1 Contents

- Overview 2
- Review of useful LQ dynamic programming formulas 3
- Linked Ricatti equations for Markov LQ dynamic programming 4
- Applications 5
- Example 1 6
- Example 2 7
- More examples 8

In addition to what’s in Anaconda, this lecture will need the following libraries:

```bash
In [1]: !pip install --upgrade quantecon
```

2 Overview

This lecture describes Markov jump linear quadratic dynamic programming, an extension of the method described in the first LQ control lecture.

Markov jump linear quadratic dynamic programming is described and analyzed in [2] and the references cited there.

The method has been applied to problems in macroeconomics and monetary economics by [5] and [4].

The periodic models of seasonality described in chapter 14 of [3] are a special case of Markov jump linear quadratic problems.

Markov jump linear quadratic dynamic programming combines advantages of

- the computational simplicity of linear quadratic dynamic programming, with
- the ability of finite state Markov chains to represent interesting patterns of random variation.

The idea is to replace the constant matrices that define a linear quadratic dynamic programming problem with N sets of matrices that are fixed functions of the state of an N state Markov chain.
The state of the Markov chain together with the continuous $n \times 1$ state vector x_t form the state of the system.

For the class of infinite horizon problems being studied in this lecture, we obtain N interrelated matrix Riccati equations that determine N optimal value functions and N linear decision rules.

One of these value functions and one of these decision rules apply in each of the N Markov states.

That is, when the Markov state is in state j, the value function and the decision rule for state j prevails.

3 Review of useful LQ dynamic programming formulas

To begin, it is handy to have the following reminder in mind.

A **linear quadratic dynamic programming problem** consists of a scalar discount factor $\beta \in (0, 1)$, an $n \times 1$ state vector x_t, an initial condition for x_0, a $k \times 1$ control vector u_t, a $p \times 1$ random shock vector w_{t+1} and the following two triples of matrices:

- A triple of matrices (R, Q, W) defining a loss function

 $$r(x_t, u_t) = x_t'Rx_t + u_t'Qu_t + 2u_t'Wx_t$$

- A triple of matrices (A, B, C) defining a state-transition law

 $$x_{t+1} = Ax_t + Bu_t + Cw_{t+1}$$

The problem is

$$-x_0'Px_0 - \rho = \min_{\{u_t\}_{t=0}} E \sum_{t=0}^{\infty} \beta^t r(x_t, u_t)$$

subject to the transition law for the state.

The optimal decision rule has the form

$$u_t = -Fx_t$$

and the optimal value function is of the form

$$-(x_t'Px_t + \rho)$$

where P solves the algebraic matrix Riccati equation

$$P = R + \beta A'PA - (\beta B'PA + W)'(Q + \beta BPB)^{-1}(\beta BPA + W)$$

and the constant ρ satisfies

$$\rho = \beta(\rho + \text{trace}(PC'C))$$
and the matrix F in the decision rule for u_t satisfies

$$F = (Q + \beta B'PB)^{-1}(\beta(B'PA) + W)$$

With the preceding formulas in mind, we are ready to approach Markov Jump linear quadratic dynamic programming.

4 Linked Ricatti equations for Markov LQ dynamic programming

The key idea is to make the matrices A, B, C, R, Q, W fixed functions of a finite state s that is governed by an N state Markov chain.

This makes decision rules depend on the Markov state, and so fluctuate through time in limited ways.

In particular, we use the following extension of a discrete-time linear quadratic dynamic programming problem.

We let $s_t \in [1, 2, ..., N]$ be a time t realization of an N-state Markov chain with transition matrix Π having typical element Π_{ij}.

Here i denotes today and j denotes tomorrow and

$$\Pi_{ij} = \text{Prob}(s_{t+1} = j|s_t = i)$$

We’ll switch between labeling today’s state as s_t and i and between labeling tomorrow’s state as s_{t+1} or j.

The decision-maker solves the minimization problem:

$$\min_{\{u_t\}_{t=0}^\infty} E \sum_{t=0}^\infty \beta^t r(x_t, s_t, u_t)$$

with

$$r(x_t, s_t, u_t) = -(x_t'R_s x_t + u_t'Q_s u_t + 2u_t'W_s x_t)$$

subject to linear laws of motion with matrices (A, B, C) each possibly dependent on the Markov-state-s_t:

$$x_{t+1} = A_s x_t + B_s u_t + C_s w_{t+1}$$

where $\{w_{t+1}\}$ is an i.i.d. stochastic process with $w_{t+1} \sim N(0, I)$.

The optimal decision rule for this problem has the form

$$u_t = -F_s x_t$$

and the optimal value functions are of the form
or equivalently

\[-x'P_ix - \rho_i\]

The optimal value functions \(-x'P_ix - \rho_i\) for \(i = 1, \ldots, n\) satisfy the \(N\) interrelated Bellman equations

\[-x'P_ix - \rho_i = \max_u -\left(x'R_ix + u'Q_iu + 2u'W_ix - \beta \sum_j \Pi_{ij}(A_ix + B_iu + C_iw)x + \rho_j \right)\]

The matrices \(P_s = P_i\) and the scalars \(\rho_s = \rho_i, i = 1, \ldots, n\) satisfy the following stacked system of \textbf{algebraic matrix Riccati} equations:

\[P_i = R_i + \beta \sum_j A_i'P_jA_i\Pi_{ij} - \sum_j \Pi_{ij}[(\beta B_i'P_jA_i + W_i)'(Q + \beta B_i'P_jB_i)^{-1}(\beta B_i'P_jA_i + W_i)]\]

\[\rho_i = \beta \sum_j \Pi_{ij}(\rho_j + \text{trace}(P_jC_iC_i'))\]

and the \(F_i\) in the optimal decision rules are

\[F_i = (Q_i + \beta \sum_j \Pi_{ij}B_i'P_jB_i)^{-1}(\beta \sum_j \Pi_{ij}(B_i'P_jA_i) + W_i)\]

\section{Applications}

We now describe some Python code and a few examples that put the code to work.

To begin, we import these Python modules

In [2]: import numpy as np
 import quantecon as qe
 import matplotlib.pyplot as plt
 from mpl_toolkits.mplot3d import Axes3D

 %matplotlib inline

In [3]: # Set discount factor
 \(\beta = 0.95\)
6 Example 1

This example is a version of a classic problem of optimally adjusting a variable \(k_t\) to a target level in the face of costly adjustment.

This provides a model of gradual adjustment.

Given \(k_0\), the objective function is

\[
\max_{\{k_t\}^\infty_{t=1}} E_0 \sum_{t=0}^\infty \beta^t r(s_t, k_t)
\]

where the one-period payoff function is

\[
r(s_t, k_t) = f_{1,s_t} k_t - f_{2,s_t} k_t^2 - d_{s_t} (k_{t+1} - k_t)^2,
\]

\(E_0\) is a mathematical expectation conditioned on time 0 information \(x_0, s_0\) and the transition law for continuous state variable \(k_t\) is

\[
k_{t+1} - k_t = u_t
\]

We can think of \(k_t\) as the decision-maker’s capital and \(u_t\) as costs of adjusting the level of capital.

We assume that \(f_1(s_t) > 0\), \(f_2(s_t) > 0\), and \(d(s_t) > 0\).

Denote the state transition matrix for Markov state \(s_t \in \{1, 2\}\) as \(\Pi\):

\[
\Pr(s_{t+1} = j \mid s_t = i) = \Pi_{ij}
\]

Let \(x_t = \begin{bmatrix} k_t \\ 1 \end{bmatrix}\)

We can represent the one-period payoff function \(r(s_t, k_t)\) and the state-transition law as

\[
r(s_t, k_t) = f_{1,s_t} k_t - f_{2,s_t} k_t^2 - d_{s_t} (k_{t+1} - k_t)^2
\]

\[
= -x_t' \begin{bmatrix} f_{2,s_t} & -f_{1,s_t} \\ -f_{1,s_t} & 0 \end{bmatrix} x_t + d_{s_t} u_t^2
\]

\[
x_{t+1} = \begin{bmatrix} k_{t+1} \\ 1 \end{bmatrix} = I_2 x_t + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_t
\]

In [4]: def construct_arrays1(f1_vals=[1., 1.], f2_vals=[1., 1.], d_vals=[1., 1.]):

 ""
 Construct matrices that map the problem described in example 1 into a Markov jump linear quadratic dynamic programming problem
 """
The continuous part of the state \(x_t \) consists of two variables, namely, \(k_t \) and a constant term.

In [5]: state_vec1 = ["k", "constant term"]

We start with a Markov transition matrix that makes the Markov state be strictly periodic:

\[
\Pi_1 = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
\end{bmatrix},
\]

We set \(f_{1,s_t} \) and \(f_{2,s_t} \) to be independent of the Markov state \(s_t \):

\(f_{1,1} = f_{1,2} = 1 \)

\(f_{2,1} = f_{2,2} = 1 \)

In contrast to \(f_{1,s_t} \) and \(f_{2,s_t} \), we make the adjustment cost \(d_{s_t} \) vary across Markov states \(s_t \).

We set the adjustment cost to be lower in Markov state 2

\(d_1 = 1, d_2 = 0.5 \)

The following code forms a Markov switching LQ problem and computes the optimal value functions and optimal decision rules for each Markov state.
In [6]: # Construct Markov transition matrix
 \[\Pi_1 = \text{np.array([[0., 1.],}
 \[[1., 0.]]) }\]

In [7]: # Construct matrices
 Qs, Rs, As, Bs, Cs, k_star = construct_arrays1(d_vals=[1., 0.5])

In [8]: # Construct a Markov Jump LQ problem
 ex1_a = qe.LQMarkov(\Pi_1, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
 # Solve for optimal value functions and decision rules
 ex1_a.stationary_values();

Let's look at the value function matrices and the decision rules for each Markov state

In [9]: # P(s)
 ex1_a.Ps

Out[9]: array([[1.56626026, -0.78313013],
 [-0.78313013, -4.60843493]],
 [[1.37424214, -0.68712107],
 [-0.68712107, -4.65643947]])

In [10]: # d(s) = 0, since there is no randomness
 ex1_a.ds

Out[10]: array([0., 0.])

In [11]: # F(s)
 ex1_a.Fs

Out[11]: array([[0.56626026, -0.28313013],
 [0.74848427, -0.37424214]],
 [[0.74848427, -0.37424214]])

Now we'll plot the decision rules and see if they make sense

In [12]: # Plot the optimal decision rules
 k_grid = np.linspace(0., 1., 100)
 # Optimal choice in state s1
 u1_star = -ex1_a.Fs[0, 0, 1] - ex1_a.Fs[0, 0, 0] * k_grid
 # Optimal choice in state s2
 u2_star = -ex1_a.Fs[1, 0, 1] - ex1_a.Fs[1, 0, 0] * k_grid

 fig, ax = plt.subplots()
 ax.plot(k_grid, k_grid + u1_star, label="\\overline{s}_1 (high)"")
 ax.plot(k_grid, k_grid + u2_star, label="\\overline{s}_2 (low)"")

 # The optimal k*
 ax.scatter([0.5, 0.5], [0.5, 0.5], marker="*")
 ax.plot([k_star[0], k_star[0]], [0., 1.0], '--')

 # 45 degree line
The above graph plots \(k_{t+1} = k_t + u_t = k_t - F x_t \) as an affine (i.e., linear in \(k_t \) plus a constant) function of \(k_t \) for both Markov states \(s_t \).

It also plots the 45 degree line.

Notice that the two \(s_t \)-dependent closed loop functions that determine \(k_{t+1} \) as functions of \(k_t \) share the same rest point (also called a fixed point) at \(k_t = 0.5 \).

Evidently, the optimal decision rule in Markov state 2, in which the adjustment cost is lower, makes \(k_{t+1} \) a flatter function of \(k_t \) in Markov state 2.

This happens because when \(k_t \) is not at its fixed point, \(|u_{t,2}| > |u_{t,2}|\), so that the decision-maker adjusts toward the fixed point faster when the Markov state \(s_t \) takes a value that makes it cheaper.

In [13]: # Compute time series

\[
T = 20
\]

\[
x0 = np.array([[0., 1.]]) . T
\]

\[
x_path = ex1_a.compute_sequence(x0, ts_length=T)[0]
\]

\[
fig, ax = plt.subplots()
\]

\[
ax.plot(range(T), x_path[0, :-1])
\]

\[
ax.set_xlabel("$t\$")
\]

\[
ax.set_ylabel("k_t")
\]

\[
ax.set_title("Optimal path of k_t")
\]

plt.show()
Now we’ll depart from the preceding transition matrix that made the Markov state be strictly periodic.

We’ll begin with symmetric transition matrices of the form

$$\Pi_2 = \begin{bmatrix} 1 - \lambda & \lambda \\ \lambda & 1 - \lambda \end{bmatrix}.$$

In [14]: $\lambda = 0.8$ # high λ
$$\Pi_2 = \text{np.array([[}1\text{-}\lambda, \lambda\text{]},
[\lambda, 1\text{-}\lambda]])$$

ex1_b = qe.LQMarkov(II2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

Out[14]: array([[0.57291724, -0.28645862]],
 [[0.74434525, -0.37217263]])

In [15]: $\lambda = 0.2$ # low λ
$$\Pi_2 = \text{np.array([[}1\text{-}\lambda, \lambda\text{]},
[\lambda, 1\text{-}\lambda]])$$

ex1_b = qe.LQMarkov(II2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

Out[15]: array([[0.59533259, -0.2976663]],
 [[0.72818728, -0.36409364]])
We can plot optimal decision rules associated with different λ values.

In [16]: $\lambda_vals = \text{np.linspace}(0., 1., 10)$
$F1 = \text{np.empty}((\lambda_vals_size, 2))$
$F2 = \text{np.empty}((\lambda_vals_size, 2))$

```python
for i, $\lambda$ in enumerate($\lambda\_vals$):
    $\Pi2 = \text{np.array}([[1-\lambda, \lambda],
                      [\lambda, 1-\lambda]])$
    ex1_b = qe.LQMarkov($\Pi2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=\beta$)
    ex1_b.stationary_values();
    $F1[i, :] = ex1\_b.Fs[0, 0, :]$  
    $F2[i, :] = ex1\_b.Fs[1, 0, :]$  
```

In [17]:
```python
for i, state_var in enumerate(state_vec1):
    fig, ax = plt.subplots()
    ax.plot($\lambda\_vals, F1[:, i], label="\(\overline{s}_1\)", color="b")$
    ax.plot($\lambda\_vals, F2[:, i], label="\(\overline{s}_2\)", color="r")$
    ax.set_xlabel("$\lambda$")
    ax.set_ylabel("$F_{s_t}$")
    ax.set_title(f"Coefficient on {state_var}"),
    ax.legend()
    plt.show()
```
Notice how the decision rules' constants and slopes behave as functions of λ.

Evidently, as the Markov chain becomes more nearly periodic (i.e., as $\lambda \to 1$), the dynamic program adjusts capital faster in the low adjustment cost Markov state to take advantage of what is only temporarily a more favorable time to invest.

Now let's study situations in which the Markov transition matrix Π is asymmetric

$$
\Pi_3 = \begin{bmatrix}
1 - \lambda & \lambda \\
\delta & 1 - \delta
\end{bmatrix}.
$$

In [18]: $\lambda, \delta = 0.8, 0.2$

 $\Pi_3 = \text{np.array}([[1-\lambda, \lambda],
 [\delta, 1-\delta]])$

 ex1_b = qe.LQMarkov(Π_3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=\beta)
 ex1_b.stationary_values();
 ex1_b.Fs

Out[18]: array([[0.57169781, -0.28584894],
 [0.72749075, -0.36374537]])

We can plot optimal decision rules for different λ and δ values.

In [19]: $\lambda_vals = \text{np.linspace}(0., 1., 10)$
 $\delta_vals = \text{np.linspace}(0., 1., 10)$

 $\lambda_grid = \text{np.empty}((\lambda_vals.size, \delta_vals.size))$
\begin{verbatim}
\delta_grid = np.empty((\lambda_vals.size, \delta_vals.size))
F1_grid = np.empty((\lambda_vals.size, \delta_vals.size, len(state_vec1)))
F2_grid = np.empty((\lambda_vals.size, \delta_vals.size, len(state_vec1)))

for i, \lambda in enumerate(\lambda_vals):
 \lambda_grid[i, :] = \lambda
 \delta_grid[i, :] = \delta_vals
 for j, \delta in enumerate(\delta_vals):
 \Pi3 = np.array([[1-\lambda, \lambda],
 [\delta, 1-\delta]])

 ex1_b =qe.LQMarkov(\Pi3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=\beta)
 ex1_b.stationary_values();
 F1_grid[i, j, :] = ex1_b.Fs[0, 0, :]
 F2_grid[i, j, :] = ex1_b.Fs[1, 0, :]

In [20]: for i, state_var in enumerate(state_vec1):
 fig = plt.figure()
 ax = fig.add_subplot(111, projection='3d')
 # high adjustment cost, blue surface
 ax.plot_surface(\lambda_grid, \delta_grid, F1_grid[:, :, i], color="b")
 # low adjustment cost, red surface
 ax.plot_surface(\lambda_grid, \delta_grid, F2_grid[:, :, i], color="r")
 ax.set_xlabel("λ")
 ax.set_ylabel("δ")
 ax.set_zlabel("F_{s_t}")
 ax.set_title(f"coefficient on {state_var}")
 plt.show()
\end{verbatim}
The following code defines a wrapper function that computes optimal decision rules for cases with different Markov transition matrices.

```python
In [21]: def run(construct_func, vals_dict, state_vec):
    """
    A Wrapper function that repeats the computation above for different cases
    """
    Qs, Rs, Ns, As, Bs, Cs, k_star = construct_func(**vals_dict)

    # Symmetric II
    # Notice that pure periodic transition is a special case when λ=1
    print("symmetric II case:
    λ_vals = np.linspace(0., 1., 10)
    F1 = np.empty((λ_vals.size, len(state_vec)))
    F2 = np.empty((λ_vals.size, len(state_vec)))

    for i, λ in enumerate(λ_vals):
        II2 = np.array([[1-λ, λ],
                        [λ, 1-λ]])
        mplq = qe.LQMarkov(II2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
        mplq.stationary_values();
        F1[i, :] = mplq.Fs[0, 0, :]
        F2[i, :] = mplq.Fs[1, 0, :

    for i, state_var in enumerate(state_vec):
        fig = plt.figure()
        ax = fig.add_subplot(111)
        ax.plot(λ_vals, F1[:, i], label="$\overline{s}_1$", color="b")
        ax.plot(λ_vals, F2[:, i], label="$\overline{s}_2$", color="r")

        ax.set_xlabel("$\lambda$")
        ax.set_ylabel("$F({\overline{s}}_t)$")
```

ax.set_title(f"coefficient on \{state_var\}")
ax.legend()
plt.show()

Plot optimal k*_{s_t} and k that optimal policies are targeting
only for example 1
if state_vec == ["k", "constant term"]:
 fig = plt.figure()
 ax = fig.add_subplot(111)
 for i in range(2):
 F = [F1, F2][i]
 c = ["b", "r"][i]
 ax.plot([0, 1], [k_star[i], k_star[i]], "--",
 color=c, label="$k^*_{\overline{s}_{t}}$ +str(i+1)+")$")
 ax.plot(λ_vals, -F[:, 1] / F[:, 0], color=c,
 label="\overline{s}_{t} +str(i+1)+")$")

 ax.set_xlabel("λ")
 ax.set_ylabel("k")
 ax.set_title("Optimal k levels and k targets")
 ax.text(0.5, min(k_star)+max(k_star)-min(k_star)/20, "$\lambda=0.5$")
 ax.legend(bbox_to_anchor=(1., 1.))
 plt.show()

Asymmetric II
print("asymmetric II case:\n")
δ_vals = np.linspace(0., 1., 10)

λ_grid = np.empty((λ_vals.size, δ_vals.size))
δ_grid = np.empty((λ_vals.size, δ_vals.size))
F1_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))
F2_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))

for i, λ in enumerate(λ_vals):
 λ_grid[i, :] = λ
 δ_grid[i, :] = δ_vals

for j, δ in enumerate(δ_vals):
 Π3 = np.array([[1-λ, λ],
 [δ, 1-δ]])
 mplq = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
 mplq.stationary_values();
 F1_grid[i, j, :] = mplq.Fs[0, 0, :]
 F2_grid[i, j, :] = mplq.Fs[1, 0, :]

for i, state_var in enumerate(state_vec):
 fig = plt.figure()
 ax.plot_surface(Π3, projection='3d')
 ax.plot_surface(Π3, color='b')
 ax.plot_surface(Π3, color='r')
 ax.set_xlabel("λ")
 ax.set_ylabel("δ")
 ax.set_zlabel("$F(\overline{s}_{t})$")
 ax.set_title(f"coefficient on \{state_var\}")
To illustrate the code with another example, we shall set f_{2,s_t} and d_{s_t} as constant functions and

\[f_{1,1} = 0.5, f_{1,2} = 1 \]

Thus, the sole role of the Markov jump state s_t is to identify times in which capital is very productive and other times in which it is less productive.

The example below reveals much about the structure of the optimum problem and optimal policies.

Only f_{1,s_t} varies with s_t.

So there are different s_t-dependent optimal static k level in different states $k_{s_t}^* = \frac{f_{1,s_t}}{2f_{2,s_t}}$, values of k that maximize one-period payoff functions in each state.

We denote a target k level as $k_{s_t}^{target}$, the fixed point of the optimal policies in each state, given the value of λ.

We call $k_{s_t}^{target}$ a “target” because in each Markov state s_t, optimal policies are contraction mappings and will push k towards a fixed point $k_{s_t}^{target}$.

When $\lambda \to 0$, each Markov state becomes close to absorbing state and consequently $k_{s_t}^{target} \to k_{s_t}^*$.

But when $\lambda \to 1$, the Markov transition matrix becomes more nearly periodic, so the optimum decision rules target more at the optimal k level in the other state in order to enjoy higher expected payoff in the next period.

The switch happens at $\lambda = 0.5$ when both states are equally likely to be reached.

Below we plot an additional figure that shows optimal k levels in the two states Markov jump state and also how the targeted k levels change as λ changes.

\[\text{In [22]: run(construct_arrays1,{"f1_vals":[0.5, 1.], state_vec1)} \]

\[
\text{symmetric II case:}
\]
asymmetric II case:
Set $f_{1,s}$ and d_s as constant functions and

$$f_{2,1} = 0.5, f_{2,2} = 1$$

In [23]: run(construct_arrays1, {"f2_vals":[0.5, 1.]}, state_vec1)

symmetric Π case:
asymmetric II case:
7 Example 2

We now add to the example 1 setup another state variable w_t that follows the evolution law

$$w_{t+1} = \alpha_0 (s_t) + \rho (s_t) w_t + \sigma (s_t) \epsilon_{t+1}, \quad \epsilon_{t+1} \sim N (0, 1)$$

We think of w_t as a rental rate or tax rate that the decision maker pays each period for k_t.

20
To capture this idea, we add to the decision-maker’s one-period payoff function the product of w_t and k_t

$$r(s_t, k_t, w_t) = f_1(s_t) k_t - f_2(s_t) k_t^2 - d(s_t) (k_{t+1} - k_t)^2 - w_t k_t,$$

We now let the continuous part of the state at time t be $x_t = \begin{bmatrix} k_t \\ 1 \\ w_t \end{bmatrix}$ and continue to set the control $u_t = k_{t+1} - k_t$.

We can write the one-period payoff function $r(s_t, k_t, w_t)$ and the state-transition law as

$$r(s_t, k_t, w_t) = f_1(s_t) k_t - f_2(s_t) k_t^2 - d(s_t) (k_{t+1} - k_t)^2 - w_t k_t$$

$$= -x_t' \begin{bmatrix} f_2(s_t) - f_1(s_t) \\ 0 \\ \frac{1}{2} \end{bmatrix} x_t + d(s_t) u_t^2 \equiv R(s_t)$$

and

$$x_{t+1} = \begin{bmatrix} k_{t+1} \\ 1 \\ w_{t+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \alpha_0(s_t) & \rho(s_t) \end{bmatrix} x_t + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u_t + \begin{bmatrix} 0 \\ 0 \\ \sigma(s_t) \end{bmatrix} \epsilon_{t+1} \equiv A(s_t) x_t + B(s_t) u_t + C(s_t) \epsilon_{t+1}$$

In [24]:
```python
def construct_arrays2(f1_vals=[1., 1.],
                    f2_vals=[1., 1.],
                    d_vals=[1., 1.],
                    alpha_vals=[1., 1.],
                    rho_vals=[0.9, 0.9],
                    sigma_vals=[1., 1.]):
    
    m = len(f1_vals)
    n, k, j = 3, 1, 1

    Rs = np.zeros((m, n, n))
    Qs = np.zeros((m, k, k))
    As = np.zeros((m, n, n))
    Bs = np.zeros((m, n, k))
    Cs = np.zeros((m, n, j))

    for i in range(m):
        Rs[i, 0, 0] = f2_vals[i]
        Rs[i, 1, 0] = -f1_vals[i] / 2
        Rs[i, 0, 1] = -f1_vals[i] / 2
        Rs[i, 1, 1] = 1/2
        Rs[i, 0, 2] = 1/2
        Rs[i, 2, 0] = 1/2
```

"""Construct matrices that maps the problem described in example 2 into a Markov jump linear quadratic dynamic programming problem."""
Qs[i, 0, 0] = d_vals[i]

As[i, 0, 0] = 1
As[i, 1, 0] = 1
As[i, 2, 1] = ω_vals[i]
As[i, 2, 2] = ρ_vals[i]

Bs[i, :, :] = np.array([[1, 0], [0, 0]]).T

Cs[i, :, :] = np.array([[0, 0, σ_vals[i]]]).T

Ns = None
k_star = None

return Qs, Rs, Ns, As, Bs, Cs, k_star

In [25]: state_vec2 = ["k", "constant term", "w"]

Only \(d_s\) depends on \(s_t\).

In [26]: run(construct_arrays2, {"d_vals":[1., 0.5]}, state_vec2)

symmetric Π case:

![Coefficient on k](image-url)

![F(S)](image-url)
asymmetric II case:
Only f_{1,s_t} depends on s_t.

In [27]: run(construct_arrays2, {"f1_vals":[0.5, 1]}, state_vec2)

 symmetric Π case:
asymmetric II case:
Only f_{2,s_t} depends on s_t.

In [28]: run(construct_arrays2, {"f2_vals":[0.5, 1.], state_vec2)

symmetric Π case:
asymmetric II case:
Only $\alpha_0(s_t)$ depends on s_t.

In [29]: run(construct_arrays2, {"\alpha_0_vals": [0.5, 1]}, state_vec2)

symmetric II case:
asymmetric II case:
Only ρ_{s_t} depends on s_t.

In [30]: run(construct_arrays2, {"\rho_vals":[0.5, 0.9]}, state_vec2)

symmetric Π case:
asymmetric II case:
Only σ_s, depends on s_t.

In [31]: run(construct_arrays2, {"\sigma_vals":[0.5, 1.]}, state_vec2)

 symmetric Π case:
asymmetric II case:
8 More examples

The following lectures describe how Markov jump linear quadratic dynamic programming can be used to extend the [1] model of optimal tax-smoothing and government debt in several interesting directions

1. How to Pay for a War: Part 1

2. How to Pay for a War: Part 2

2. How to Pay for a War: Part 3

References

