_grid, bid_analytical, '-', color='k', label='Analytical')
ax.plot(v_grid, bid_simulated, '--', color='r', label='Simulated')

ax.legend(loc='best')
ax.set_xlabel('Valuation, v_i')
ax.set_ylabel('Bid, b_i')
ax.set_title('Solution for FPSB')
sns.despine()
```

![Solution for FPSB](image)

### 79.11 $\chi^2$ Distribution

Let’s try an example in which the distribution of private values is a $\chi^2$ distribution.

We’ll start by taking a look at a $\chi^2$ distribution with the help of the following Python code:

```python
np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N*R,))

plt.hist(v, bins=50, edgecolor='w')
plt.xlabel('Values: v')
plt.show()
```
Now we’ll get Python to construct a bid price function

```python
np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N,R))

we compute the quantile of v as our grid
pct_quantile = np.linspace(0, 100, 101)[1:-1]
v_grid = np.percentile(v.flatten(), q=pct_quantile)

EV=[evaluate_largest(ii, v) for ii in v_grid]
nan values are returned for some low quantiles due to lack of observations

b_star_num = interp.interp1d(v_grid, EV, fill_value="extrapolate")
```

We check our bid price function by computing and visualizing the result.
Now we can use Python to compute the probability distribution of the price paid by the winning bidder.

```python
b=b_star_num(v)
idx = np.argsort(v, axis=0)
v = np.take_along_axis(v, idx, axis=0) # same as np.sort(v, axis=0), except now we...
 # retain the idx
b = np.take_along_axis(b, idx, axis=0)
ii = np.repeat(np.arange(1,N+1)[::-1,None], R, axis=1)
ii = np.take_along_axis(ii, idx, axis=0)
winning_player = ii[-1,:]
winner_pays_fpsb = b[-1,:] # highest bid
winner_pays_spsb = v[-2,:] # 2nd-highest valuation
```
fig, ax = plt.subplots(figsize=(6, 4))

for payment, label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB']):
    print(f'The average payment of {label}: %.4f. Std.: %.4f. Median: %.4f' % (label, payment.mean(), payment.std(), np.median(payment)))
    ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')
ax.legend(loc='best')
ax.set_xlabel('Bid')
ax.set_ylabel('Density')
sns.despine()

The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180

79.12 5 Code Summary

We assemble the functions that we have used into a Python class

class bid_price_solution:
    def __init__(self, array):
        A class that can plot the value distribution of bidders, compute the optimal bid price for bidders in FPSB
and plot the distribution of winner's payment in both FPSB and SPSB

Parameters:
----------
array: 2 dimensional array of bidders' values in shape of (N,R),
where N: number of players, R: number of auctions

"""
self.value_mat = array.copy()

return None

def plot_value_distribution(self):
    plt.hist(self.value_mat.flatten(), bins=50, edgecolor='w')
    plt.xlabel('Values: $v$')
    plt.show()

    return None

def evaluate_largest(self, v_hat, order=1):
    N, R = self.value_mat.shape
    array_residual = self.value_mat[1:,:].copy()
    # drop the first row because we assume first row is the winner's bid
    index = (array_residual<v_hat).all(axis=0)
    array_conditional = array_residual[:,index].copy()

    array_conditional = np.sort(array_conditional, axis=0)
    return array_conditional[-order,:].mean()

def compute_optimal_bid_FPSB(self):
    # we compute the quantile of v as our grid
    pct_quantile = np.linspace(0, 100, 101)[1:-1]
    v_grid = np.percentile(self.value_mat.flatten(), q=pct_quantile)

    EV = [self.evaluate_largest(ii) for ii in v_grid]
    # nan values are returned for some low quantiles due to lack of observations

    # we insert 0 into our grid and bid price function as a complement
    EV = np.insert(EV, 0, 0)
    v_grid = np.insert(v_grid, 0, 0)

    self.b_star_num = interp.interp1d(v_grid, EV, fill_value="extrapolate")

    pct_quantile_fine = np.linspace(0, 100, 1001)[1:-1]
    v_grid_fine = np.percentile(self.value_mat.flatten(), q=pct_quantile_fine)

    fig, ax = plt.subplots(figsize=(6, 4))

    ax.plot(v_grid, EV, 'or', label='Simulation on Grid')
    ax.plot(v_grid_fine, self.b_star_num(v_grid_fine), '-.', label='Interpolation Solution')

    ax.legend(loc='best')

    return
ax.set_xlabel('Valuation, v_i$')
ax.set_ylabel('Optimal Bid in FPSB')
sns.despine()

return None

def plot_winner_payment_distribution(self):
    self.b = self.b_star_num(self.value_mat)

    idx = np.argsort(self.value_mat, axis=0)
    self.v = np.take_along_axis(self.value_mat, idx, axis=0)  # same as np.sort(v, axis=0), except now we retain the idx
    self.b = np.take_along_axis(self.b, idx, axis=0)

    self.ii = np.repeat(np.arange(1, N+1)[::-1, None], R, axis=1)
    self.ii = np.take_along_axis(self.ii, idx, axis=0)

    winning_player = self.ii[-1,:]

    winner_pays_fpsb = self.b[-1,:]  # highest bid
    winner_pays_spsb = self.v[-2,:]  # 2nd-highest valuation

    fig, ax = plt.subplots(figsize=(6, 4))

    for payment,label in zip([winner_pays_fpsb, winner_pays_spsb], ['FPSB', 'SPSB'])�
        print('The average payment of %s: %.4f. Std.: %.4f. Median: %.4f' % (label, payment.mean(), payment.std(), np.median(payment)))
        ax.hist(payment, density=True, alpha=0.6, label=label, bins=100)

        ax.axvline(winner_pays_fpsb.mean(), ls='--', c='g', label='Mean')
        ax.axvline(winner_pays_spsb.mean(), ls='--', c='r', label='Mean')

    ax.legend(loc='best')
    ax.set_xlabel('Bid')
    ax.set_ylabel('Density')
    sns.despine()

return None
	np.random.seed(1337)
v = np.random.chisquare(df=2, size=(N,R))

chi_squ_case = bid_price_solution(v)

chi_squ_case.plot_value_distribution()
chi_squared_case.compute_optimal_bidFPSB()

/tmp/ipykernel_11413/2108492276.py:37: RuntimeWarning: Mean of empty slice.
    return array_conditional[~order,:].mean()
    in double_scalars
    ret = ret.dtype.type(ret / rcount)
The average payment of FPSB: 2.5693. Std.: 0.8383. Median: 2.5829
The average payment of SPSB: 2.5661. Std.: 1.3580. Median: 2.3180
79.13 References

CHAPTER EIGHTY

MULTIPLE GOOD ALLOCATION MECHANISMS

80.1 Overview

This lecture describes two mechanisms for allocating $n$ private goods (“houses”) to $m$ people (“buyers”). We assume that $m > n$ so that there are more potential buyers than there are houses. Prospective buyers regard the houses as substitutes. Buyer $j$ attaches value $v_{ij}$ to house $i$. These values are private:

- $v_{ij}$ is known only to person $j$ unless person $j$ chooses to tell someone.

We require that a mechanism allocate at most one house to one prospective buyer.

We describe two distinct mechanisms:

- A multiple rounds, ascending bid auction
- A special case of a Groves-Clarke [Gro73], [Cla71] mechanism with a benevolent social planner

**Note:** In 1994, the multiple rounds, ascending bid auction was actually used by Stanford University to sell leases to 9 lots on the Stanford campus to eligible faculty members.

We begin with overviews of the two mechanisms.

80.2 Ascending Bids Auction for Multiple Goods

An auction is administered by an auctioneer.

The auctioneer has an $n \times 1$ vector $r$ of reservation prices on the $n$ houses.

The auctioneer sells house $i$ only if the final price bid for it exceeds $r_i$.

The auctioneer allocates all $n$ houses simultaneously.

The auctioneer does not know bidders’ private values $v_{ij}$.

There are multiple rounds.
Quantitative Economics with Python

- during each round, active participants can submit bids on any of the \( n \) houses
- each bidder can bid on only one house during one round
- a person who was high bidder on a particular house in one round is understood to submit that same bid for the same house in the next round
- between rounds, a bidder who was not a high bidder can change the house on which he/she chooses to bid
- the auction ends when the price of no house changes from one round to the next
- all \( n \) houses are allocated after the final round
- house \( i \) is retained by the auctioneer if not prospective buyer offers more that \( r_i \) for the house

In this auction, person \( j \) never tells anyone else his/her private values \( v_{ij} \)

### 80.3 A Benevolent Planner

This mechanism is designed so that all prospective buyers voluntarily choose to reveal their private values to a social planner who uses them to construct a socially optimal allocation.

Among all feasible allocations, a socially optimal allocation maximizes the sum of private values across all prospective buyers.

The planner tells everyone in advance how he/she will allocate houses based on the matrix of values that prospective buyers report.

The mechanism provides every prospective buyer an incentive to reveal his vector of private values to the planner.

After the planner receives everyone’s vector of private values, the planner deploys a sequential algorithm to determine an allocation of houses and a set of fees that he charges awardees for the negative externality that their presence impose on other prospective buyers.

### 80.4 Equivalence of Allocations

Remarkably, these two mechanisms can produce virtually identical allocations.

We construct Python code for both mechanism.

We also work out some examples by hand or almost by hand.

Next, let’s dive down into the details.

### 80.5 Ascending Bid Auction

#### 80.5.1 Basic Setting

We start with a more detailed description of the setting:

- A seller owns \( n \) houses that he wants to sell for the maximum possible amounts to a set of \( m \) prospective eligible buyers.
- The seller wants to sell at most one house to each potential buyer.
- There are \( m \) potential eligible buyers, identified by \( j = [1, 2, \ldots, m] \)
– Each potential buyer is permitted to buy at most one house.
– Buyer $j$ would be willing to pay at most $v_{ij}$ for house $i$.
– Buyer $j$ knows $v_{ij}$, $i = 1, \ldots, n$, but no one else does.
– If buyer $j$ pays $p_i$ for house $i$, he enjoys surplus value $v_{ij} - p_i$.
– Each buyer $j$ wants to choose the $i$ that maximizes his/her surplus value $v_{ij} - p_i$.
– The seller wants to maximize $\sum_i p_i$.

The seller conducts a simultaneous, multiple goods, ascending bid auction.

Outcomes of the auction are

- An $n \times 1$ vector $p$ of sales prices $p = [p_1, \ldots, p_n]$ for the $n$ houses.
- An $n \times m$ matrix $Q$ of 0’s and 1’s, where $Q_{ij} = 1$ if and only if person $j$ bought house $i$.
- An $n \times m$ matrix $S$ of surplus values consisting of all zeros unless person $j$ bought house $i$, in which case $S_{ij} = v_{ij} - p_i$.

We describe rules for the auction in terms of pseudo code.

The pseudo code will provide a roadmap for writing Python code to implement the auction.

### 80.6 Pseudocode

Here is a quick sketch of a possible simple structure for our Python code

**Inputs:**

- $n, m$.
- an $n \times m$ non-negative matrix $v$ of private values
- an $n \times 1$ vector $r$ of seller-specified reservation prices
- the seller will not accept a price less than $r_i$ for house $i$
- we are free to think of these reservation prices as private values of a fictitious $m + 1$th buyer who does not actually participate in the auction
- initial bids can be thought of starting at $r$
- a scalar $\epsilon$ of seller-specified minimum price-bid increments

For each round of the auction, new bids on a house must be at least the prevailing highest bid so far plus $\epsilon$

**Auction Protocols**

- the auction consists of a finite number of rounds
- in each round, a prospective buyer can bid on one and only one house
- after each round, a house is temporarily awarded to the person who made the highest bid for that house
  - temporarily winning bids on each house are announced
  - this sets the stage to move on to the next round
- a new round is held
  - bids for temporary winners from the previous round are again attached to the houses on which they bid;
  - temporary winners of the last round leave their bids from the previous round unchanged
Quantitative Economics with Python

- all other active prospective buyers must submit a new bid on some house
- new bids on a house must be at least equal to the prevailing temporary price that won the last round plus $\epsilon$
- if a person does not submit a new bid and was also not a temporary winner from the previous round, that person must drop out of the auction permanently
- for each house, the highest bid, whether it is a new bid or was the temporary winner from the previous round, is announced, with the person who made that new (temporarily) winning bid being (temporarily) awarded the house to start the next round

• rounds continue until no price on any house changes from the previous round
• houses are sold to the winning bidders from the final round at the prices that they bid

Outputs:
- an $n \times 1$ vector $p$ of sales prices
- an $n \times m$ matrix $S$ of surplus values consisting of all zeros unless person $j$ bought house $i$, in which case $S_{ij} = v_{ij} - p_i$
- an $n \times (m + 1)$ matrix $Q$ of 0’s and 1’s that tells which buyer bought which house. (The last column accounts for unsold houses.)

Proposed buyer strategy:
In this pseudo code and the actual Python code below, we’ll assume that all buyers choose to use the following strategy
- The strategy is optimal for each buyer
Each buyer $j = 1, \ldots, m$ uses the same strategy.

The strategy has the form:
- Let $\tilde{p}_t$ be the $n \times 1$ vector of prevailing highest-bid prices at the beginning of round $t$
- Let $\epsilon > 0$ be the minimum bid increment specified by the seller
- For each prospective buyer $j$, compute the index of the best house to bid on during round $t$, namely $\hat{i}_t = \text{argmax}_i \{v_{ij} - \tilde{p}_t - \epsilon\}$
- If $\max_i \{v_{ij} - \tilde{p}_t - \epsilon\} \leq 0$, person $j$ permanently drops out of the auction at round $t$
- If $v_{i_t,j} - \tilde{p}_t - \epsilon > 0$, person $j$ bids $\tilde{p}_t + \epsilon$ on house $j$

Resolving ambiguities: The protocols we have described so far leave open two possible sources of ambiguity.

1) The optimal bid choice for buyers in each round. It is possible that a buyer has the same surplus value for multiple houses. The argmax function in Python always returns the first argmax element. We instead prefer to randomize among such winner. For that reason, we write our own argmax function below.

2) Seller’s choice of winner if same price bid cast by several buyers. To resolve this ambiguity, we use the np.random.choice function below.

Given the randomness in outcomes, it is possible that different allocations of houses could emerge from the same inputs. However, this will happen only when the bid price increment $\epsilon$ is nonnegligible.

```python
import numpy as np
import pandas as pd
import prettytable as pt

np.random.seed(100)
```
Before building a Python class, let’s step by step solve things almost “by hand” to grasp how the auction proceeds.

A step-by-step procedure also helps reduce bugs, especially when the value matrix is peculiar (e.g. the differences between values are negligible, a column containing identical values or multiple buyers have the same valuation etc.).

Fortunately, our auction behaves well and robustly with various peculiar matrices.

We provide some examples later in this lecture.

```
v = np.array([[8, 5, 9, 4],
 [4, 11, 7, 4],
 [9, 7, 6, 4]])
n, m = v.shape
r = np.array([2, 1, 0])
epsilon = 1
p = r.copy()
```

```
```v
```array([[ 8,  5,  9,  4],
 [4, 11, 7, 4],
 [9, 7, 6, 4]])
```

Remember that column indexes \( j \) indicate buyers and row indexes \( i \) indicate houses.

The above value matrix \( v \) is peculiar in the sense that Buyer 3 (indexed from 0) puts the same value 4 on every house being sold.

Maybe buyer 3 is a bureaucrat who purchases these houses simply by following instructions from his superior.

```
r
```array([2, 1, 0])
```

```def find_argmax_with_randomness(v):
    """
    We build our own version of argmax function such that the argmax index will be returned randomly when there are multiple maximum values. This function is similar to np.argmax(v, axis=0)
    Parameters:
    ----------
    v: 2 dimensional np.array
    """
```
n, m = v.shape
index_array = np.arange(n)
result = []

for ii in range(m):
 max_value = v[:,ii].max()
 result.append(np.random.choice(index_array[v[:,ii] == max_value]))

return np.array(result)

def present_dict(dt):
 ""
 A function that present the information in table.
 Parameters:

 dt: dictionary.
 ""

 ymtb = pt.PrettyTable()
 ymtb.field_names = ['House Number', *dt.keys()]
 ymtb.add_row(['Buyer', *dt.values()])
 print(ymtb)

Check Kick Off Condition

def check_kick_off_condition(v, r, ϵ):
 ""
 A function that checks whether the auction could be initiated given the reservation price and value matrix.
 To avoid the situation that the reservation prices are so high that no one would even bid in the first round.
 Parameters:

 v : value matrix of the shape (n,m).
 r: the reservation price
 ϵ: the minimum price increment in each round
 ""

 p_start = (ϵ+r)[:,None] @ np.ones(m)[None,:]
 surplus_value = v - p_start
 buyer_decision = (surplus_value > 0).any(axis = 0)
 return buyer_decision.any()

check_kick_off_condition(v, r, ϵ)
80.7.1 round 1

submit bid

```python
def submit_initial_bid(p_initial, ϵ, v):
    """
    A function that describes the bid information in the first round.
    Parameters:
    ----------
    p_initial: the price (or the reservation prices) at the beginning of auction.
    v: the value matrix
    ϵ: the minimun price increment in each round
    Returns:
    -------
    p: price array after this round of bidding
    bid_info: a dictionary that contains bidding information (house number as keys
    and buyer as values).
    """
    p = p_initial.copy()
    p_start_mat = (ϵ + p)[:,None] @ np.ones(m)[None,:]
    surplus_value = v - p_start_mat
    # we only care about active buyers who have positive surplus values
    active_buyer_diagnosis = (surplus_value > 0).any(axis = 0)
    active_buyer_list = buyer_list[active_buyer_diagnosis]
    active_buyer_surplus_value = surplus_value[:,active_buyer_diagnosis]
    active_buyer_choice = find_argmax_with_randomness(active_buyer_surplus_value)
    # choice means the favourite houses given the current price and ϵ
    # we only retain the unique house index because prices increase once at one round
    house_bid = list(set(active_buyer_choice))
    p[house_bid] += ϵ
    bid_info = {}
    for house_num in house_bid:
        bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]
    return p, bid_info
```

```python
p, bid_info = submit_initial_bid(p, ϵ, v)
```

```
```
check terminal condition

Notice that two buyers bid for house 2 (indexed from 0).

Because the auction protocol does not specify a selection rule in this case, we simply select a winner randomly.

This is reasonable because the seller can’t distinguish these buyers and doesn’t know the valuation of each buyer.

It is both convenient and practical for him to just pick a winner randomly.

There is a 50% probability that Buyer 3 is chosen as the winner for house 2, although he values it less than buyer 0.

In this case, buyer 0 has to bid one more time with a higher price, which crowds out Buyer 3.

Therefore, final price could be 3 or 4, depending on the winner in the last round.

```python
def check_terminal_condition(bid_info, p, v):
    """
    A function that checks whether the auction ends.
    
    Recall that the auction ends when either losers have non-positive surplus values for each house
    or there is no loser (every buyer gets a house).
    
    Parameters:
    ----------
    bid_info: a dictionary that contains bidding information of house numbers (as keys) and buyers (as values).
    
p: np.array. price array of houses
    v: value matrix
    
    Returns:
    -------
    allocation: a dictionary that describe how the houses bid are assigned.
    winner_list: a list of winners
    loser_list: a list of losers
    """
    
    # there may be several buyers bidding one house, we choose a winner randomly
    winner_list = [np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
    
    allocation = {house_num:winner for house_num,winner in zip(bid_info.keys(),winner_list)}
```

(continues on next page)
loser_set = set(buyer_list).difference(set(winner_list))
loser_list = list(loser_set)
loser_num = len(loser_list)

if loser_num == 0:
 print('The auction ends because every buyer gets one house. ')
 return allocation, winner_list, loser_list

p_mat = (ϵ + p)[:, None] @ np.ones(loser_num)[None, :]
loser_surplus_value = v[:, loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis = 0)

print(~(loser_decision.any()))

return allocation, winner_list, loser_list

allocation, winner_list, loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

winner_list

[2, 1, 0]

loser_list

[3]

80.7.2 round 2

From the second round on, the auction proceeds differently from the first round.
Now only active losers (those who have positive surplus values) have an incentive to submit bids to displace temporary winners from the previous round.

def submit_bid(loser_list, p, ϵ, v, bid_info):
 """
 A function that executes the bid operation after the first round.
 After the first round, only active losers would cast a new bid with price as old_price + increment.
 """

(continues on next page)
By such bid, winners of last round are replaced by the active losers.

Parameters:

loser_list: a list that includes the indexes of losers
p: np.array. price array of houses
\(\epsilon \): minimum increment of bid price
v: value matrix

bid_info: a dictionary that contains bidding information of house numbers (as keys) and buyers (as values).

Returns:

p_end: a price array after this round of bidding
bid_info: a dictionary that contains updated bidding information.

```python
p_end = p.copy()

loser_num = len(loser_list)
p_mat = (\epsilon + p_end)[None] @ np.ones(loser_num)[None, :]
loser_surplus_value = v[:, loser_list] - p_mat
loser_decision = (loser_surplus_value > 0).any(axis=0)

active_loser_list = np.array(loser_list)[loser_decision]
active_loser_surplus_value = loser_surplus_value[:, loser_decision]
active_loser_choice = find_argmax_with_randomness(active_loser_surplus_value)

# we retain the unique house index and increasing the corresponding bid price
house_bid = list(set(active_loser_choice))
p_end[house_bid] += \epsilon

# we record the bidding information from active losers
bid_info_active_loser = {}
for house_num in house_bid:
    bid_info_active_loser[house_num] = active_loser_list[active_loser_choice == house_num]

# we update the bidding information according to the bidding from active losers
for house_num in bid_info_active_loser.keys():
    bid_info[house_num] = bid_info_active_loser[house_num]

return p_end, bid_info
```

```python
p, bid_info = submit_bid(loser_list, p, \epsilon, v, bid_info)
```

p
present_dict(bid_info)

House Number	0	1	2
--------------	---+---+---		
Buyer	2	1	3

allocation, winner_list, loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)

House Number	0	1	2
--------------	---+---+---		
Buyer	2	1	3

80.7.3 round 3

p, bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)

p

array([3, 2, 3])

present_dict(bid_info)

House Number	0	1	2
--------------	---+---+---		
Buyer	2	1	0

allocation, winner_list, loser_list = check_terminal_condition(bid_info, p, v)

False

present_dict(allocation)
80.7.4 round 4

```
p, bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)
```

```
p
```

```
array([3, 3, 3])
```

```
present_dict(bid_info)
```

|----------+---+---+---|
| House Number | 0 | 1 | 2 |
|----------+---+---+---|
| Buyer | [2] | [3] | [0] |
|----------+---+---+---|

Notice that Buyer 3 now switches to bid for house 1 having recognized that house 2 is no longer his best option.

```
allocation, winner_list, loser_list = check_terminal_condition(bid_info, p, v)
```

```
False
```

```
present_dict(allocation)
```

|----------+---+---+---|
| House Number | 0 | 1 | 2 |
|----------+---+---+---|
| Buyer | 2 | 3 | 0 |
|----------+---+---+---|

80.7.5 round 5

```
p, bid_info = submit_bid(loser_list, p, ϵ, v, bid_info)
```

```
p
```

```
array([3, 4, 3])
```
Now Buyer 1 bids for house 1 again with price at 4, which crowds out Buyer 3, marking the end of the auction.

```python
allocation, winner_list, loser_list = check_terminal_condition(bid_info, p, v)
```

```python
present_dict(allocation)
```

```plaintext
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Buyer        | 2 | 1 | 0 |
+--------------+---+---+---+
```

as for the houses unsold

```python
house_unsold_list = list(set(house_list).difference(set(allocation.keys())))
house_unsold_list
```

```python
[]
```

```python
total_revenue = p[list(allocation.keys())].sum()
total_revenue
```

```python
10
```

80.8 A Python Class

Above we simulated an ascending bid auction step by step.

When defining functions, we repeatedly computed some intermediate objects because our Python function loses track of variables once the function is executed.

That of course led to redundancy in our code.

It is much more efficient to collect all of the aforementioned code into a class that records information about all rounds.

```python
class ascending_bid_auction:
    def __init__(self, v, r, ϵ):
```

(continues on next page)
A class that simulates an ascending bid auction for houses.

Given buyers' value matrix, sellers' reservation prices and minimum increment of bid prices, this class can execute an ascending bid auction and present information round by round until the end.

Parameters:

v: 2 dimensional value matrix
r: np.array of reservation prices
ϵ: minimum increment of bid price

self.v = v.copy()
self.n, self.m = self.v.shape
self.r = r
self.ϵ = ϵ
self.p = r.copy()
self.buyer_list = np.arange(self.m)
self.house_list = np.arange(self.n)
self.bid_info_history = []
self.allocation_history = []
self.winner_history = []
self.loser_history = []

def find_argmax_with_randomness(self, v):
 n, m = v.shape
 index_array = np.arange(n)
 result = []

 for ii in range(m):
 max_value = v[:, ii].max()
 result.append(np.random.choice(index_array[v[:, ii] == max_value]))

 return np.array(result)

def check_kick_off_condition(self):
 # we convert the price vector to a matrix in the same shape as value matrix to facilitate subtraction
 p_start = (self.ϵ + self.p)[:,:] @ np.ones(self.m)[:,None] @ np.ones(self.m)[None,:]
 self.surplus_value = self.v - p_start
 buyer_decision = (self.surplus_value > 0).any(axis = 0)
 return buyer_decision.any()

def submit_initial_bid(self):
 # we intend to find the optimal choice of each buyer
 p_start_mat = (self.ϵ + self.p)[:,:] @ np.ones(self.m)[:,None] @ np.ones(self.m)[None,:]
 self.surplus_value = self.v - p_start_mat
we only care about active buyers who have positive surplus values
active_buyer_diagnosis = (self.surplus_value > 0).any(axis = 0)
active_buyer_list = self.buyer_list[active_buyer_diagnosis]
active_buyer_surplus_value = self.surplus_value[:,active_buyer_diagnosis]
active_buyer_choice = self.find_argmax_with_randomness(active_buyer_surplus_value)

we only retain the unique house index because prices increase once at one round
house_bid = list(set(active_buyer_choice))
self.p[house_bid] += self.ε

bid_info = {}
for house_num in house_bid:
 bid_info[house_num] = active_buyer_list[active_buyer_choice == house_num]
self.bid_info_history.append(bid_info)

print('The bid information is')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *bid_info.keys()]
ymtb.add_row(['Buyer', *bid_info.values()])
print(ymtb)

print('The bid prices for houses are')
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

self.winner_list = [np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
self.winner_history.append(self.winner_list)

self.allocation = {house_num:winner for house_num,winner in zip(bid_info.keys(),self.winner_list)}
self.allocation_history.append(self.allocation)

loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('
')

 def check_terminal_condition(self):
 loser_num = len(self.loser_list)

 if loser_num == 0:
 print('The auction ends because every buyer gets one house.')
 print('
')
 return True
Quantitative Economics with Python

 p_mat = (self.ε + self.p)[::None] @ np.ones(loser_num)[None,::]
 self.loser_surplus_value = self.v[:,:,self.loser_list] - p_mat
 self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

 return ~(self.loser_decision.any())

 def submit_bid(self):
 bid_info = self.allocation_history[-1].copy() # we only record the bid info
 # of winner
 loser_num = len(self.loser_list)
 p_mat = (self.ε + self.p)[::None] @ np.ones(loser_num)[None,::]
 self.loser_surplus_value = self.v[:,:,self.loser_list] - p_mat
 self.loser_decision = (self.loser_surplus_value > 0).any(axis = 0)

 active_loser_list = np.array(self.loser_list)[self.loser_decision]
 active_loser_surplus_value = self.v[:,:,self.loser_list] - p_mat
 active_loser_choice = self.find_argmax_with_randomness(active_loser_surplus_value)

 # we retain the unique house index and increasing the corresponding bid price
 house_bid = list(set(active_loser_choice))
 self.p[house_bid] += self.ε

 # we record the bidding information from active losers
 bid_info_active_loser = {}
 for house_num in house_bid:
 bid_info_active_loser[house_num] = active_loser_list[active_loser_choice == house_num]

 # we update the bidding information according to the bidding from active losers
 for house_num in bid_info_active_loser.keys():
 bid_info[house_num] = bid_info_active_loser[house_num]
 self.bid_info_history.append(bid_info)

 print('The bid information is')
 ymth = pt.PrettyTable()
 ymth.field_names = ['House Number', 'bid_info.keys()]
 ymth.add_row(['Buyer', 'bid_info.values()])
 ymth.print()

 print('The bid prices for houses are')
 ymth = pt.PrettyTable()
 ymth.field_names = ['House Number', 'self.house_list]
 ymth.add_row(['Price', 'self.p])
 ymth.print()

 self.winner_list=[np.random.choice(bid_info[ii]) for ii in bid_info.keys()]
 self.winner_history.append(self.winner_list)

 self.allocation = {house_num:winner for house_num, winner in zip(bid_info.keys(),self.winner_list)}
 self.allocation_history.append(self.allocation)
loser_set = set(self.buyer_list).difference(set(self.winner_list))
self.loser_list = list(loser_set)
self.loser_history.append(self.loser_list)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)
print('

def start_auction(self):
 print('The Ascending Bid Auction for Houses')
 print('"

 print('Basic Information: %d houses, %d buyers'%(self.n, self.m))

 print('The valuation matrix is as follows')
 ymtb = pt.PrettyTable()
 ymtb.field_names = [['Buyer Number', *(np.arange(self.m))]
 for ii in range(self.n):
 ymtb.add_row(['House %d'%(ii), *self.v[ii,:]])
 print(ymtb)

 print('The reservation prices for houses are')
 ymtb = pt.PrettyTable()
 ymtb.field_names = ['House Number', *self.house_list]
 ymtb.add_row(['Price', *self.r])
 print(ymtb)
 print('The minimum increment of bid price is %.2f % self.ε)
 print('"

 ctr = 1
 if self.check_kick_off_condition():
 print('Auction starts successfully')
 print('"
 print('Round %d' ctr)
 self.submit_initial_bid()

 while True:
 if self.check_terminal_condition():
 print('Auction ends')
 print('"

 print('The final result is as follows')
 print('"
 print('The allocation plan is')
 ymtb = pt.PrettyTable()
 ymtb.field_names = ['House Number', *self.allocation.keys()]
 ymtb.add_row(['Buyer', *self.allocation.values()])
 print(ymtb)

 print('The bid prices for houses are')

(continues on next page)
ymtb = pt.PrettyTable()
ymtb.field_names = ['House Number', *self.house_list]
ymtb.add_row(['Price', *self.p])
print(ymtb)

print('The winners are')
print(self.winner_list)

print('The losers are')
print(self.loser_list)

self.house_unsold_list = list(set(self.house_list).difference(set(self.allocation.keys())))
print('The houses unsold are')
print(self.house_unsold_list)

self.total_revenue = self.p[list(self.allocation.keys())].sum()
print('The total revenue is %.2f' % self.total_revenue)

break

ctr += 1
print('Round %d' % ctr)
self.submit_bid()

we compute the surplus matrix S and the quantity matrix X as required...

self.S = np.zeros((self.n, self.m))
for ii, jj in zip(self.allocation.keys(), self.allocation.values()):

self.Q = np.zeros((self.n, self.m + 1)) # the last column records the...

for ii, jj in zip(self.allocation.keys(), self.allocation.values()):
 self.Q[ii, jj] = 1
for ii in self.house_unsold_list:
 self.Q[ii, -1] = 1

we sort the allocation result by the house number
house_sold_list = list(self.allocation.keys())
house_sold_list.sort()

dict_temp = {}
for ii in house_sold_list:
 dict_temp[ii] = self.allocation[ii]
self.allocation = dict_temp

else:
 print('The auction can not start because of high reservation prices')

Let's use our class to conduct the auction described in one of the above examples.

```python
v = np.array([[8, 5, 9, 4], [4, 11, 7, 4], [9, 7, 6, 4]])
r = np.array([2, 1, 0])
epsilon = 1
```
The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+
| Buyer Number | 0 | 1 | 2 | 3 |
+--------------+---+----+---+---+
House 0	8	5	9	4
House 1	4	11	7	4
House 2	9	7	6	4
+--------------+---+----+---+---+

The reservation prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 2 | 1 | 0 |
+--------------+---+---+---+

The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is
+--------------+-----+-----+-------+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-------+
| Buyer | [2]| [1]| [0 3]|
+--------------+-----+-----+-------+

The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+

The winners are [2, 1, 0]
The losers are [3]

Round 2
The bid information is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2]| [1]| [3]|
+--------------+-----+-----+-----+

The bid prices for houses are

(continues on next page)
<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The winners are
[2, 1, 3]
The losers are
[0]

Round 3
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[2]</td>
<td>[1]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

The winners are
[2, 1, 0]
The losers are
[3]

Round 4
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[2]</td>
<td>[3]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

The winners are
[2, 3, 0]
The losers are
[1]

Round 5
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[2]</td>
<td>[1]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

(continues on next page)
The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
The winners are
[2, 1, 0]
The losers are
[3]

Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 4 | 3 |
The winners are
[2, 1, 0]
The losers are
[3]
The houses unsold are
[]
The total revenue is 10.00

the surplus matrix S

auction_1.S

array([[0., 0., 6., 0.],
 [0., 7., 0., 0.],
 [6., 0., 0., 0.]])

the quantity matrix X

auction_1.Q

array([[0., 0., 1., 0., 0.],
 [0., 1., 0., 0., 0.],
 [1., 0., 0., 0., 0.]])
80.9 Robustness Checks

Let’s do some stress testing of our code by applying it to auctions characterized by different matrices of private values.

1. number of houses = number of buyers

```python
v2 = np.array([[8, 5, 9], [4, 11, 7], [9, 7, 6]])
auction_2 = ascending_bid_auction(v2, r, ϵ)
auction_2.start_auction()
```

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 3 buyers
The valuation matrix is as follows

```
+--------------+---+----+---+
| Buyer Number | 0 | 1  | 2 |
+--------------+---+----+---+
| House 0     | 8 | 5  | 9 |
| House 1     | 4 | 11 | 7 |
| House 2     | 9 | 7  | 6 |
+--------------+---+----+---+
```

The reservation prices for houses are

```
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price        | 2 | 1 | 0 |
+--------------+---+---+---+
```

The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is

```
+--------------+-----+-----+-----+
| House Number | 0   | 1   | 2   |
+--------------+-----+-----+-----+
| Buyer        | [2] | [1] | [0] |
+--------------+-----+-----+-----+
```

The bid prices for houses are

```
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price        | 3 | 2 | 1 |
+--------------+---+---+---+
```

The winners are

```
[2, 1, 0]
```

The losers are

```
[]
```

The auction ends because every buyer gets one house.
Auction ends

The final result is as follows

The allocation plan is
+--------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+--------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+--------------+-----+-----+-----+

The bid prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 3 | 2 | 1 |
+--------------+---+---+---+

The winners are [2, 1, 0]
The losers are []
The houses unsold are []
The total revenue is 6.00

2. multiple excess buyers

```python
v3 = np.array([[8, 5, 9, 4, 3], [4, 11, 7, 4, 6], [9, 7, 6, 4, 2]])
auction_3 = ascending_bid_auction(v3, r, ϵ)
auction_3.start_auction()
```

The Ascending Bid Auction for Houses

Basic Information: 3 houses, 5 buyers
The valuation matrix is as follows
+--------------+---+----+---+---+---+
| Buyer Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+----+---+---+---+
House 0	8	5	9	4	3
House 1	4	11	7	4	6
House 2	9	7	6	4	2
+--------------+---+----+---+---+---+

The reservation prices for houses are
+--------------+---+---+---+
| House Number | 0 | 1 | 2 |
+--------------+---+---+---+
| Price | 2 | 1 | 0 |
+--------------+---+---+---+

The minimum increment of bid price is 1.00

(continues on next page)
Auction starts successfully

Round 1
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>Buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[2]</td>
</tr>
<tr>
<td>1</td>
<td>[1 4]</td>
</tr>
<tr>
<td>2</td>
<td>[0 3]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are [2, 4, 3]
The losers are [0, 1]

Round 2
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>Buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[2]</td>
</tr>
<tr>
<td>1</td>
<td>[1]</td>
</tr>
<tr>
<td>2</td>
<td>[0]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The winners are [2, 1, 0]
The losers are [3, 4]

Round 3
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>Buyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[2]</td>
</tr>
<tr>
<td>1</td>
<td>[4]</td>
</tr>
<tr>
<td>2</td>
<td>[3]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

(continues on next page)
The winners are
[2, 4, 3]
The losers are
[0, 1]

Round 4
The bid information is
+-------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+-------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+-------------+-----+-----+-----+

The bid prices for houses are
+-------------+---+---+---+
| House Number | 0 | 1 | 2 |
+-------------+---+---+---+
| Price | 3 | 5 | 4 |
+-------------+---+---+---+

The winners are
[2, 1, 0]
The losers are
[3, 4]

Auction ends

The final result is as follows

The allocation plan is
+-------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
+-------------+-----+-----+-----+
| Buyer | [2] | [1] | [0] |
+-------------+-----+-----+-----+

The bid prices for houses are
+-------------+---+---+---+
| House Number | 0 | 1 | 2 |
+-------------+---+---+---+
| Price | 3 | 5 | 4 |
+-------------+---+---+---+

The winners are
[2, 1, 0]
The losers are
[3, 4]
The houses unsold are
[]
The total revenue is 12.00

3. more houses than buyers

```python
v4 = np.array([[8, 5, 4], [4, 11, 7], [9, 7, 9], [6, 4, 5], [2, 2, 2]])
r2 = np.array([2, 1, 0, 1, 1])
```

(continues on next page)
The Ascending Bid Auction for Houses

Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows

| Buyer Number | 0 | 1 | 2 |
|--------------+---+----+---|
House 0	8	5	4
House 1	4	11	7
House 2	9	7	9
House 3	6	4	5
House 4	2	2	2

The reservation prices for houses are

| House Number | 0 | 1 | 2 | 3 | 4 |
|--------------+---+---+---+---+---|
| Price | 2 | 1 | 0 | 1 | 1 |

The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is

| House Number | 1 | 2 |
|--------------+---+----|
| Buyer | [1] | [0 2] |

The bid prices for houses are

| House Number | 0 | 1 | 2 | 3 | 4 |
|--------------+---+---+---+---+---|
| Price | 2 | 2 | 1 | 1 | 1 |

The winners are
[1, 2]
The losers are
[0]

Round 2
The bid information is

| House Number | 1 | 2 |
|--------------+---+----|
| Buyer | [1] | [0] |

(continues on next page)
The bid prices for houses are
| House Number | 0 | 1 | 2 | 3 | 4 |
|----------------+---+---+---+---+---|
| Price | 2 | 2 | 2 | 1 | 1 |

The winners are
[1, 0]
The losers are
[2]

Round 3
The bid information is
| House Number | 1 | 2 |
|----------------+---+---|
| Buyer | [1] | [2] |

The bid prices for houses are
| House Number | 0 | 1 | 2 | 3 | 4 |
|----------------+---+---+---+---+---|
| Price | 2 | 2 | 3 | 1 | 1 |

The winners are
[1, 2]
The losers are
[0]

Round 4
The bid information is
| House Number | 1 | 2 |
|----------------+---+---|
| Buyer | [1] | [0] |

The bid prices for houses are
| House Number | 0 | 1 | 2 | 3 | 4 |
|----------------+---+---+---+---+---|
| Price | 2 | 2 | 4 | 1 | 1 |

The winners are
[1, 0]
The losers are
[2]

Round 5
The bid information is
| House Number | 1 | 2 |
|----------------+---+---|

(continues on next page)
The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are
[2, 0]
The losers are
[1]

Round 6
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[1]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are
[1, 0]
The losers are
[2]

Round 7
The bid information is

<table>
<thead>
<tr>
<th>House Number</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[1]</td>
<td>[2]</td>
</tr>
</tbody>
</table>

The bid prices for houses are

<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are
[1, 2]
The losers are
[0]

Round 8
The bid information is

| House Number | 1 | 2 | 0 |

(continues on next page)
The bid prices for houses are
<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are [1, 2, 0]
The losers are []

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
<table>
<thead>
<tr>
<th>House Number</th>
<th>1</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>[1]</td>
<td>[2]</td>
<td>[0]</td>
</tr>
</tbody>
</table>

The bid prices for houses are
<table>
<thead>
<tr>
<th>House Number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The winners are [1, 2, 0]
The losers are []
The houses unsold are [3, 4]
The total revenue is 12.00

4. some houses have extremely high reservation prices

```python
v5 = np.array([[8, 5, 4], [4, 11, 7], [9, 7, 9], [6, 4, 5], [2, 2, 2]])
r3 = np.array([10, 1, 0, 1, 1])

auction_5 = ascending_bid_auction(v5, r3, ε)
auction_5.start_auction()
```

The Ascending Bid Auction for Houses
Basic Information: 5 houses, 3 buyers
The valuation matrix is as follows

+--------------+---+----+---+
| Buyer Number | 0 | 1 | 2 |
+--------------+---+----+---+
House 0	8	5	4
House 1	4	11	7
House 2	9	7	9
House 3	6	4	5
House 4	2	2	2
+--------------+---+----+---+

The reservation prices for houses are

+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10| 1 | 0 | 1 | 1 |
+--------------+----+---+---+---+---+

The minimum increment of bid price is 1.00

Auction starts successfully

Round 1
The bid information is

+--------------+-----+-------+
| House Number | 1 | 2 |
+--------------+-----+-------+
| Buyer | [1] | [0 2] |
+--------------+-----+-------+

The bid prices for houses are

+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10| 2 | 1 | 1 | 1 |
+--------------+----+---+---+---+---+

The winners are [1, 0]
The losers are [2]

Round 2
The bid information is

+--------------+-----+-----+
| House Number | 1 | 2 |
+--------------+-----+-----+
| Buyer | [1] | [2] |
+--------------+-----+-----+

The bid prices for houses are

+--------------+----+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+----+---+---+---+---+
| Price | 10| 2 | 2 | 1 | 1 |
+--------------+----+---+---+---+---+
The winners are [1, 2]
The losers are [0]

Round 3
The bid information is
+---------------+-----+-----+
| House Number | 1 | 2 |
+---------------+-----+-----+
| Buyer | [1] | [0] |
+---------------+-----+-----+

The bid prices for houses are
+---------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+---------------+---+---+---+---+---+
| Price | 10| 2 | 3 | 1 | 1 |
+---------------+---+---+---+---+---+

The winners are [1, 0]
The losers are [2]

Round 4
The bid information is
+---------------+-----+-----+
| House Number | 1 | 2 |
+---------------+-----+-----+
| Buyer | [1] | [2] |
+---------------+-----+-----+

The bid prices for houses are
+---------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+---------------+---+---+---+---+---+
| Price | 10| 2 | 4 | 1 | 1 |
+---------------+---+---+---+---+---+

The winners are [1, 2]
The losers are [0]

Round 5
The bid information is
+---------------+-----+-----+
| House Number | 1 | 2 |
+---------------+-----+-----+
| Buyer | [1] | [0] |
+---------------+-----+-----+

The bid prices for houses are
+---------------+---+---+---+---+---+
| House Number | 0 | 1 | 2 | 3 | 4 |
+---------------+---+---+---+---+---+
| Price | 10| 2 | 5 | 1 | 1 |
+---------------+---+---+---+---+---+
The winners are
[1, 0]
The losers are
[2]

Round 6
The bid information is
+-------------------+
| House Number | 1 | 2 |
| Buyer | 2 | 0 |
+-------------------+
The bid prices for houses are
+-------------------+
| House Number | 0 | 1 | 2 | 3 | 4 |
| Price | 10 | 3 | 5 | 1 | 1 |
+-------------------+
The winners are
[2, 0]
The losers are
[1]

Round 7
The bid information is
+-------------------+
| House Number | 1 | 2 |
| Buyer | 1 | 0 |
+-------------------+
The bid prices for houses are
+-------------------+
| House Number | 0 | 1 | 2 | 3 | 4 |
| Price | 10 | 4 | 5 | 1 | 1 |
+-------------------+
The winners are
[1, 0]
The losers are
[2]

Round 8
The bid information is
+-------------------+
| House Number | 1 | 2 |
| Buyer | 1 | 2 |
+-------------------+
The bid prices for houses are
+-------------------+
| House Number | 0 | 1 | 2 | 3 | 4 |
+-------------------+
| Price | 10 | 4 | 6 | 1 | 1 |
+-------+----+---+---+---+---+

The winners are
[1, 2]
The losers are
[0]

Round 9
The bid information is
| House Number | 1 | 2 | 3 |
+--------------+---+---+---+
| Buyer | [1] | [2] | [0] |
+--------------+---+---+---+

The bid prices for houses are
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+---+---+---+---+---+

The winners are
[1, 2, 0]
The losers are
[]

The auction ends because every buyer gets one house.

Auction ends

The final result is as follows

The allocation plan is
| House Number | 1 | 2 | 3 |
+--------------+---+---+---+
| Buyer | [1] | [2] | [0] |
+--------------+---+---+---+

The bid prices for houses are
| House Number | 0 | 1 | 2 | 3 | 4 |
+--------------+---+---+---+---+---+
| Price | 10 | 4 | 6 | 2 | 1 |
+--------------+---+---+---+---+---+

The winners are
[1, 2, 0]
The losers are
[]
The houses unsold are
[0, 4]
The total revenue is 12.00

5. reservation prices are so high that the auction can’t start
The Ascending Bid Auction for Houses

Basic Information: 3 houses, 4 buyers
The valuation matrix is as follows
+-------------------+-----+-----+-----+-----+
| Buyer Number | 0 | 1 | 2 | 3 |
|-----------------+-----+-----+-----+-----+
House 0	8	5	9	4
House 1	4	11	7	4
House 2	9	7	6	4
+-------------------+-----+-----+-----+-----+

The reservation prices for houses are
+-------------------+-----+-----+-----+
| House Number | 0 | 1 | 2 |
|-----------------+-----+-----+-----+
| Price | 15 | 15 | 15 |
+-------------------+-----+-----+-----+

The minimum increment of bid price is 1.00

The auction can not start because of high reservation prices

80.10 A Groves-Clarke Mechanism

We now describe an alternative way for society to allocate n houses to m possible buyers in a way that maximizes total value across all potential buyers.

We continue to assume that each buyer can purchase at most one house.

The mechanism is a very special case of a Groves-Clarke mechanism [Gro73], [Cla71].

Its special structure substantially simplifies writing Python code to find an optimal allocation.

Our mechanism works like this.

- The values V_{ij} are private information to person j
- The mechanism makes each person j willing to tell a social planner his private values $V_{i,j}$ for all $i = 1, \ldots, n$.
- The social planner asks all potential bidders to tell the planner their private values V_{ij}
- The social planner tells no one these, but uses them to allocate houses and set prices
- The mechanism is designed in a way that makes all prospective buyers want to tell the planner their private values
 - truth telling is a dominant strategy for each potential buyer
- The planner finds a house, bidder pair with highest private value by computing $(\tilde{i}, \tilde{j}) = \text{argmax}(V_{ij})$
- The planner assigns house \tilde{i} to buyer \tilde{j}
- The planner charges buyer \tilde{j} the price $\max_{j \neq \tilde{j}} -V_{i,j}$, where $-j$ means all j's except \tilde{j}.
• The planner creates a matrix of private values for the remaining houses $-\tilde{i}$ by deleting row (i.e., house) \tilde{i} and column (i.e., buyer) \tilde{j} from V.

 - (But in doing this, the planner keeps track of the real names of the bidders and the houses).
• The planner returns to the original step and repeat it.
• The planner iterates until all n houses are allocated and the charges for all n houses are set.

80.11 An Example Solved by Hand

Let’s see how our Groves-Clarke algorithm would work for the following simple matrix V matrix of private values

\[
V = \begin{bmatrix}
10 & 9 & 8 & 7 & 6 \\
9 & 9 & 7 & 6 & 6 \\
8 & 6 & 6 & 9 & 4 \\
7 & 5 & 6 & 4 & 9 \\
\end{bmatrix}
\]

Remark: In the first step, when the highest private value corresponds to more than one house, bidder pairs, we choose the pair with the highest sale price. If a highest sale price corresponds to two or more pairs with highest private values, we randomly choose one.

```python
np.random.seed(666)
V_orig = np.array([[10, 9, 8, 7, 6],
                   [9, 9, 7, 6, 6],
                   [8, 6, 6, 9, 4],
                   [7, 5, 6, 4, 9]])
V = np.copy(V_orig) # used iteratively
n, m = V.shape
p = np.zeros(n) # prices of houses
Q = np.zeros((n, m)) # keep record the status of houses and buyers

First assignment

First, we find house, bidder pair with highest private value.

```python
i, j = np.where(V==np.max(V))
i, j
```

(array([0]), array([0]))

So, house 0 will be sold to buyer 0 at a price of 9. We then update the sale price of house 0 and the status matrix $Q$.

```python
p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
p, Q
```

(array([9., 0., 0., 0., 0.]),
 array([[1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0.]]))
Then we remove row 0 and column 0 from $V$. To keep the real number of houses and buyers, we set this row and this column to -1, which will have the same result as removing them since $V \geq 0$.

$$V[i, :] = -1$$
$$V[:, j] = -1$$

$$V = \begin{pmatrix}
-1, -1, -1, -1, -1, \\
-1, 9, 7, 6, 6, \\
-1, 6, 9, 4, \\
-1, 5, 4, 9
\end{pmatrix}$$

**Second assignment**

We find house, bidder pair with the highest private value again.

```python
i, j = np.where(V==np.max(V))
i, j
```

```python
(array([1, 2, 3]), array([1, 3, 4]))
```

In this special example, there are three pairs (1, 1), (2, 3) and (3, 4) with the highest private value. To solve this problem, we choose the one with highest sale price.

```python
for k in range(len(i)):
 p_candidate[k] = np.max(np.delete(V[i[k], :], j[k]))
k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j
```

```python
(array([1]), array([1]))
```

So, house 1 will be sold to buyer 1 at a price of 7. We update matrices.

```python
p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V
```

```python
(array([9., 7., 0., 0.]),
array([[1., 0., 0., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]),
array([[1., -1, -1, -1, -1],
[-1, -1, -1, -1, -1],
[-1, -1, 6, 9, 4],
[-1, -1, 6, 4, 9]]))
```

**Third assignment**
In this special example, there are two pairs (2, 3) and (3, 4) with the highest private value. To resolve the assignment, we choose the one with the highest sale price.

```python
i, j = np.where(V==np.max(V))
(i, j)
(array([2, 3]), array([3, 4]))
```

The two pairs even have the same sale price. We randomly choose one pair.

```python
p_candidate = np.zeros(len(i))
for k in range(len(i)):
 p_candidate[k] = np.max(np.delete(V[i[k]], :, j[k]))

k, = np.where(p_candidate==np.max(p_candidate))
i, j = i[k], j[k]
i, j
(array([2, 3]), array([3, 4]))
```

Finally, house 2 will be sold to buyer 3. We update matrices accordingly.

```python
p[i] = np.max(np.delete(V[i, :], j))
Q[i, j] = 1
V[i, :] = -1
V[:, j] = -1
p, Q, V
(array([9., 7., 6., 0.]),
 array([[1., 0., 0., 0., 0.],
 [0., 1., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]]),
a\[\text{array}([-1, -1, -1, -1, -1],
 [-1, -1, -1, -1, -1],
 [-1, -1, -1, -1, -1],
 [-1, -1, 6, -1, 9]])
```

Fourth assignment

```python
i, j = np.where(V==np.max(V))
i, j
```
Quantitative Economics with Python

(array([3]), array([4]))

House 3 will be sold to buyer 4.

The final outcome follows.

\[ p[i] = \text{np.max(np.delete(V[i, :], j))} \]
\[ Q[i, j] = 1 \]
\[ V[i, :] = -1 \]
\[ V[:, j] = -1 \]
\[ S = V \_orig \times Q - \text{np.diag}(p) @ Q \]

(continues on next page)

80.12 Another Python Class

It is efficient to assemble our calculations in a single Python Class.

```python
class GC_Mechanism:
 def __init__(self, V):

 Implementation of the special Groves Clarke Mechanism for house auction.

 Parameters:

 V: 2 dimensional private value matrix

 self.V_orig = V.copy()
 self.V = V.copy()
 self.n, self.m = self.V.shape
 self.p = np.zeros(self.n)
 self.Q = np.zeros((self.n, self.m))
 self.S = np.copy(self.Q)

 def find_argmax(self):

 Find the house-buyer pair with the highest value.
```
When the highest private value corresponds to more than one house, bidder...

we choose the pair with the highest sale price.

Moreover, if the highest sale price corresponds to two or more pairs with...

highest private value,

We randomly choose one.

Parameters:
----------
V: 2 dimensional private value matrix with -1 indicating removed rows and...

columns

Returns:
----------
i: the index of the sold house
j: the index of the buyer

""

i, j = np.where(self.V==np.max(self.V))

if (len(i)>1):
    p_candidate = np.zeros(len(i))
    for k in range(len(i)):
        p_candidate[k] = np.max(np.delete(self.V[i[k], :], j[k]))
    k, = np.where(p_candidate==np.max(p_candidate))
    i, j = i[k], j[k]

if (len(i)>1):
    k = np.random.choice(len(i))
    k = np.array([k])
    i, j = i[k], j[k]

return i, j

def update_status(self, i, j):
    self.p[i] = np.max(np.delete(self.V[i, :], j))
    self.Q[i, j] = 1
    self.V[i, :] = -1
    self.V[:, j] = -1

def calculate_surplus(self):

def start(self):
    while (np.max(self.V)>=0):
        i, j = self.find_argmax()
        self.update_status(i, j)
        print("House %i is sold to buyer %i at price $i"%(i[0], j[0], self.
p[i[0]]))
        print("\n")
        self.calculate_surplus()
        print("Prices of house:\n", self.p)
        print("\n")
        print("The status matrix:\n", self.Q)
        print("\n")
        print("The surplus matrix:\n", self.S)
np.random.seed(666)

V_orig = np.array([[10, 9, 8, 7, 6],
                   [9, 9, 7, 6, 6],
                   [8, 6, 9, 4, 6],
                   [7, 5, 6, 4, 9]])

gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()

House 0 is sold to buyer 0 at price 9
House 1 is sold to buyer 1 at price 7
House 2 is sold to buyer 3 at price 6
House 3 is sold to buyer 4 at price 6

Prices of house:
[9. 7. 6. 6.]

The status matrix:
[[1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 1.]]

The surplus matrix:
[[1. 0. 0. 0. 0.]
 [0. 2. 0. 0. 0.]
 [0. 0. 3. 0.]
 [0. 0. 0. 3.]]

80.12.1 Elaborations

Here we use some additional notation designed to conform with standard notation in parts of the VCG literature.

We want to verify that our pseudo code is indeed a pivot mechanism, also called a VCG (Vickrey-Clarke-Groves) mechanism.

- The mechanism is named after [Gro73], [Cla71], and [Vic61].

To prepare for verifying this, we add some notation.

Let $X$ be the set of feasible allocations of houses under the protocols above (i.e., at most one house to each person).

Let $X(v)$ be the allocation that the mechanism chooses for matrix $v$ of private values.

The mechanism maps a matrix $v$ of private values into an $x \in X$.

Let $v_j(x)$ be the value that person $j$ attaches to allocation $x \in X$.

Let $\tilde{t}_j(v)$ the payment that the mechanism charges person $j$. 
The VCG mechanism chooses the allocation

\[ X(v) = \arg\max_{x \in X} \sum_{j=1}^{m} v_j(x) \]  

(80.1)

and charges person \( j \) a “social cost”

\[ \tilde{t}_j(v) = \max_{x \in X} \sum_{k \neq j} v_k(x) - \sum_{k \neq j} v_k(X(v)) \]  

(80.2)

In our setting, equation (80.1) says that the VCG allocation allocates houses to maximize the total value of the successful prospective buyers.

In our setting, equation (80.2) says that the mechanism charges people for the externality that their presence in society imposes on other prospective buyers.

Thus, notice that according to equation (80.2):

- unsuccessful prospective buyers pay 0 because removing them from “society” would not affect the allocation chosen by the mechanism
- successful prospective buyers pay the difference between the total value society could achieve without them present and the total value that others present in society do achieve under the mechanism.

The generalized second-price auction described in our pseudo code above does indeed satisfy (1). We want to compute \( \tilde{t}_j \) for \( j = 1, \ldots, m \) and compare with \( p_j \) from the second price auction.

### 80.12.2 Social Cost

Using the GC_Mechanism class, we can calculate the social cost of each buyer.

Let’s see a simpler example with private value matrix

\[
V = \begin{bmatrix}
10 & 9 & 8 & 7 & 6 \\
9 & 8 & 7 & 6 & 6 \\
8 & 7 & 6 & 5 & 4
\end{bmatrix}
\]

To begin with, we implement the GC mechanism and see the outcome.

```python
np.random.seed(666)
V_orig = np.array([[[10, 9, 8, 7, 6],
[9, 8, 7, 6, 6],
[8, 7, 6, 5, 4]]])
gc_mechanism = GC_Mechanism(V_orig)
gc_mechanism.start()
```

- House 0 is sold to buyer 0 at price 9
- House 1 is sold to buyer 1 at price 7
- House 2 is sold to buyer 2 at price 5
- Prices of house:

(continues on next page)
We exclude buyer 0 and calculate the allocation.

```python
V_exc_0 = np.copy(V_orig)
V_exc_0[:, 0] = -1
V_exc_0
gc_mechanism_exc_0 = GC_Mechanism(V_exc_0)
gc_mechanism_exc_0.start()
```

House 0 is sold to buyer 1 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:

```
[8. 6. 4.]
```

The status matrix:

```
[[0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0.]
 [0. 0. 0. 1. 0.]]
```

The surplus matrix:

```
[[-0. 1. 0. 0. 0.]
 [-0. 0. 1. 0. 0.]
 [-0. 0. 0. 1. 0.]]
```

Calculate the social cost of buyer 0.

```python
print("The social cost of buyer 0:",
 np.sum(gc_mechanism_exc_0.Q*gc_mechanism_exc_0.V_orig)
 - np.sum(np.delete(gc_mechanism.Q*gc_mechanism.V_orig, 0, axis=1)))
```

```
The social cost of buyer 0: 7.0
```

Repeat this process for buyer 1 and buyer 2
House 0 is sold to buyer 0 at price 8

House 1 is sold to buyer 2 at price 6

House 2 is sold to buyer 3 at price 4

Prices of house:
[8. 6. 4.]

The status matrix:
[[1. 0. 0. 0. 0.]  
[0. 0. 1. 0. 0.]  
[0. 0. 0. 1. 0.]]

The surplus matrix:
[[2. -0. 0. 0. 0.]  
[0. -0. 1. 0. 0.]  
[0. -0. 0. 1. 0.]]

The social cost of buyer 1: 6.0

House 0 is sold to buyer 0 at price 9

House 1 is sold to buyer 1 at price 6

House 2 is sold to buyer 3 at price 4

(continues on next page)
Prices of house:
[9, 6, 4]

The status matrix:
[[1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0.]
 [0. 0. 0. 1. 0.]]

The surplus matrix:
[[ 1. 0. -0. 0. 0.]
 [ 0. 2. -0. 0. 0.]
 [ 0. 0. -0. 1. 0.]]

The social cost of buyer 2: 5.0
Part XIV

Other
This page is for readers experiencing errors when running the code from the lectures.

81.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever

1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?

Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not up to date.

Here’s a useful article on how to update Anaconda.

Another option is to simply remove Anaconda and reinstall.

You also need to keep the external code libraries, such as QuantEcon.py up to date.

For this task you can either

• use conda install -y quantecon on the command line, or
• execute !conda install -y quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.

First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture.

Launch Notebook
Second, you can report an issue, so we can try to fix your local set up. We like getting feedback on the lectures so please don’t hesitate to get in touch.

### 81.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker. Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can provide.

Another feedback option is to use our discourse forum. Finally, you can provide direct feedback to contact@quantecon.org
EXECUTION STATISTICS

This table contains the latest execution statistics.

<table>
<thead>
<tr>
<th>Document</th>
<th>Modified</th>
<th>Method</th>
<th>Run Time (s)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>aiyagari</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>22.86</td>
<td>✓</td>
</tr>
<tr>
<td>ar1_bayes</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>751.32</td>
<td>✓</td>
</tr>
<tr>
<td>ar1_processes</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>6.1</td>
<td>✓</td>
</tr>
<tr>
<td>ar1_turningpts</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>111.12</td>
<td>✓</td>
</tr>
<tr>
<td>back_prop</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>115.11</td>
<td>✓</td>
</tr>
<tr>
<td>bayes_nonconj</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>5505.28</td>
<td>✓</td>
</tr>
<tr>
<td>cake_eating_numerical</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>26.56</td>
<td>✓</td>
</tr>
<tr>
<td>cake_eating_problem</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>2.79</td>
<td>✓</td>
</tr>
<tr>
<td>career</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>19.59</td>
<td>✓</td>
</tr>
<tr>
<td>cass_koopmans_1</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>9.93</td>
<td>✓</td>
</tr>
<tr>
<td>cass_koopmans_2</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>9.31</td>
<td>✓</td>
</tr>
<tr>
<td>coleman_policy_iter</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>22.14</td>
<td>✓</td>
</tr>
<tr>
<td>complex_and_trig</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>4.55</td>
<td>✓</td>
</tr>
<tr>
<td>cross_product_trick</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>1.24</td>
<td>✓</td>
</tr>
<tr>
<td>egm_policy_iter</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>16.2</td>
<td>✓</td>
</tr>
<tr>
<td>eig_circulant</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>5.24</td>
<td>✓</td>
</tr>
<tr>
<td>exchangeable</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>11.58</td>
<td>✓</td>
</tr>
<tr>
<td>finite_markov</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>9.89</td>
<td>✓</td>
</tr>
<tr>
<td>ge_arrow</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>2.9</td>
<td>✓</td>
</tr>
<tr>
<td>geom_series</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>5.16</td>
<td>✓</td>
</tr>
<tr>
<td>harrison_kreps</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>7.72</td>
<td>✓</td>
</tr>
<tr>
<td>heavy_tails</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>29.94</td>
<td>✓</td>
</tr>
<tr>
<td>hoist_failure</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>79.36</td>
<td>✓</td>
</tr>
<tr>
<td>house_auction</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>6.71</td>
<td>✓</td>
</tr>
<tr>
<td>ifp</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>37.02</td>
<td>✓</td>
</tr>
<tr>
<td>ifp_advanced</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>30.17</td>
<td>✓</td>
</tr>
<tr>
<td>imp_sample</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>284.32</td>
<td>✓</td>
</tr>
<tr>
<td>intro</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>1.48</td>
<td>✓</td>
</tr>
<tr>
<td>inventory_dynamics</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>13.84</td>
<td>✓</td>
</tr>
<tr>
<td>jv</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>33.96</td>
<td>✓</td>
</tr>
<tr>
<td>kalman</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>12.08</td>
<td>✓</td>
</tr>
<tr>
<td>kesten_processes</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>24.59</td>
<td>✓</td>
</tr>
<tr>
<td>lagrangian_lqdp</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>23.31</td>
<td>✓</td>
</tr>
<tr>
<td>lake_model</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>20.94</td>
<td>✓</td>
</tr>
<tr>
<td>likelihood_bayes</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>49.07</td>
<td>✓</td>
</tr>
</tbody>
</table>

continues on next page
Table 83.1 – continued from previous page

<table>
<thead>
<tr>
<th>Document</th>
<th>Modified</th>
<th>Method</th>
<th>Run Time (s)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>likelihood_ratio_process</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>11.25</td>
<td>✅</td>
</tr>
<tr>
<td>linear_algebra</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>3.75</td>
<td>✅</td>
</tr>
<tr>
<td>linear_models</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>11.54</td>
<td>✅</td>
</tr>
<tr>
<td>lln_clt</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>15.51</td>
<td>✅</td>
</tr>
<tr>
<td>lp_intro</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>2.84</td>
<td>✅</td>
</tr>
<tr>
<td>lq_inventories</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>18.89</td>
<td>✅</td>
</tr>
<tr>
<td>lqcontrol</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>9.07</td>
<td>✅</td>
</tr>
<tr>
<td>markov_asset</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>11.58</td>
<td>✅</td>
</tr>
<tr>
<td>markov_perf</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>8.79</td>
<td>✅</td>
</tr>
<tr>
<td>mccall_correlated</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>39.25</td>
<td>✅</td>
</tr>
<tr>
<td>mccall_fitted_vfi</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>21.78</td>
<td>✅</td>
</tr>
<tr>
<td>mccall_model</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>20.42</td>
<td>✅</td>
</tr>
<tr>
<td>mccall_model_with_separation</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>11.82</td>
<td>✅</td>
</tr>
<tr>
<td>mix_model</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>86.06</td>
<td>✅</td>
</tr>
<tr>
<td>mlr</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>6.38</td>
<td>✅</td>
</tr>
<tr>
<td>multi_hyper</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>29.87</td>
<td>✅</td>
</tr>
<tr>
<td>multivariate_normal</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>6.94</td>
<td>✅</td>
</tr>
<tr>
<td>navy_captain</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>37.93</td>
<td>✅</td>
</tr>
<tr>
<td>newton_method</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>183.11</td>
<td>✅</td>
</tr>
<tr>
<td>odu</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>59.75</td>
<td>✅</td>
</tr>
<tr>
<td>ols</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>13.57</td>
<td>✅</td>
</tr>
<tr>
<td>opt_transport</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>27.34</td>
<td>✅</td>
</tr>
<tr>
<td>optgrowth</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>94.2</td>
<td>✅</td>
</tr>
<tr>
<td>optgrowth_fast</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>31.03</td>
<td>✅</td>
</tr>
<tr>
<td>pandas_panel</td>
<td>2022-12-11 10:01</td>
<td>cache</td>
<td>5.6</td>
<td>✅</td>
</tr>
<tr>
<td>perm_income</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>10.21</td>
<td>✅</td>
</tr>
<tr>
<td>perm_income_cons</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>9.99</td>
<td>✅</td>
</tr>
<tr>
<td>prob_matrix</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>14.18</td>
<td>✅</td>
</tr>
<tr>
<td>prob_meaning</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>83.74</td>
<td>✅</td>
</tr>
<tr>
<td>qr_decomp</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>1.93</td>
<td>✅</td>
</tr>
<tr>
<td>rand_resp</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>3.41</td>
<td>✅</td>
</tr>
<tr>
<td>rational_expectations</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>7.06</td>
<td>✅</td>
</tr>
<tr>
<td>re_with_feedback</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>12.33</td>
<td>✅</td>
</tr>
<tr>
<td>samuelson</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>15.64</td>
<td>✅</td>
</tr>
<tr>
<td>scalar_dynam</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>4.9</td>
<td>✅</td>
</tr>
<tr>
<td>schelling</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>3.9</td>
<td>✅</td>
</tr>
<tr>
<td>short_path</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>1.54</td>
<td>✅</td>
</tr>
<tr>
<td>sir_model</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>4.33</td>
<td>✅</td>
</tr>
<tr>
<td>status</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>1.48</td>
<td>✅</td>
</tr>
<tr>
<td>svd_intro</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>7.54</td>
<td>✅</td>
</tr>
<tr>
<td>time_series_with_matrices</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>4.84</td>
<td>✅</td>
</tr>
<tr>
<td>troubleshooting</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>1.48</td>
<td>✅</td>
</tr>
<tr>
<td>two_auctions</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>19.22</td>
<td>✅</td>
</tr>
<tr>
<td>uncertainty_traps</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>3.61</td>
<td>✅</td>
</tr>
<tr>
<td>util_rand_resp</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>4.42</td>
<td>✅</td>
</tr>
<tr>
<td>von_neumann_model</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>3.4</td>
<td>✅</td>
</tr>
<tr>
<td>wald_friedman</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>24.62</td>
<td>✅</td>
</tr>
<tr>
<td>wealth_dynamics</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>40.55</td>
<td>✅</td>
</tr>
<tr>
<td>zreferences</td>
<td>2022-12-11 10:02</td>
<td>cache</td>
<td>1.48</td>
<td>✅</td>
</tr>
</tbody>
</table>
These lectures are built on Linux instances through GitHub actions so are executed using the following hardware specifications.


INDEX

A
A Problem that Stumped Milton Friedman, 933
An Introduction to Job Search, 611
Asset Pricing: Finite State Models, 1253
Autoregressive processes, 431

C
Central Limit Theorem, 197, 202
Intuition, 202
Multivariate Case, 208
CLT, 197

D
Dynamic Programming
Computation, 732, 745
Shortest Paths, 583
Theory, 732
Unbounded Utility, 732
Dynamics in One Dimension, 411

E
Eigenvalues, 35, 51
Eigenvectors, 35, 51
Ergodicity, 443, 457

F
Finite Markov Asset Pricing
Lucas Tree, 1260
Finite Markov Chains, 443, 444
Stochastic Matrices, 444

H
Heavy-tailed distributions, 281

I
Irreducibility and Aperiodicity, 443, 451

J
Job Search VI: On-the-Job Search, 655

K
Kalman Filter, 565
Programming Implementation, 574
Recursive Procedure, 573
Kesten processes
heavy tails, 538

L
Lake Model, 1147
Law of Large Numbers, 197, 198
Illustration, 200
Multivariate Case, 208
Proof, 199
Linear Algebra, 35
Differentiating Linear and Quadratic Forms, 55
Eigenvalues, 51
Eigenvectors, 51
Matrices, 44
Matrix Norms, 54
Neumann's Theorem, 55
Positive Definite Matrices, 55
Scipy, 51
Series Expansions, 54
Spectral Radius, 55
Vectors, 36
Linear Markov Perfect Equilibria, 1211
Linear State Space Models, 477, 537
Distributions, 483, 484
Ergodicity, 490
Martingale Difference Shocks, 479
Moments, 483
Moving Average Representations, 483
Prediction, 495
Seasonals, 482
Stationarity, 490
Time Trends, 482
Univariate Autoregressive Processes, 480
Vector Autoregressions, 481
LLN, 197
LQ Control, 1027
U
Unbounded Utility, 732

V
Vectors, 35, 36
   Inner Product, 40
   Linear Independence, 43
   Norm, 40
   Operations, 37
   Span, 40